Pueraria Lobata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generic Hyper-Diversity in Stachybotriaceae
Persoonia 36, 2016: 156–246 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X691582 Generic hyper-diversity in Stachybotriaceae L. Lombard1, J. Houbraken1, C. Decock2, R.A. Samson1, M. Meijer1, M. Réblová3, J.Z. Groenewald1, P.W. Crous1,4,5,6 Key words Abstract The family Stachybotriaceae was recently introduced to include the genera Myrothecium, Peethambara and Stachybotrys. Members of this family include important plant and human pathogens, as well as several spe- biodegraders cies used in industrial and commercial applications as biodegraders and biocontrol agents. However, the generic generic concept boundaries in Stachybotriaceae are still poorly defined, as type material and sequence data are not readily avail- human and plant pathogens able for taxonomic studies. To address this issue, we performed multi-locus phylogenetic analyses using partial indoor mycobiota gene sequences of the 28S large subunit (LSU), the internal transcribed spacer regions and intervening 5.8S multi-gene phylogeny nrRNA (ITS), the RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), translation elongation species concept factor 1-alpha (tef1) and β-tubulin (tub2) for all available type and authentic strains. Supported by morphological taxonomy characters these data resolved 33 genera in the Stachybotriaceae. These included the nine already established genera Albosynnema, Alfaria, Didymostilbe, Myrothecium, Parasarcopodium, Peethambara, Septomyrothecium, Stachybotrys and Xepicula. At the same time the generic names Melanopsamma, Memnoniella and Virgatospora were resurrected. Phylogenetic inference further showed that both the genera Myrothecium and Stachybotrys are polyphyletic resulting in the introduction of 13 new genera with myrothecium-like morphology and eight new genera with stachybotrys-like morphology. -
Lepidoptera Learning Objective
QUARANTINE SIGNIFICANT LEPIDOPTERA OF CONCERN TO THE SOUTHERN UNITED STATES STEVEN PASSOA USDA/APHIS/PPQ 2007 1 LEPIDOPTERA GOALS . Learn techniques of specimen preparation and submission for CAPS Lepidoptera . Develop a list of Lepidoptera of regulatory concern to the southern USA . Learn to SCREEN samples for these species in the stage most likely to be seen by diagnostic labs using the MAJOR characters. Some species are only defined by a combination of features. In those cases, using the associated key and references listed is more accurate. Give examples from the major superfamilies . Distributions and hosts mentioned are the most likely pathways 2 DEVELOP A LIST . Criteria originally modified from biocontrol of weeds list in July 1991 memo, then modified by NEPSC committee . Now widely used in APHIS as mini-PRA . Survey methodology and taxonomic recognition added to economic criteria . Results are either threats (no pathway), CAPS targets (need to survey), or a dead survey (not practical to consider) 3 WHY LABS HATE TO IDENTIFY LEPIDOPTERA . Secret society of critical characters . Constant name changes . Characters hard to see, covered with scales, or both 4 EGGS . Two types . Do not kill important finds and sent urgent . Plan to rear them in a quarantine facility . Spodoptera and Lymantria (and others) cover the eggs with scales from the female’s body 5 LARVAE . Associate leaf miners with the mine and host . Mouthparts are the “genitalia” of the larval world . Fill vials so there is no air bubble when shipping . “Burp” rubber stoppers and parafilm screw top vials . Can kill and ship in vinegar . Put loose parts in small vials 6 PUPAE . -
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
World Mycotoxin Journal, February 2009; 2 (1): 35-43 Publisherb S E S
Wageningen Academic World Mycotoxin Journal, February 2009; 2 (1): 35-43 Publisherb s e s Macrocyclic trichothecene production and sporulation by a biological control strain of Myrothecium verrucaria is regulated by cultural conditions M.A. Weaver, R.E. Hoagland, C.D. Boyette and R.M. Zablotowicz United States Department of Agriculture, Agricultural Research Service, Southern Weed Science Research Unit. Stoneville MS 38776, USA; [email protected] Received: 15 February 2008 / Accepted: 16 December 2008 © 2009 Wageningen Academic Publishers Abstract Myrothecium verrucaria is a pathogen of several invasive weed species, including kudzu, and is currently being evaluated for use as a bioherbicide. However, the fungus also produces macrocyclic trichothecene mycotoxins. The safety of this biological control agent during production and handling would be improved if an inoculum could be produced without concomitant accumulation of macrocyclic trichothecenes. Sporulation and trichothecene production by M. verrucaria was evaluated on standard potato dextrose agar (PDA) and a series of complex and defined media. Sporulation on PDA and on agar media with nitrogen as ammonium nitrate or potassium nitrate was more than ten-fold greater then sporulation on the medium with ammonium sulphate as the nitrogen source. Accumulation of macrocyclic trichothecenes was strongly affected by the media composition, with higher levels often associated with higher carbon content in the media. Overall, incubation in continuous darkness resulted in higher macrocyclic trichothecene concentrations. Results support the hypothesis that accumulation of macrocyclic trichothecenes by this fungus can be altered by manipulating carbon and nitrogen sources. Furthermore, the biosynthesis of these mycotoxins may be independent of sporulation, demonstrating that the bioherbicide can be readily produced on solid substrates while simultaneously yielding conidia that are less threatening to worker safety. -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
The Holomorph of Parasarcopodium (Stachybotryaceae), Introducing P
Phytotaxa 266 (4): 250–260 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.266.4.2 The holomorph of Parasarcopodium (Stachybotryaceae), introducing P. pandanicola sp. nov. on Pandanus sp. SAOWALUCK TIBPROMMA1,2,3,4,5, SARANYAPHAT BOONMEE2, NALIN N. WIJAYAWARDENE2,3,5, SAJEEWA S.N. MAHARACHCHIKUMBURA6, ERIC H. C. McKENZIE7, ALI H. BAHKALI8, E.B. GARETH JONES8, KEVIN D. HYDE1,2,3,4,5,8 & ITTHAYAKORN PROMPUTTHA9,* 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kun- ming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Crop Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman 7Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand *Corresponding author: e-mail: [email protected] Abstract Collections of microfungi on Pandanus species (Pandanaceae) in Krabi, Thailand resulted in the discovery of a new species in the genus Parasarcopodium, producing both its sexual and asexual morphs. -
(Pueraria Montana Var. Lobata Willd) in North Carolina
ABSTRACT THORNTON, MELISSA ROSE. Arthopod Fauna Associated With Kudzu (Pueraria montana var. lobata Willd) In North Carolina. (Under the direction of David Orr.) The purpose of this research was to obtain background information to aid the implementation of a biological control program against the weed, kudzu (Pueraria montana var. lobata Willd). This research had several specific objectives that examined: 1) potential insect pollinators and seed production of kudzu in NC; 2) phytophagous insects and insect herbivory of kudzu foliage, seeds, vines and roots in NC; 3) abundance and diversity of foliar, vine, and root feeding insect communities on kudzu in comparison with those found on soybeans, the closest North American relative of kudzu in the United States. Kudzu is pollinated by native and naturalized insects in NC, in a pattern that varies by flower apparency rather than density. Arthropod herbivory by native generalists almost eliminated kudzu seed viability, while a naturalized Asian specialist consumed a nominal proportion of seeds. These data indicate that seed feeding arthropods would be poor candidates for importation biological control. Kudzu and soybeans shared the same foliar feeding insect communities and levels of defoliation, suggesting that foliage feeders are also poor choices for importation. No kudzu vine or root feeding insects or damage were found during the two years of this study, suggesting that future importation biological control research should focus on such feeders from Asia. ARTHROPOD FAUNA ASSOCIATED WITH KUDZU (PUERARIA MONTANA VAR. LOBATA WILLD) IN NORTH CAROLINA by MELISSA ROSE THORNTON A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science DEPARTMENT OF ENTOMOLOGY Raleigh 2004 APPROVED BY: ______________________________ ______________________________ Dr. -
Exploring Flat Faced Longhorn Beetles (Cerambycidae: Lamiinae) from the Reserve Forests of Dooars, West Bengal, India
Hindawi Publishing Corporation ISRN Entomology Volume 2013, Article ID 737193, 8 pages http://dx.doi.org/10.1155/2013/737193 Research Article Exploring Flat Faced Longhorn Beetles (Cerambycidae: Lamiinae) from the Reserve Forests of Dooars, West Bengal, India Sumana Saha,1 Hüseyin Özdikmen,2 Manish Kanti Biswas,3 and Dinendra Raychaudhuri4 1 Department of Zoology, Darjeeling Government College, Government of West Bengal, Darjeeling, West Bengal 734101, India 2 Gazi Universitesi,¨ Fen-Edebiyat Fakultesi,¨ Biyoloji Bol¨ um¨ u,¨ 06500 Ankara, Turkey 3 Department of Zoology, Sreegopal Banerjee College, Mogra, Hooghly, West Bengal 712148, India 4 Entomology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019, India Correspondence should be addressed to Dinendra Raychaudhuri; [email protected] Received 25 June 2013; Accepted 7 August 2013 Academic Editors: Y. Fan and P. Simoes˜ Copyright © 2013 Sumana Saha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The present study deals with 29 lamiid species under 21 genera of Dooars, West Bengal, India. These include 4 newly recorded species, namely, Macrochenus isabellinus Aurivillius, Aesopida malasiaca Thomson, Pterolophia (Hylobrotus) lateralis Gahan and Nupserha quadrioculata (Thunberg) from India while 16 others (marked by ∙)fromthestate. 1. Introduction We (saving the second author) for nearly two decades are involved in the exploration of the long horn beetles of Subfamily Lamiinae (Cerambycidae) include members of flat the area. Present communication is one such outcome on the faced longhorn beetles that are both xylophagous and phy- lamiids dealing with 29 species under 21 genera. -
Kudzu Vine Distribution of Kudzu
Kudzu Bug Megacopta cribraria Photo: ©2007 Charles Lam, Wikimedia commons Kudzu Bug • First species of Plataspidae family in Western Hemisphere! • 2009: First detection in U.S. (Georgia) • Agricultural pest to legumes • Nuisance pest to homeowners Photos: (Top) - Michasia Harris, University of Georgia, Bugwood.org #5474627; (Bottom) - Daniel R. Suiter, University of Georgia, Bugwood.org # 5407722 Kudzu Bug Distribution No sampling Sampled but not found Intercepted or detected, but not established Established by survey or consensus Map courtesy of Pest Tracker, National Agricultural Pest Information System (NAPIS), and The University of Georgia - Center for Invasive Species and Ecosystem Health, eddmaps.org Photo: Russ Ottens, University of Georgia, Bugwood.org #5475145 Susceptible Plants In the United States: • Kudzu • Soybean and other legumes • Corn • Sweet potato • Wisteria • Wheat In native regions: • NOT an agricultural pest Kudzu bug on soybean Photo: Michasia Harris, University of Georgia, Bugwood.org #5473918 Kudzu “The vine that ate the South” Kudzu vine Distribution of Kudzu Photo: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org #5483399; Map courtesy of USDA database, National Agricultural Pest Information System (NAPIS) Identification Eggs Nymphs Symbiont capsules in egg mass Hairy appearance of nymphs Photos: (Top) - Joe Eger, Dow AgroSciences, Bugwood.org #5471831; Yasmin Cardoza, North Carolina State University, Bugwood.org #5472919 (Bottom) - Yasmin Cardoza, North Carolina State University, Bugwood.org #5472911; -
Influence of Plant Parameters on Occurrence and Abundance Of
HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf. -
Fabaceae) Subfam
J. Jpn. Bot. 92(1): 34–43 (2017) Harashuteria, a New Genus of Leguminosae (Fabaceae) Subfam. Papilionoideae Tribe Phaseoleae a a b, Kazuaki OHASHI , Koji NATA and Hiroyoshi OHASHI * aSchool of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694 JAPAN; bHerbarium TUS, Botanical Garden, Tohoku University, Sendai, 980-0862 JAPAN *Corresponding author: [email protected] (Accepted on November 25, 2016) A new genus, Harashuteria K. Ohashi & H. Ohashi, is proposed as a member of the tribe Phaseoleae of Leguminosae (Fabaceae) based on Shuteria hirsuta Baker by comparative morphological observation and molecular phylogenetic analysis of Shuteria and its related genera. Molecular phylogenetic analysis was performed using cpDNA (trnK/matK, trnL–trnF and rpl2 intron) markers. Our molecular phylogeny shows that Shuteria hirsuta is sister to Cologania and is distinct from Shuteria vestita or Amphicarpaea, although the species has been attributed to these genera. A new combination, Harashuteria hirsuta (Baker) K. Ohashi & H. Ohashi is proposed. Key words: Amphicarpaea, Cologania, Fabaceae, Glycininae, Harashuteria, Hiroshi Hara, new genus, Phaseoleae, Shuteria, Shuteria hirsuta. The genus Shuteria Wight & Arn. was protologue. Kurz (1877) recognized Shuteria established on the basis of S. vestita Wight & hirsuta as a member of Pueraria, because he Arn. including 4–5 species in Asia (Schrire described Pueraria anabaptista Kurz citing 2005). The genus belongs to the subtribe S. hirsuta as its synonym (hence Pueraria Glycininae in the tribe Phaseoleae and is anabaptista is superfluous). Amphicarpaea closely allied to Amphicarpaea, Cologania, lineata Chun & T. C. Chen is adopted as a and Dumasia especially in the flower structures correct species by Sa and Gilbert (2010) in the (Lackey 1981). -
A Revision of the Genus Pseudoechthistatus Pic
A peer-reviewed open-access journal ZooKeys 604: 49–85 (2016) A revision of the genus Pseudoechthistatus Pic... 49 doi: 10.3897/zookeys.604.9049 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A revision of the genus Pseudoechthistatus Pic (Coleoptera, Cerambycidae, Lamiinae, Lamiini) Wen-Xuan Bi1,2, Mei-Ying Lin1 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang, Beijing, 100101, China 2 Room 401, No. 2, Lane 155, Lianhua South Road, Shanghai, 201100, China Corresponding authors: Wen-Xuan Bi ([email protected]); Mei-Ying Lin ([email protected]) Academic editor: F. Vitali | Received 29 April 2016 | Accepted 19 May 2016 | Published 11 July 2016 http://zoobank.org/28522BEE-2F2A-4E8B-A0B3-5FB901671E85 Citation: Bi W-X, Lin M-Y (2016) A revision of the genus Pseudoechthistatus Pic (Coleoptera, Cerambycidae, Lamiinae, Lamiini). ZooKeys 604: 49–85. doi: 10.3897/zookeys.604.9049 Abstract The genus Pseudoechthistatus Pic, 1917 is redefined and revised. Five species of the genus are described as new, P. sinicus sp. n. and P. chiangshunani sp. n. from central Yunnan, China, P. pufujiae sp. n. from west- ern Yunnan, China, and P. holzschuhi sp. n. and P. glabripennis sp. n. from southern Yunnan and northern Vietnam. Pseudoechthistatus birmanicus Breuning, 1942 is excluded from the fauna of China. Three poorly known species, P. obliquefasciatus Pic, 1917, P. granulatus Breuning, 1942, and P. acutipennis Chiang, 1981 are redescribed, and the type localities of the former two species are discussed. Endophallic structure of seven species in inflated and everted condition are studied and compared with their relatives.