Safe Work Practices for Shipbreaking

Total Page:16

File Type:pdf, Size:1020Kb

Safe Work Practices for Shipbreaking Safe Work Practices for Shipbreaking OSHA 3375-03 2010 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing en- forcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards, and the Oc- cupational Safety and Health Act of 1970. More- over, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Safe Work Practices for Shipbreaking Occupational Safety and Health Administration U.S. Department of Labor OSHA 3375-03 2010 Cover photo courtesy of H. Reid, Metro Machine Incorporated. Photos courtesy of Metro Machine Incorporated Start to Finish This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan. In addition, the Act’s General Duty Clause, Section 5(a)(1), requires employers to provide their employees with a workplace free from recognized hazards likely to cause death or serious physical harm. Occupational Safety and Health Administration 2 Contents Introduction 4 Lifesaving Materials 14 Interagency Work Group 4 Hazardous Material Spills 14 Steps in Shipbreaking Process 4 Energy Control 14 Initial Visit to Vessel to Determine Medical 15 Suitability for Scrapping 6 Worker Medical Qualifications 16 Towing the Vessel 7 Sanitation 16 Mooring the Vessel 7 Shipboard Rigging 16 Hauling the Vessel 8 Materials Handling 16 Planning 9 Crane Services 17 ForkTrucks 18 Breaking the Vessel 9 Trucks 18 Burning Equipment 10 Training 18 Cold Cutting 11 Communication 19 Mobile Hydraulic Shear Cutters 11 Shoreside Processing of Metals 11 Maintenance Shops 19 Fall Protection 11 References 20 Fire Prevention and Protection 12 Additional Resources 22 Emergency Response 13 OSHA Assistance 23 Drills 13 OSHA Regional Offices 25 Rescue 14 SAFEWORKPRACTICESFORSHIPBREAKING 3 Introduction Interagency Work Group Shipbreaking is a unique part of the maritime indus- In December 1996, the Department of the Navy, the try, primarily involving the dismantling and disposal Defense Logistics Agency (DLA), the U.S. Maritime of obsolete U.S. Navy and Maritime Administration Administration (MARAD), and the U.S. Coast Guard ships, as well as commercial barges and mobile off- (USCG), along with other involved agencies, began shore drilling units. For many years, much of this meeting quarterly to discuss shipbreaking program work was contracted to overseas companies. How- improvements and to share evaluation procedures ever, in recent years the exporting of ships from the and oversight information. In February 1998, the United States to foreign countries for scrapping has group was formally chartered as the Interagency come under criticism due to concerns over worker Panel on Ship Scrapping. The work of the group safety and health, and adverse environmental im- resulted in a set of recommendations that were pacts. As a result, the exporting of ships for scrap- presented in the April 20, 1998, Report of the Intera- ping was stopped by the Navy in December 1997 gency Panel on Ship Scrapping. The recommenda- and by the Maritime Administration (MARAD) in tions covered many aspects of the shipbreaking January 1998.1 Consequently, shipbreaking by do- industry, including contracting improvements, per- mestic companies is rapidly growing, and there is a formance bonds, data gathering and pilot projects, need to improve shipbreaking (e.g., dismantling, polychlorinated biphenyls (PCBs) guidance, regula- ship recycling, or scrapping) processes to ensure the tory oversight and international issues. safety and health of these workers. Under the category of regulatory oversight, the Dismantling of vessels is usually conducted at a panel recommended that the Environmental Protec- pier, drydock, or dismantling slip and includes a tion Agency (EPA) and OSHA, in conjunction with wide range of activities, from removing all gear and DLA, the U.S. Navy, and MARAD, develop a compre- equipment to cutting down and recycling the ship's hensive compliance guide. This guide, entitled A structure. The structural complexity of ships makes Guide for Ship Scrappers,3 outlines the relevant en- shipbreaking a challenging process. It involves vironmental and occupational safety and health re- many safety, health and environmental issues, in- quirements applicable to shipbreaking. The guide cluding exposure to asbestos, toxic fumes, haz- contains recommendations for completing ship- ardous materials, noise, falling objects, lead and breaking operations in a safe and environmentally electrical shock, as well as dangers associated with compliant manner. heat stress, falls, heavy materials handling and fires.2 In light of the need to improve and manage Steps in Shipbreaking the hazards associated with shipbreaking, this docu- Process ment is to be used as a basic guide for employers involved in shipbreaking activities. The hyperlinks to After removal from the fleet site, the vessel is towed OSHA, international, and other documentation pro- or self-propelled to the site where scrapping will vided throughout this publication give more detailed occur. The vessel is then scrapped while being information and recommendations. moored to a pier, anchored, beached, or dry-docked This document does not cover all of the regula- (including graving docks). Most scrapping is per- tions governing the occupational safety and health formed pier-side in slips, which are typically aspects of shipbreaking. However, it highlights im- dredged openings that are adjacent to a shipping portant information through references and hyper- channel. Slips are approximately 400 to 1,000 feet links to OSHA regulations that can be used to help long and 100 to 140 feet wide at the entrance. Ship- employers develop a comprehensive Safety and breaking is generally performed by cutting away Health Management System (SHMS), encompassing large sections, which are then moved to shore for all aspects of a facility’s shipbreaking procedures and further dismantling. A large winch at the head of the processes. The appropriate Code of Federal Regula- slip is used to drag the hull farther out of the water tions (CFR) provisions must be incorporated in all as work progresses. Throughout the scrapping safety and health plans, and the safety processes process, it is important for the appropriate safety and programs must be managed to reduce risk and precautions to be determined and followed to effec- provide a safe and healthful worksite for all workers. tively protect personnel. The scrapping process4 In addition, employers must be aware of and comply usually occurs in a series of steps: with all local and state regulations, which may be more stringent than federal requirements. Occupational Safety and Health Administration 4 • Conduct a vessel survey.5 Diagrams of all com- shore, the remaining ACMs and PCBs are re- partments, tanks and storage areas are used (or moved as they become accessible during the dis- prepared, if not available) to identify areas that mantling of the vessel section. The engine rooms may contain hazardous materials such as fuels, usually contain the most asbestos and, therefore, oils, asbestos, PCBs, lead and other hazardous take the longest for asbestos removal to be con- wastes. Sampling is conducted using a system- ducted. atic approach, usually starting in the compart- • Prepare surfaces for cutting. Following the re- ment that will be cut first. In many cases, a moval of combustible materials, asbestos and facility will presume that certain items contain PCBs, paint or preservative coatings must be hazardous materials and dispose of them as stripped from surfaces to be cut (29 CFR 1915.53). such, in lieu of sampling. In such cases, the em- Hard-to-remove materials on surfaces may re- ployer must use proper engineering controls and quire specific cut-line preparation, such as grit work practices to ensure that workers, involved blasting or flame removal of paint,7 which can with and in the vicinity of the removal, are prop- expose workers to toxic metals and volatile com- erly protected from exposure (e.g., through the ponents of paint. Appropriate precautions must use of wet methods, or wetting agents, and vacu- be taken (e.g., the use
Recommended publications
  • Substandard Shipbreaking: a Global Challenge
    Substandard shipbreaking: a global challenge This document will provide you with a short overview of the concerns related to dirty and dangerous shipbreaking and the challenges of finding sustainable solutions for clean and safe ship recycling. The overview touches upon the current practices in South Asia, China, Turkey and ship recycling facilities in the rest of the world, business practices and the legal framework under international and European law. Click on the icons to find out more about these various topics in reports, photo galleries and videos. © 2017 by the NGO Shipbreaking Platform Edition of: February 2017 After an average life of thirty years at sea, large commercial vessels – bulkers and general cargo ships, container ships, oil and gas tankers, and passenger ships such as cruise ships and ferries – are sold to shipbreaking yards for demolition. In recent years, an average of around 1000 ships annually reached the end of their service life and were broken down in order to recover steel and other valuable materials. Due to low market prices, only 862 ocean ships were dismantled in 2016. The demolition of ships is a hazardous endeavour that requires adequate measures to protect the maritime environment, to ensure environmentally safe and sound management of hazardous waste, and to guarantee high health and safety standards for workers. Yet only a fraction of decommissioned ships is handled in a safe and sustainable manner. More than 75% of the end-of-life ships sold for dismantling today end up in South Asia, the region that has served as the main destination for obsolete tonnage in the last two decades.
    [Show full text]
  • Sector N: Scrap and Waste Recycling
    Industrial Stormwater Fact Sheet Series Sector N: Scrap Recycling and Waste Recycling Facilities U.S. EPA Office of Water EPA-833-F-06-029 February 2021 What is the NPDES stormwater program for industrial activity? Activities, such as material handling and storage, equipment maintenance and cleaning, industrial processing or other operations that occur at industrial facilities are often exposed to stormwater. The runoff from these areas may discharge pollutants directly into nearby waterbodies or indirectly via storm sewer systems, thereby degrading water quality. In 1990, the U.S. Environmental Protection Agency (EPA) developed permitting regulations under the National Pollutant Discharge Elimination System (NPDES) to control stormwater discharges associated with eleven categories of industrial activity. As a result, NPDES permitting authorities, which may be either EPA or a state environmental agency, issue stormwater permits to control runoff from these industrial facilities. What types of industrial facilities are required to obtain permit coverage? This fact sheet specifically discusses stormwater discharges various industries including scrap recycling and waste recycling facilities as defined by Standard Industrial Classification (SIC) Major Group Code 50 (5093). Facilities and products in this group fall under the following categories, all of which require coverage under an industrial stormwater permit: ◆ Scrap and waste recycling facilities (non-source separated, non-liquid recyclable materials) engaged in processing, reclaiming, and wholesale distribution of scrap and waste materials such as ferrous and nonferrous metals, paper, plastic, cardboard, glass, and animal hides. ◆ Waste recycling facilities (liquid recyclable materials) engaged in reclaiming and recycling liquid wastes such as used oil, antifreeze, mineral spirits, and industrial solvents.
    [Show full text]
  • 2006 Material Recovery Facility (MRF) Assessment
    Waste Monitoring Program 2006 Material Recovery Facility (MRF) Assessment November 2006 PREPARED BY: Cascadia Consulting Group, Inc. In cooperation with WIH Resource Group Acknowledgments This study would not have been possible without the cooperation and assistance of the management and operators of the four Material Recovery Facilities (MRFs) who generously agreed to participate. Studies of this kind are an imposition on their time and their cooperation is greatly appreciated. Special thanks are given to the following MRFs which hosted and assisted sampling activities in addition to providing tonnage data and market information. Allied Waste, Rabanco Recycling Center (Third & Lander) in Seattle, Waste Management, Cascade Recycling Center in Woodinville, Smurfit-Stone, Renton Reclamation Plant, in Renton, and Waste Connection, Recycling Center in Tacoma. Market information and quantity and composition data resulting from the collection and sorting of material samples at each of the MRFs was obtained under confidentiality agreements and is not presented within this report. Instead, the data from individual facilities was aggregated. Thanks to the numerous material brokers, end-users, and industry experts for their time, insight, and information on recycled commodity markets and specifications. And finally, thank you King County and City of Seattle staff for assistance in identifying a separate sorting location. Table of Contents Executive Summary ........................................................................................................................................................i
    [Show full text]
  • Ship Recycling : Analysis of the Shipbreaking Countries in Asia Rolando D
    World Maritime University The Maritime Commons: Digital Repository of the World Maritime University World Maritime University Dissertations Dissertations 2000 Ship recycling : analysis of the shipbreaking countries in Asia Rolando D. Legaspi World Maritime University Follow this and additional works at: http://commons.wmu.se/all_dissertations Part of the Economics Commons Recommended Citation Legaspi, Rolando D., "Ship recycling : analysis of the shipbreaking countries in Asia" (2000). World Maritime University Dissertations. 384. http://commons.wmu.se/all_dissertations/384 This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact [email protected]. WORLD MARITIME UNIVERSITY Malmö, Sweden SHIP RECYCLING: ANALYSIS OF THE PROBLEMS IT REPRESENT TO SHIPBREAKING COUNTRIES IN ASIA By ROLANDO D. LEGASPI Philippines A dissertation submitted to the World Maritime University in partial fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE In MARITIME SAFETY AND ENVIRONMENTAL PROTECTION (Engineering) 2000 ã Copyright RDL, 2000 DECLARATION I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred to me. The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the university. Signature: . Date: . Supervisor: Mr. Tor WERGELAND Associate Professor, Shipping and Port Management World Maritime University Assessor: Mr. Richard HODGSON Associate Professor, Maritime Safety and Environmental Protection World Maritime University Co-Assessor: Mr.
    [Show full text]
  • The Business Case for Zero Waste GM Blueprint Summarizes Waste-Reduction Strategies and Global Landfill-Free Program Updated: Feb
    The Business Case for Zero Waste GM blueprint summarizes waste-reduction strategies and global landfill-free program Updated: Feb. 28, 2018 DETROIT – Industrial facilities in the United States generate and manage about 7.6 billion tons of nonhazardous industrial waste in land disposal units annually, according the U.S. Environmental Protection Agency. General Motors, however, reuses, recycles or composts 84 percent of its worldwide manufacturing waste and has 142 landfill-free facilities. The landfill-free program allows GM to reduce its waste footprint, while creating greater environmental awareness among employees and communities where it makes and sells cars and trucks. The GM workforce is consistently encouraged to find new ways to operate leaner and more efficiently. The following summarizes GM’s blueprint for attaining landfill-free leadership. It is intended to help companies of all sizes and industries reduce waste and create efficiencies. GM Program Overview GM achieved its first landfill-free site at our Flint Engine operations in 2005. The continued progress to 142 global sites has inspired an aspirational goal to have all manufacturing sites send zero waste to landfill. GM has more landfill-free facilities and recycles more waste from its worldwide facilities than any other automaker. GM uses a number of strategies to achieve corporate sustainability goals, but the underlying philosophy is thinking of waste as a resource out of place. The company’s zero-landfill facilities demonstrate this. Waste reduction also often enhances productivity, quality, efficiency and throughput. This is why GM merged its environmental efforts with its manufacturing sustainability goals. The result is a more sustainable company poised to provide products to global customers well into the future.
    [Show full text]
  • Electronic Waste Recycling & Disposal
    Electronics... We are surrounded by electronics – You buy them. at home, at work and at school. Almost everything we do involves electronic devices. You break them. Unfortunately, when they break it is often Now do the right thing. cheaper to buy new ones than to have them repaired. Plus, technology changes so Recycle them! rapidly they become obsolete in no time. Old Electronics? Recycle Them! Electronic waste is the fastest growing Almost four million pounds of electronic municipal waste in the U.S.* It is 2% of waste are discarded annually with less than America’s trash but 70% of our toxic waste! 30% being recycled (U.S.EPA 2012 data). Old tube TVs and computer monitors, LCD and plasma monitors contain lead, mercury and other toxic materials. Cell phones contain varying levels of lead, mercury, cadmium, and bromine.** For safe disposal, bring all electronics to a community collection center near you. Find one near you inside! White River Regional Solid Waste Management District P.O. Box 2396 | Batesville, AR 72503 Safe Disposal of Electronic Waste Phone: (870) 793-5233 | Fax: (870) 793-4035 [email protected] | WhiteRiverSWMD.org Community Drop-Off Centers Serving Cleburne, Fulton, Independence, Izard, in North Central Arkansas *US EPA, Common Wastes & Materials – eCycling. Jackson, Sharp, Stone, Van Buren, White and ** e-Cycle.com Woodruff counties in north central Arkansas. Why Not Landfill Recycle These Electronics: White River District Electronics? TVs, VCRs, DVD Players, Cell Phones Collection Centers All Computers, Components & Accessories Lead, mercury, cadmium and bromine are Cleburne County iPads, iPods, MP3s, Tablets, E-Readers Heber Springs Sanitation Department present in many electronics.
    [Show full text]
  • E-Cycling Brochure
    Lake County Household About Your Household Hazardous Waste Hazardous Waste Collection Center Collection Center 13130 County Landfill Rd., Whether you're at home or at work, did Tavares, FL 32778 you know that unwanted cleaners, auto- Telephone #: (352) 343-3776 motive fluids and various hazardous chemicals, materials, substances or Note: There is a small fee for some electronics. products that are improperly generated Please call for more information. or discarded can be toxic to the public and pose a threat to the environment? HOURS OF OPERATION These materials can be dangerous and Monday—Friday should be properly managed and stored. 7:30am—5:00pm Lake County Environmental Utilities pro- Saturday from 7:30 am—5:00pm vides a County-wide service for proper management of hazardous and toxic Astatula materials and waste from County resi- County Landfill dents and qualified small businesses at Road the Lake County Household Hazardous Be An Waste (HHW) Collection Center and for Hwy 448 HOUSEHOLDS ONLY at the five residen- tial drop-off centers. Hwy 561 AT HOME AND AT Various chemicals, automotive fluids, WORK! pesticides, latex and oil-based paint, Hwy 19 Howey fluorescent lamps, batteries and elec- tronic waste from households can be Driving Directions dropped off at the HHW. From Tavares: On US Hwy 441, turn left onto Hwy 19. Turn left on Hwy 561. Follow to County Landfill Road on the Instead of storing hazardous waste at right. your home or business, call the House- From Clermont: On US Hwy 27N, turn right on Hwy 561. Why E-Scrap & Household Follow thru Astatula to County Landfill Road on the left.
    [Show full text]
  • Global Recycling 2/2021 1 This Issue
    2/2021 The Magazine for 7. Volume Business Opportunities 24,- EURO GLOBAL & International Markets RECYCLING CHINA: ON 6 THE ROAD To “Zero- CARBON” TECHNOLOGICAL 15 PROGRESS OF PROCES- SING FERROUS SCRAP CIETRADE: TAKE 24 CONTROL OF YOUR TRADING OR RECYCLING BUSINESS HOW TO GET a “Green” 30 SHIP RECYCLING PHILIPPINES’ WASTE 38 AND THE BAN OF INCINE- RATION PRESONA: ALL ABOUT 46 COMPACTING DIFFERENT MATERIALS global-recycling.info NEW – Showroom for your recycling plant or machinery! EDITORIAL Recycling and Trade: Win-Win Situation for Enterprises and Environment Nowadays, it is a well-known fact that recycling bears immense advantages all over the world. Recycling materials not only extends the lifecycle of – fi- nite – resources but also avoids the emission of millions of tons of CO2. At the same time, the use of secondary raw materials saves money by saving work steps – and thus costs – compared to the production of primary raw materials. Recycled raw materials are not traded globally for nothing. This favorable constellation seems to be at stake as international trade is ad- versely affected. That was an important issue during the latest World Recycling Convention, organized by the Bureau of International Recycling (BIR). At the BIR Convention’s kick-off meeting “The Challenge” (special edition), Michael Lion, Chairman of the BIR International Trade Council and host of “The Chal- lenge”, addressed the issue of “Chronic Container Chaos”, where “surging Brigitte Weber Editor-in-Chief freight rates, lacunae of container availability and shipping space confronts and disrupts BIR members’ trading, marketing and supply chain capabilities”. According to Andrew Hoad from DP World, rapid relief cannot be expected.
    [Show full text]
  • Risky Business What You Need to Know About
    Risky Business What You Need To Know About... Scrap Metal Recycling Scrap Metal Recycling is a $20 billion industry and recycles 120 million tons per year 1 Scrap metals, in general, are divided into two basic categories:2 Ferrous scrap: Metal that contains iron Scrap metal recycling is the process of turning Nonferrous scrap: used metal material into new products and Metal that does not contain iron resources for manufacturing. Non-Ferrous Scrap Metal Facts: The United States provides more than 20% of the world supply of x25,000 recovered copper. The United States annually recycles enough copper to provide the copper content for Used aluminum cans are recycled 25,000 Statues of Liberty. and back on the grocery shelf in as little as 60 days. An estimated 85% to 90% of The United States annually processes more all automotive aluminum is than 250 billion lbs. of scrap material — the recovered and recycled. weight of more than 70 million cars. Nonferrous scrap metal recovery in 2015 included (in metric tons): 5.04 Million 1.78 Million 1.16 Million 0.12 0.10 Million Million Aluminum Copper Lead Zinc Nickel, Stainless Steel, Alloy Ferrous Scrap Metal Facts: Ferrous metals have a recovery rate as follows:3 100% 98% 90% 70% 66.8% Cars Structural Appliances Reinforcement Steel Cans Steel Steel Benefits: Recycling 1 ton of steel conserves: 2,500 lbs. of iron ore 120 lbs. of limestone 1,400 lbs. Recycling 1 ton of aluminum of coal conserves 4 metric tons of bauxite ore Recycled metal requires less energy to produce compared to raw metal: Recycled Aluminum 95% less energy used Recycled Copper 90% less energy used Recycled Steel 56% less energy used In the United States, domestically recycled aluminum cans saved the energy equivalent of 17 million barrels of gasoline — enough to fuel more Diversion of materials than one million vehicles on the road for 12 months.
    [Show full text]
  • Zero Waste Guide for City of Arcata Residents
    Zero Waste Guide For City of Arcata Residents Welcome, and thank you for picking up the new zero waste guide for City of Arcata residents. This guide is divided into six sections, with each section detailing a different aspect of zero waste. To minimize paper waste, only a limited number of guides were printed out. Once you are finished using this guide or no longer have the need for it, please consider passing it on to someone else instead of recycling it or throwing it away. Below are some ideas on how you can pass it on to the next person. Give it to your family, friends, or roommate Give it to your co-worker or leave it in your office break room Donate it to a local cafe or restaurant for their customers to read Return it to the City of Arcata Environmental Services at 736 F st Arcata, CA 95521 for redistribution. To track how many times this has been reused, sign your name and date below! Feel free to leave your personal zero waste ideas and tips in the “notes” section too! Name Date Notes Do you have ideas and/or tips on how we can improve this guide? We would love to hear from you! Contact the City of Arcata Environmental Services at (707) 822-8184 or [email protected] to leave a feedback! 2 Defining Zero Waste Zero waste is a materials management approach that first prevents waste and then establishes reuse and recycling policies, programs, and infrastructure for all discarded materials. The goal is to ensure that nothing is sent to a landfill or incinerator by ensuring that resources we take from the earth continue to be used efficiently without waste and excess burden on the environment.
    [Show full text]
  • Cradle to Graving-Dock?: the Promises and Limits of Modern Shipbreaking Reform
    Cradle to Graving-Dock?: The Promises and Limits of Modern Shipbreaking Reform Rebecca Prentiss Pskowski1 Table of Contents I. INTRODUCTION: THE STRANGE CASE OF THE RONGDHONU, EX RAINBOW WARRIOR II ................................................................................................................................................ 2 II. DEVELOPMENT OF A TWENTY-FIRST CENTURY SCRAP MARKET .................................... 5 III. THE FLAGGING PROBLEM ....................................................................................................... 9 A. Flags of Convenience ...................................................................................................................... 9 B. End-of-Life Flags .......................................................................................................................... 10 IV. LEGAL REGIMES ....................................................................................................................... 11 A. The Basel Convention .................................................................................................................. 11 B. The Basel Ban Amendment ......................................................................................................... 13 C. The ILO Guidelines on Shipbreaking ........................................................................................ 14 D. The Hong Kong Convention ........................................................................................................ 14 E. The European
    [Show full text]
  • End-Of-Life Modelling
    Best Practice LCA: End-of-Life Modelling October 28, 2014 Agenda 1. Modelling EoL in LCA 2. Recycled content approach 3. Avoided burden approach 4. Value-corrected substitution 5. PE’s recommendations 6. Current PEF discussions 2 Modelling EoL in LCA 3 Modelling EoL in LCA General challenge • “Allocation” is commonly used to assign burdens associated with the upstream supply chain to each product of multi-output processes. • EoL modelling gives rise to a similar problem due to its multi-functionality – treat waste and produce valuable products (material and/or energy) • Focus on how the burden of virgin material production and the burden of EoL treatment be allocated between the first application in one product system and its subsequent application in the same or another product system. • Chosen allocation approach will affect modelling of other EoL pathways as well (e.g., landfill). 4 Modelling EoL in LCA Most common approaches • Recycled content approach (a.k.a. cut-off, 100/0) • Avoided burden approach (a.k.a. End-of-Life recycling, 0/100) • Value-Corrected Substitution 5 Recycled content approach 6 Recycled content approach General description • Scrap inputs to the product system are modelled as being free of any primary material burden (all assigned to the first life cycle). • The recycling of scrap generated by the product system is not part of the product system and the system boundary is drawn at the point of scrap generation. No credits for subsequent recycling. • When modelling other disposal processes (e.g., incineration with energy recovery, landfill with landfill gas capture), burdens are included, but no credits should be given for energy recovery.
    [Show full text]