Zelkova – an Ancient Tree Global Status and Conservation Action
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology and Potential Distribution of the Cretan Endemic Tree Species Zelkova Abelicea
JournalJournal of Mediterranean of Mediterranean Ecology Ecology vol. 16, vol. 2018: 16, 15-26 2018 © Firma Effe Publisher, Reggio Emilia, Italy Ecology and potential distribution of the Cretan endemic tree species Zelkova abelicea Goedecke, F. & Bergmeier, E. University of Göttingen, Dept. Vegetation and Phytodiversity Analysis, Untere Karspüle 2, 37073 Göttingen, Germany; [email protected], [email protected] Keywords: Relict species, Species distribution modelling, Ecological niche, Genetic isolation, Metapopulation, Plant conservation, Crete. Abstract Mediterranean mountain forests feature woody species relicts such as Zelkova abelicea, an endemic tree species confined to six spatially and genetically distinct populations in Crete (S Aegean, Greece). We used species distribution modelling to predict the potential distribution of Zelkova abelicea. Comparison of coordinate-based geodata extractions for climate and topography revealed pronounced environmental differences for the metapopulations. Main factors for species distribution models were altitude and temperature seasonality (proxy for west-east gradient) whereas topographic conditions had surpris- ingly little influence on our models. While the most extensive Zelkova metapopulations were found to occur under locally fairly mesic conditions and comprising a wider ecological spectrum, the smaller populations comprising narrower ecological range occurred at lower elevations and further east. For further extrapolation with similar models for known populations, only similar site conditions allowed for a prediction. Differentiated site conditions in the mountains, genetic distinctness and possible environmental adaptations of isolated populations are to be considered in conservation and management. Introduction in the Sicilian mountains (Quézel & Médail 2003). Other prominent examples refer to the genus Zelkova A particularity of Mediterranean forests is the con- (Ulmaceae). -
What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit. -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Arboretum News Armstrong News & Featured Publications
Georgia Southern University Digital Commons@Georgia Southern Arboretum News Armstrong News & Featured Publications Spring 2019 Arboretum News Georgia Southern University- Armstrong Campus Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/armstrong-arbor-news Part of the Education Commons This article is brought to you for free and open access by the Armstrong News & Featured Publications at Digital Commons@Georgia Southern. It has been accepted for inclusion in Arboretum News by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Arboretum News Issue 9 | Spring 2019 A Newsletter of the Georgia Southern University Armstrong Campus Arboretum From the Editor: Arboretum News, published by the Grounds Operations Department ’d like to introduce you to the Armstrong Arboretum of the new of Georgia Southern University- IGeorgia Southern University-Armstrong Campus. Designated Armstrong Campus, is distributed as an on-campus arboretum in 2001 by former Armstrong to faculty, staff, students and Atlantic State University president Dr. Thomas Jones, the friends of the Armstrong Arboretum. The Arboretum university recognized the rich diversity of plant life on campus. encompasses Armstrong’s 268- The Arboretum continues to add to that diversity and strives to acre campus and displays a wide function as a repository for the preservation and the conservation variety of shrubs and other woody of plants from all over the world. We also hope to inspire students, plants. Developed areas of campus faculty, staff and visitors to appreciate the incredible diversity contain native and introduced species of trees and shrubs. Most that plants have to offer. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Downloaded from Brill.Com10/08/2021 11:33:23AM Via Free Access 116 IAWA Bulletin N.S., Vol
1AWA Bulletin n.s., Vol. 11 (2), 1990: 115-140 IAWA·IUFRO WOOD ANATOMY SYMPOSIUM 1990 The third Euro-African regional wood anatomy symposium organised by the Wood Science and Technology Laboratories of the ETH (Swiss Federal Institute ofTechnology), Zürich, Switzerland, July 22-27, 1990. Organising Committee Prof. Dr. H.H. Bosshard, Honorary President Dr. L.J. Kucera, Executive Secretary and Local Host Ms. C. Dominquez, Symposium Office Secretary Dr. K. J. M. Bonsen, Deputy Executive Secretary lng. B.J.H. ter Welle, on behalf ofIAWA Prof. Dr. P. Baas, on behalf of IUFRO S 5.01 ABSTRACfS OF PAPERS AND POSTERS C. ANGELACCIO, A. SCffiRONE and B. SCHI MARIAN BABIAK, 1GOR CuNDERLfK and JO RONE, Dipartimento di Scienze deli' Ambiente ZEF KUDELA, Faculty of Wood Technology, Forestale e delle Sue Risorse, Facolta di University of Forestry and Wood Technol Agraria, Universita degli Studi della Tuscia, ogy, Department of Wood Science and Me Via S. Camillo de Lellis, 01100 Viterbo, chanical Wood, 96053 Zvolen, Czechoslo 1taly. - Wood anatomy of Quercus cre· vakia. - Permeability and structure of nata Lam. beech wood. Quercus crenata Lam. (Q. pseudosuber Flow of water and other liquids through G. Santi) is a natural hybrid between Q. cer beech wood (Fagus sylvatica L.) caused by ris x Q. suber. The species is widespread in the external pressure gradient is described by the mediterrane an basin, from France to Al the steady-state Darcy's law. The validity of bania. 1t occurs throughout Italy, usually as the law was proved up to a critical value. The single trees recognisable by their evergreen critical external pressure gradient obtained in and polymorphous leaves; the bark and acorn our experiments was 0.15 MPa/cm. -
Bulletin 14 of the European Dry Grassland Group
Bulletin 14 of the European Dry Grassland Group Introduction The spring has come at last. Soon, all European naturalists will be very busy with their fieldwork. Before this happens, however, we invite you to read this Bulletin issue, which presents several interesting contributions and news on the numerous EDGG activities. The number of EDGG members exceeded 800 last month. Soon, the key EDGG events will take place - the EDGG research expedition to Sicily (Italy) and the European Dry Grassland Meeting in Prespa (Greece). You can find the most topical information about their preparation on the following pages. You can learn about the development of four prepared special issues focussing on grasslands. You can also learn which grasslands belong to the biodiversity hotspots at small scales. Besides that, you can find here information on the upcoming meetings and events, three book reviews and numerous smaller announcements from our members. Maybe you will notice that in this issue we have used some new graphical elements. We hope you like the changes! To make this and the future Bulletins more user-friendly, we have also adopted some structural changes and developed a fixed sequence of sections. The longer contributions (reports and research articles) in the central part of the Bulletin will have the structure of normal scientific papers so that they could easily be printed, posted and shared as separate items. Most of the beautiful photographs of animal and plant species included in the issue were provided by Rocco Labadessa from Bari (Italy). We wish you a!pleasant read! Editors Content Activities and announcements of EDGG 2 Skyros: a very “dry grassland” Greek island 9 STIPA: Saving Transylvania’s Important Pastoral Agro-Ecosystems 11 Forum 13 Book reviews 15 Recent publications of our members 17 Forthcoming events 18 Coscinia striata (male), Alta Murgia, Apulia, Italy. -
Oaks of the Wild West Inventory Page 1 Nursery Stock Feb, 2016
Oaks of the Wild West Inventory Nursery Stock Legend: AZ = Arizona Nursery TX = Texas Nursery Feb, 2016 *Some species are also available in tube sizes Pine Trees Scientific Name 1G 3/5G 10G 15 G Aleppo Pine Pinus halapensis AZ Afghan Pine Pinus elderica AZ Apache Pine Pinus engelmannii AZ Chinese Pine Pinus tabulaeformis AZ Chihuahua Pine Pinus leiophylla Cluster Pine Pinus pinaster AZ Elderica Pine Pinus elderica AZ AZ Italian Stone Pine Pinus pinea AZ Japanese Black Pine Pinus thunbergii Long Leaf Pine Pinus palustris Mexican Pinyon Pine Pinus cembroides AZ Colorado Pinyon Pine Pinus Edulis AZ Ponderosa Pine Pinus ponderosa AZ Scotch Pine Pinus sylvestre AZ Single Leaf Pine Pinus monophylla AZ Texas Pine Pinus remota AZ, TX Common Trees Scientific Name 1G 3/5G 10G 15 G Arizona Sycamore Platanus wrightii ** Ash, Arizona Fraxinus velutina AZ AZ Black Walnut, Arizona Juglans major AZ AZ Black Walnut, Texas Juglans microcarpa TX Black Walnut juglans nigra AZ, TX Big Tooth Maple Acer grandidentatum AZ Carolina Buckthorn Rhamnus caroliniana TX Chitalpa Chitalpa tashkentensis AZ Crabapple, Blanco Malus ioensis var. texana Cypress, Bald Taxodium distichum AZ Desert Willow Chillopsis linearis AZ AZ Elm, Cedar Ulmus crassifolia TX TX Ginko Ginkgo biloba TX Hackberry, Canyon Celtis reticulata AZ AZ AZ Hackberry, Common Celtis occidentalis TX Maple (Sugar) Acer saccharum AZ AZ Mexican Maple Acer skutchii AZ Mexican Sycamore Platanus mexicana ** Mimosa, fragrant Mimosa borealis Page 1 Oaks of the Wild West Inventory Pistache (Red Push) Pistacia -
Section [I]Cerris[I] in Western Eurasia: Inferences from Plastid
A peer-reviewed version of this preprint was published in PeerJ on 17 October 2018. View the peer-reviewed version (peerj.com/articles/5793), which is the preferred citable publication unless you specifically need to cite this preprint. Simeone MC, Cardoni S, Piredda R, Imperatori F, Avishai M, Grimm GW, Denk T. 2018. Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. PeerJ 6:e5793 https://doi.org/10.7717/peerj.5793 Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation Marco Cosimo Simeone Corresp., 1 , Simone Cardoni 1 , Roberta Piredda 2 , Francesca Imperatori 1 , Michael Avishai 3 , Guido W Grimm 4 , Thomas Denk 5 1 Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy 2 Stazione Zoologica Anton Dohrn, Napoli, Italy 3 Jerusalem Botanical Gardens, Hebrew University of Jerusalem, Jerusalem, Israel 4 Orleans, France 5 Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden Corresponding Author: Marco Cosimo Simeone Email address: [email protected] Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian Sect. Cerris that comprises 15 species, a dozen of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and reconstruct a first comprehensive taxonomic scheme of western Eurasian members of Sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. -
A Late Miocene Leaf Assemblage from Vrysses, Western Crete, Greece, and Its Paleoenvironmental and Paleoclimatic Interpretation
A late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation Giannis ZIDIANAKIS Department of Biology, University of Crete, Voutes, GR-71305 Irakleio, Crete (Greece) [email protected] Barbara A. R. MOHR Institute of Palaeontology, Museum of Natural History, Invalidenstr. 43, D-10115 Berlin (Germany) [email protected] Charalampos FASSOULAS Natural History Museum, University of Crete, GR-71409 Irakleio, Crete (Greece) [email protected] Zidianakis G., Mohr B. A. R. & Fassoulas C. 2007. — A late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation. Geodiversitas 29 (3) : 351-377. ABSTRACT A new leaf impression fl ora is described from late Miocene marly sediments (6-7.5 Ma) near the village of Vrysses in northwestern Crete, Greece. Th e stud- ied plant remains represent more than 30 taxa of conifers and angiosperms. Deciduous broad-leaved woody plants such as Acer pseudomonspessulanum, 5-lobed Acer, Ziziphus ziziphoides, “Parrotia” pristina, Populus tremula, Salix sp. and Juglandaceae, prevail in this leaf assemblage. Th ese plants are associated with sclerophyllous, evergreen taxa (Quercus mediterranea, Quercus sp., Buxus pliocenica and Pinus sp.) and a few subtropical Miocene elements (Daphnogene KEY WORDS Late Miocene, polymorpha, Tetraclinis sp.). A regional vegetation reconstruction is developed Crete, based on the ecological affi nities of the nearest living relatives. Th e climate Greece, conditions are deduced from the physiognomy and composition of the Vrysses leaves, paleovegetation, plant assemblage. Th ey indicate a warm-humid climate possibly with a weakly paleoclimate. developed dry period during the summer months. -
Quercus Drymeja Unger and Q. Mediterranea Unger
Review of Palaeobotany and Palynology 241 (2017) 98–128 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger Thomas Denk a,⁎, Dimitrios Velitzelos b,TuncayH.Günerc, Johannes M. Bouchal a,d, Friðgeir Grímsson d,GuidoW.Grimmd,e a Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden b National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Historical Geology and Paleontology, Panepistimiopolis, Athens 15784, Greece c Istanbul University, Faculty of Forestry, Department of Forest Botany, 34473 Bahceköy, Istanbul, Turkey d University of Vienna, Department of Palaeontology, 1090 Vienna, Austria e Unaffiliated, 45100 Orléans, France article info abstract Article history: Sclerophyllous oaks (genus Quercus) play important roles in Neogene ecosystems of south-western Eurasia. Received 31 May 2016 Modern analogues (‘nearest living relatives’) for these oaks have been sought among five of six infrageneric lin- Accepted 30 January 2017 eages of Quercus, distributed across the entire Northern Hemisphere. A revision of leaf fossils from lower Miocene Available online 10 February 2017 to Pliocene deposits suggests that morphotypes of the Quercus drymeja complex are very similar to a number of extant Himalayan, East Asian, and Southeast Asian species of Quercus Group Ilex and may indicate subtropical, Keywords: Quercus Group Ilex relatively humid conditions. Quercus mediterranea comprises leaf morphotypes that are encountered in modern Plant fossil Mediterranean species of Quercus Group Ilex, but also in Himalayan and East Asian members of this group indi- Modern analogue cating fully humid or summer-wet conditions. -
Zelkova Serrata 'Green Vase'
Fact Sheet ST-678 October 1994 Zelkova serrata ‘Green Vase’ ‘Green Vase’ Japanese Zelkova1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION ‘Green Vase’ somewhat resembles the vase shape of American Elms, is more upright in habit and tolerant of pollution, makes a great city street tree and produces a taller and narrower tree than ‘Village Green’ Zelkova (Fig. 1). Zelkova is often listed as a replacement for American Elm since it has roughly the same vase shape and grows 70 to 80 feet tall with a 50 to 60-foot spread. But no tree will truly match the grace and elegance of the American Elm. Zelkova is massive, with the trunk capable of growing to four feet or more in diameter. It has a moderate growth rate and likes a sunny exposure. Branches are more numerous and smaller in diameter than American Elm. Major branches grow very upright and provide easy clearance for tall vehicles below making it quite suitable as a street tree. Leaves are 1.5 to 4 inches long, turning a brilliant burnt umber in the fall. GENERAL INFORMATION Scientific name: Zelkova serrata ‘Green Vase’ Figure 1. Young ‘Green Vase’ Japanese Zelkova. Pronunciation: zell-KOE-vuh sair-AY-tuh Common name(s): ‘Green Vase’ Japanese Zelkova, sidewalk cutout (tree pit); residential street tree; tree ‘Green Vase’ Saw-Leaf Zelkova has been successfully grown in urban areas where air Family: Ulmaceae pollution, poor drainage, compacted soil, and/or USDA hardiness zones: 5B through 8 (Fig. 2) drought are common Origin: not native to North America Availability: generally available in many areas within Uses: large parking lot islands (> 200 square feet in its hardiness range size); wide tree lawns (>6 feet wide); medium-sized parking lot islands (100-200 square feet in size); medium-sized tree lawns (4-6 feet wide); recommended for buffer strips around parking lots or for median strip plantings in the highway; shade tree; 1.