(Pueraria Montana Var. Lobata Willd) in North Carolina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fabaceae) Subfam
J. Jpn. Bot. 92(1): 34–43 (2017) Harashuteria, a New Genus of Leguminosae (Fabaceae) Subfam. Papilionoideae Tribe Phaseoleae a a b, Kazuaki OHASHI , Koji NATA and Hiroyoshi OHASHI * aSchool of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694 JAPAN; bHerbarium TUS, Botanical Garden, Tohoku University, Sendai, 980-0862 JAPAN *Corresponding author: [email protected] (Accepted on November 25, 2016) A new genus, Harashuteria K. Ohashi & H. Ohashi, is proposed as a member of the tribe Phaseoleae of Leguminosae (Fabaceae) based on Shuteria hirsuta Baker by comparative morphological observation and molecular phylogenetic analysis of Shuteria and its related genera. Molecular phylogenetic analysis was performed using cpDNA (trnK/matK, trnL–trnF and rpl2 intron) markers. Our molecular phylogeny shows that Shuteria hirsuta is sister to Cologania and is distinct from Shuteria vestita or Amphicarpaea, although the species has been attributed to these genera. A new combination, Harashuteria hirsuta (Baker) K. Ohashi & H. Ohashi is proposed. Key words: Amphicarpaea, Cologania, Fabaceae, Glycininae, Harashuteria, Hiroshi Hara, new genus, Phaseoleae, Shuteria, Shuteria hirsuta. The genus Shuteria Wight & Arn. was protologue. Kurz (1877) recognized Shuteria established on the basis of S. vestita Wight & hirsuta as a member of Pueraria, because he Arn. including 4–5 species in Asia (Schrire described Pueraria anabaptista Kurz citing 2005). The genus belongs to the subtribe S. hirsuta as its synonym (hence Pueraria Glycininae in the tribe Phaseoleae and is anabaptista is superfluous). Amphicarpaea closely allied to Amphicarpaea, Cologania, lineata Chun & T. C. Chen is adopted as a and Dumasia especially in the flower structures correct species by Sa and Gilbert (2010) in the (Lackey 1981). -
1 Taxonomy and Nomenclature 2 Origin in the United States
Kudzu For other uses, see Kudzu (disambiguation). Kudzu (/ˈkʊdzuː/, also called Japanese arrow- Kudzu seedpods are considered to be varieties rather than full species. The morphological differences between them are subtle; they can breed with each other, and it appears that intro- duced kudzu populations in the United States have ances- try from more than one of the species.*[4]*[5] They are: Flowers of Pueraria montana • P. montana root*[1]*[2]) is a group of plants in the genus Pueraria, in • P. lobata (P. montana var. lobata) the pea family Fabaceae, subfamily Faboideae. They are • climbing, coiling, and trailing perennial vines native to P. edulis much of eastern Asia, southeast Asia, and some Pacific • P. phaseoloides Islands.*[2] The name comes from the Japanese name * for the plants, kuzu (クズ or 葛 ?) , which was written • P. thomsonii*[4] (P. montana var. chinensis)*[6] “kudzu”in historical romanizations. Where these plants are naturalized, they can be invasive and are considered • P. tuberosa noxious weeds. The plant climbs over trees or shrubs and grows so rapidly that it kills them by heavy shading.*[3] The plant is edible but often sprayed with herbicides.*[3] 2 Origin in the United States Kudzu was introduced to the United States as an orna- 1 Taxonomy and nomenclature mental bush and an effortless and efficient shade producer at the Philadelphia Continental Exposition in 1876. In The name kudzu describes one or more species in the the 1930s and '40s, the vine was rebranded as a way for genus Pueraria that are closely related, and some of them farmers to stop soil erosion. -
Plant Pest Risk Assessment for Kudzu, Pueraria Montana 2010 (Revised 2013)
Oregon Department of Agriculture Plant Pest Risk Assessment for Kudzu, Pueraria montana 2010 (Revised 2013) Name: Kudzu, Pueraria montana; a.k.a. Japanese arrowroot, porch-vine, telephone vine; Synonym: Pueraria lobata Family: Pea, Fabaceae Findings of This Review and Assessment: Kudzu has been determined to be a category “A” noxious weed as defined by the Oregon Department of Agriculture (ODA) Noxious Weed Policy and Classification System. This determination is based on a literature review and analysis using two ODA evaluation forms. Using the Qualitative Noxious Weed Risk Assessment v.3.8, kudzu scored 63 indicating an A listing and score 17 with the ODA Noxious Weed Rating system, v.3.2. Introduction: Kudzu, Pueraria montana is a fast growing vine native to China and Japan. It was introduced and has become a major pest of the southeastern US where an estimated seven million acres are infested. Kudzu is a federally listed noxious weed and was placed on the ODA Noxious Weed List in 1995. Prior to the Oregon listing, the species was not known to occur in the Pacific Northwest. In1990 an inquiry was received by ODA to approve the importation and use of kudzu for forage. This inquiry prompted a review by ODA and ultimately a quarantine listing of kudzu in 1993 to prevent import, transport, or sale in the state. The first weedy infestation in the Pacific Northwest was found near Aurora, Oregon in 2001 and two additional sites were found in southwest Portland the following year. It was not determined how the plants where introduced, but was most likely intentionally planted as ornamental or for erosion control. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
<I>Colaspis Suilla</I>
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 12-25-2020 A review of the Colaspis suilla species group, with description of three new species from Florida (Coleoptera: Chrysomelidae: Eumolpinae) E.G. Riley Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A journal of world insect systematics INSECTA MUNDI 0830 A review of the Colaspis suilla species group, Page Count: 21 with description of three new species from Florida (Coleoptera: Chrysomelidae: Eumolpinae) Edward G. Riley Department of Entomology, Texas A&M University, College Station, Texas 77843-2475 USA Michael C. Thomas Festschrift Contribution Date of issue: December 25, 2020 Center for Systematic Entomology, Inc., Gainesville, FL Riley EG. 2020. A review of the Colaspis suilla species group, with description of three new species from Florida (Coleoptera: Chrysomelidae: Eumolpinae). Insecta Mundi 0830: 1–21. Published on December 25, 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. -
Mitochondrial Markers for Identification and Phylogenetic Studies in Insects – a Review
DOI: 10.2478/dna-2014-0001 DNA Barcodes 2014; Volume 2: 1–9 Research Article Open Access Surajit De Mandal, Liansangmawii Chhakchhuak, Guruswami Gurusubramanian, Nachimuthu Senthil Kumar* Mitochondrial markers for identification and phylogenetic studies in insects – A Review Abstract: Similar morphology and high genetic diversity stranded molecule with a range of 14,503 bp (Rhopalomyia poses problems in phylogenetic studies of insects. To pomum) to 19,517 bp (Drosophila melanogaster) in size solve these problems, mitochondrial based markers have [7]. It consists of 37 genes encoding the large and small been adopted and are increasingly used as molecular subunit ribosomal RNAs, 22 transfer RNAs (trnI, trnQ, markers for phylogenetic studies. Varied markers have trnM, trnW, trnC, trnY, trnL1, trnK, trnD, trnG, trnA, trnR, been used for different species of insects, viz., markers for trnN, trnS1, trnE, trnF, trnH, trnT, trnP, trnS2, trnL2, trnV) 16S r RNA, 12S r RNA, ND (1-6 genes), ATPase and control necessary to translate the protein-coding genes and regions. Among which protein coding gene, CO-1 is found 13 protein coding genes that are all components of the to be best because of its advantage over others whereas, oxidative phosphorylation process (Figure 1). The insect AT rich region of mitochondrial DNA is the least used mt genome also consists of a regulatory element known as marker. A recent advanced technology in phylogenetic AT rich region which plays important role in initiation of analysis; namely mitogenomics have greatly improved this transcription and replication [8,9]. research field. This short review attempted to summarize The arrangement of major genes in the mitochondrial recent studies on the application of vari ous mitochondrial genome is highly conserved across animal phyla. -
Spatial Distribution of the Plum Scale Insect, Parlatoria Oleae (Colvee) (Hemiptera: Diaspididae) Infesting Mango Trees in Egypt Moustafa M.S
International journal of Horticulture, Agriculture and Food science (IJHAF) Vol-4, Issue-2, Mar-Apr, 2020 https://dx.doi.org/10.22161/ijhaf.4.2.1 ISSN: 2456-8635 Spatial distribution of the plum scale insect, Parlatoria oleae (Colvee) (Hemiptera: Diaspididae) infesting mango trees in Egypt Moustafa M.S. Bakry Scale Insects and Mealybugs Research Dept., Plant Protection Research Institute, A.R.C, Dokii, Giza, Egypt. [email protected] Abstract— The aim of the present study was to examine the spatial distribution for monitoring populations of Parlatoria oleae (Colvee) (Hemiptera: Diaspididae) infesting mango trees during two successive years (2016–2018) in Luxor Governorate, Egypt. The obtained results showed that insect population of P. oleae occurred on mango trees all the year round and has three peaks of seasonal activity per year, which was recorded in October, April and July during the first year (2016/2017) and through in November, April and July during the second year (2017/2018). Data were analyzed using twenty one distribution indices. All indices of distribution indicated significant aggregation behaviour in each year, except, the K values of the negative binomial distribution of the total P. oleae population ranged about 15-17 for each year during the two successive years, indicating random behavior. The results of this research can be used to draft monitoring methods for this pest and establishing IPM strategies for P. oleae. Keywords— Parlatoria oleae, population density, distribution patterns, directional preference, mango trees. I. INTRODUCTION understanding of the spatial distribution i.e. (regular, random In Egypt, mango trees (Mangifera indica L.) are subjected or aggregated) of populations provides useful information, not to infestation by several different pests. -
TAXON:Neonotonia Wightii SCORE:16.0 RATING:High Risk
TAXON: Neonotonia wightii SCORE: 16.0 RATING: High Risk Taxon: Neonotonia wightii Family: Fabaceae Common Name(s): glycine Synonym(s): Glycine wightii (Wight & Arn.) Verdc. perennial soybean Notonia wightii Wight & Arn. soja pérenne soja-perene Assessor: Chuck Chimera Status: Assessor Approved End Date: 4 May 2015 WRA Score: 16.0 Designation: H(HPWRA) Rating: High Risk Keywords: Fodder Plant, Smothering Vine, N-Fixing, Self-Compatible, Animal-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns -
Advanced Entomology Training Introductions & Purpose of Training
2/25/2010 Advanced Entomology Training March 1, 2010 8:30 am to 12:30 pm Acadia Parish Extension Office Introductions & Purpose of training • Natalie Hummel • Steve Linscombe Pre-test Post-test will also be administered – best score on the post-test will win a door prize. 1 2/25/2010 Rice Growth and Development Dr. Johnny Saichuk, LSU AgCenter, Rice Research Station 8:45 to 9 am Water Drilled Seeded mesocotyl Adventitious mesocotyl root Secondary root Primary root 2 2/25/2010 adventitious root mesocotyl seminal root Adventitious roots 3 2/25/2010 Growing point, apical meristem septum node internode node Typical rice seedling 4 2/25/2010 Growing point, apical meristem septum node internode node 5 2/25/2010 nodes internodes nodes node internode Intercalary node meristem internode node internode node Axillary bud 6 2/25/2010 2 mm 4 mm panicle differentiation Filament Stamen Anther Stigma Stigma of pistil Style of pistil 7 2/25/2010 Filaments of stamens Anthers of stamens milk to soft dough 8 2/25/2010 Rice Insects Taxonomy and Morphology: Personal Details of Some Old and New Foes Dr. Chris Carlton, Louisiana State Arthropod Museum LSU AgCenter, Dept of Entomology 9 to 9:45 am Insects that we will deal with BeetlesBeetles--ricerice water weevils, rice levee billbug, colaspis leaf beetles, lady beetles True bugsbugs--stinkstink bugs, aphids MothsMoths--borerborer complex FliesFlies--leafminersleafminers MitesMites--paniclepanicle rice mite Beetles (order Coleoptera): adults M. Ferro www.zin.ru/.../Coleoptera/ images/ http://quasimodo.versailles. inra.fr/…/famtot.htm www.zin.ru/.../Coleoptera/ images/ www.zin.ru/.../Coleoptera/ images/ www.zin.ru/.../Coleoptera/ images/ 9 2/25/2010 Beetles (order Coleoptera): adults Head Thorax Abdomen Elytra Elytra completely Elytra partially covering flight wings exposing flight wings Beetles of the World 1. -
Hemiptera: Aphididae) on Certain Tomato Cultivars
Advances in Agricultural Technology & Plant Sciences ISSN: 2640-6586 Research Article Volume 4 Issue 5 Population Density and Spatial Distribution Patterns of Aphis gossypii (Glov.) (Hemiptera: Aphididae) on Certain Tomato Cultivars Shehata EA* Plant Protection Department, Plant Protection Research Institute, Egypt *Corresponding author: Eman A. Shehata, Plant Protection Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt, Tel: 201012627839; Email: [email protected] Received Date: August 04, 2021; Published Date: August 18, 2021 Abstract The present study was carried out throughout two successive growing seasons (2018/2019 and 2019/2020) at Mansoura district, Dakhlia Governorate, Egypt, to study the performance of some tomato cultivars to infestation by the cotton aphid, Aphis gossypii (Glov.) (Hemiptera: Aphididae) and their spatial distribution patterns. The obtained results showed that insect population of A. gossypii their susceptibility to population density of A. gossypii. Hybrid T4 84 tomato cultivar was the highest population density and was occurred on all different tomato cultivars all the season round. These varieties varied significantly in rated as highly susceptible (H.S.) to infestation by the total population density of A. gossypii, followed by Hybrid T4 70 and Fiona cultivars were appeared as susceptible (S), while, Maram and Rawan cultivars were observed to be relatively resistant (RR). But, Beto 86 cultivar had the lowest population density and was rated as relative resistant (MR) of pest over the entire season. These pieces of information can be useful for establishing IPM strategies against this pest. Data were analysed using twenty the tested tomato cultivars. This study may be add some information to be used in integrated pest management programs for two distribution indices. -
Fifteen Into Three Does Go: Morphology, Genetics and Genitalia Confirm Taxonomic Inflation of New Zealand Beetles (Chrysomelidae: Eucolaspis)
RESEARCH ARTICLE Fifteen into Three Does Go: Morphology, Genetics and Genitalia Confirm Taxonomic Inflation of New Zealand Beetles (Chrysomelidae: Eucolaspis) Prasad R. C. Doddala1*¤, Maria A. Minor1, David J. Rogers2, Steven A. Trewick1 1 Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand, 2 Plant and Food Research Ltd., Havelock North, New Zealand ¤ Current address: Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden * [email protected] Abstract OPEN ACCESS Eucolaspis Sharp 1886 is a New Zealand native leaf beetle genus (Coleoptera: Chrysomeli- Citation: Doddala PRC, Minor MA, Rogers DJ, Trewick SA (2015) Fifteen into Three Does Go: dae: Eumolpinae) with poorly described species and a complex taxonomy. Many economi- Morphology, Genetics and Genitalia Confirm cally important fruit crops are severely damaged by these beetles. Uncertain species Taxonomic Inflation of New Zealand Beetles taxonomy of Eucolaspis is leaving any biological research, as well as pest management, (Chrysomelidae: Eucolaspis). PLoS ONE 10(11): tenuous. We used morphometrics, mitochondrial DNA and male genitalia to study phyloge- e0143258. doi:10.1371/journal.pone.0143258 netic and geographic diversity of Eucolaspis in New Zealand. Freshly collected beetles from Editor: Kyung-Jin Min, Inha University, REPUBLIC several locations across their distribution range, as well as identified voucher specimens OF KOREA from major museum collections were examined to test the current classification. We also Received: July 11, 2015 considered phylogenetic relationships among New Zealand and global Eumolpinae (Cole- Accepted: November 1, 2015 optera: Chyrosomelidae). We demonstrate that most of the morphological information used Published: November 23, 2015 previously to define New Zealand Eucolaspis species is insufficient. -
Exotic Invasive Plants in Kentucky
University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2010 EXOTIC INVASIVE PLANTS IN KENTUCKY Yu Liang University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Liang, Yu, "EXOTIC INVASIVE PLANTS IN KENTUCKY" (2010). University of Kentucky Master's Theses. 23. https://uknowledge.uky.edu/gradschool_theses/23 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS EXOTIC INVASIVE PLANTS IN KENTUCKY Invasion of exotic species is a significant problem in natural ecosystems, reaching epidemic proportions and resulting in significant economic losses. However, insufficient knowledge of explicit spatial distribution of invasive species hinders our ability to prevent and/or mitigate future invasion. In this study, we demonstrate the use of existing voluntary data to survey invasive plant species in Kentucky. We also reconstructed the historical distribution of 16 exotic invasive plants typical to Kentucky using herbarium records. We found that Kentucky is facing a large threat from exotic invasive plants as they are reported throughout most counties. The distribution maps for four of the top 10 most reported invasive species revealed that Kentucky is presently or was previously a front of invasion. The majority of the 16 targeted invasive species were scattered throughout Kentucky with no concentrations within particular regions.