Behavioural Brain Research Species Differences in Group Size And

Total Page:16

File Type:pdf, Size:1020Kb

Behavioural Brain Research Species Differences in Group Size And Behavioural Brain Research 207 (2010) 368–376 Contents lists available at ScienceDirect Behavioural Brain Research journal homepage: www.elsevier.com/locate/bbr Research report Species differences in group size and electrosensory interference in weakly electric fishes: Implications for electrosensory processing a, b c d d a,c Sarah A. Stamper ∗, Erika Carrera-G , Eric W. Tan , Vincent Fugère , Rüdiger Krahe , Eric S. Fortune a Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA b Pontificia Católica del Ecuador, Quito, Ecuador c Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA d Department of Biology, McGill University, Montreal, QC, Canada article info abstract Article history: In animals with active sensory systems, group size can have dramatic effects on the sensory information Received 13 August 2009 available to individuals. In “wave-type” weakly electric fishes there is a categorical difference in sensory Received in revised form 1 October 2009 processing between solitary fish and fish in groups: when conspecifics are within about 1 m of each other, Accepted 16 October 2009 the electric fields mix and produce interference patterns that are detected by electroreceptors on each Available online 27 October 2009 individual. Neural circuits in these animals must therefore process two streams of information—salient signals from prey items and predators and social signals from nearby conspecifics. We investigated Keywords: the parameters of social signals in two genera of sympatric weakly electric fishes, Apteronotus and Electrotaxis Gymnotiformes Sternopygus, in natural habitats of the Napo River valley in Ecuador and in laboratory settings. Apterono- Electrosensory tus were most commonly found in pairs along the Napo River (47% of observations; maximum group Social behavior size 4) and produced electrosensory interference at rates of 20–300 Hz. In contrast, Sternopygus were alone in 80% of observations (maximum group size 2) in the same region of Ecuador. Similar patterns were observed in laboratory experiments: Apteronotus were in groups and preferentially approached conspecific-like signals in an electrotaxis experiment whereas Sternopygus tended to be solitary and did not approach conspecific-like electrosensory signals. These results demonstrate categorical differences in social electrosensory-related activation of central nervous system circuits that may be related to the evolution of the jamming avoidance response that is used in Apteronotus but not Sternopygus to increase the frequency of electrosensory interference patterns. © 2009 Elsevier B.V. All rights reserved. 1. Introduction modulate their social and sensing behaviors to avoid detrimental interference. Many animal species have evolved “active sensory” systems in In “wave-type” weakly electric fish, each individual continu- which individuals probe their environment with autogenous sig- ously produces a quasi-sinusoidal electric organ discharge (EOD) at nals [42]. These adaptations allow animals to exploit niches that a nearly constant frequency. When two or more individuals come would be difficult, or perhaps impossible, to use with passive sens- into close proximity, the electric fields interact and produce ampli- ing systems alone. However, these animals are subject to additional tude and phase modulations, collectively known as “beats” [24]. sources of sensory interference, particularly from the simultane- These beats occur at rates equal to the frequency difference (Df) ously generated signals of nearby conspecifics. Indeed there is often between the EOD signals of nearby fish: if one fish produces an a categorical difference in the sensory milieu between when indi- EOD of 700 Hz and a nearby fish one of 705 Hz, then the beat rate viduals are alone versus when they are in groups. The size and will be 5 Hz. The frequency of these beats is encoded in the patterns density of the groups and the specific properties of the signals being of activity of tuberous electroreceptors. Tuberous electroreceptors used by group members determine the sensory interference experi- are specialized organs in the skin of the fish that are tuned to enced by the animals. The question arises if and how these animals detect features of species-specific electric signals [24]. There is a direct relation between the beat rate and the patterns of resulting neural activity so that, for example, a 5 Hz beat rate induces oscil- latory brain activity at 5 Hz, and a 40 Hz beat rate induces activity Abbreviations: Df, frequency difference; EOD, electric organ discharge; JAR, jam- at 40 Hz. In some species, 5 Hz beat rates have profound deleteri- ming avoidance response. ous effects on electrolocation of objects [2,23,24] whereas 40 Hz ∗ Corresponding author at: 3400 North Charles Street, Baltimore, MD 21218, USA. Tel.: +1 410 516 7367; fax: +1 410 516 4478. beat rates may actually enhance certain features of electrosensory E-mail address: [email protected] (S.A. Stamper). perception [46]. 0166-4328/$ – see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.bbr.2009.10.023 S.A. Stamper et al. / Behavioural Brain Research 207 (2010) 368–376 369 These electrosensory beats only occur when fish are in groups of two or more individuals. Thus, social interactions between nearby fish determine the global pattern of electrosensory stimulation and brain activation that these fish experience. “Global” indicates that almost the entire receptor array is simultaneously stimulated, as is the case for the retina when there is a change in ambient light- ing [7,18]. In some genera, including Eigenmannia and Apteronotus, fish can change the frequency of their EOD depending on the beat rate. In this behavior, which is known as the jamming avoidance response (JAR), fish can change their electric signal frequency to avoid deleterious beat rates of less than 10 Hz [4,5,32]. The combi- nation of social behavior and the JAR behavior largely determines the global electrosensory signals that these fish experience [18]. For Eigenmannia, fish in groups typically generate beat rates in the gamma frequency range, between 20 and 80 Hz [52]. The frequency range of the beat experienced by a fish depends largely on whether a nearby conspecific is of the same or of the opposite-sex, since males and females differ in EOD fre- quency, even though their frequency ranges usually overlap. In Sternopygus, and Apteronotus albifrons the males produce the lower-frequency EODs [15,27,28,29], whereas in Apteronotus lep- torhynchus the males produce the higher frequency EODs [22,33]. Therefore, low-frequency beats usually occur in same-sex group- ings and high-frequency beats occur in opposite-sex groupings in these species. Further, each genus exhibits distinct behavioral and neural solutions to electrosensory jamming by conspecifics. The JAR in Apteronotus appears to be simpler than in Eigenman- nia [25], and Sternopygus do not exhibit JAR behaviors despite the presence of neural circuits similar to those in the other two genera [5,39,46]. Rather, Sternopygus has a specialized class of neurons in the electrosensory lateral line lobe (ELL) that appears to confer immunity to this sort of detrimental interference [37,38]. Building on a previous study of group size and electrosensory interference in Eigenmannia [52], we set out to better understand the relations between social behavior, the JAR, and electrosensory processing. We examined the patterns of electrosensory signals produced by Apteronotus and Sternopygus in natural habitats (Napo River valley, Ecuador) and in laboratory experiments. First, we looked at the natural distribution of fish to determine group sizes, electric signal frequencies, and beat rates. We also used a natu- ralistic laboratory setting where fish grouping preferences were observed over several consecutive days. Finally, we conducted electrotaxis experiments in the laboratory to determine if elec- trosensory information alone may contribute to the observed group sizes. Fig. 1. (A) Map of Ecuador showing study site locations (red). Field recordings were 2. Materials and methods made over a three-year period in Sacha Lodge, Panacocha,˜ and Estación Yasuní. (B) A sonogram of a recording showing EOD frequency over time for three species of All of the procedures used in this work were approved by the institutional ani- electric fish: Apteronotus (green), Sternopygus (blue) and Eigenmannia (red). The fre- mal care and use committees of the Johns Hopkins University and McGill University quency range of each species is color-coded on the Y-axis (left). In this sample, there and follow the recommendations of Hitschfeld et al. [26]. Field studies were con- was one Sternopygus, three individual Eigenmannia, and one Apteronotus. The funda- ducted with approval of the Ministerio del Ambiente, the owners of Sacha Lodge, mental frequency (F) of each fish is indicated (arrow) as well as all visible harmonics and the Pontificia Universidad Católica del Ecuador. For laboratory studies, adult A. (H). (C) A Venn diagram showing the distribution of species across 819 samples that leptorhynchus, and Sternopygus macrurus were purchased from various commercial contained at least one Eigenmannia (E), Apteronotus (A) or Sternopygus (S). In many cases, multiple species of fish were present, including 77 samples where all three vendors and maintained at 25–29 ◦C in laboratory tanks. species of fish were present in the recording. The sizes of the regions of the Venn dia- gram are mathematical
Recommended publications
  • REVIEW Electric Fish: New Insights Into Conserved Processes of Adult Tissue Regeneration
    2478 The Journal of Experimental Biology 216, 2478-2486 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.082396 REVIEW Electric fish: new insights into conserved processes of adult tissue regeneration Graciela A. Unguez Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA [email protected] Summary Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
    [Show full text]
  • M.A. Maciver's Dissertation
    The computational neuroethology of weakly electric fish body modeling, motion analysis, and sensory signal estimation R s R s C R s i C s 1 Z = + X prey + + s 1/ Rp 1/ Xp 1/ Zs −ρ ρ E ⋅r 1 p / w δφ(r) = fish a3 3 + ρ ρ r 1 2 p / w − t − t = 1/ v + + − 1/ v + vt vt−1e g(1 mt )(1 e ) nt − t = 1/ w wt wt−1e = − st H(vt wt ) = + ∆ ⋅ wt wt w st Malcolm Angus MacIver THE COMPUTATIONAL NEUROETHOLOGY OF WEAKLY ELECTRIC FISH: BODY MODELING, MOTION ANALYSIS, AND SENSORY SIGNAL ESTIMATION BY MALCOLM ANGUS MACIVER B.Sc., University of Toronto, 1991 M.A., University of Toronto, 1992 THESIS Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience in the Graduate College of the University of Illinois at Urbana-Champaign, 2001 Urbana, Illinois c Copyright by Malcolm Angus MacIver, 2001 ABSTRACT Animals actively influence the content and quality of sensory information they acquire through the positioning of peripheral sensory surfaces. Investigation of how the body and brain work together for sensory acquisition is hindered by 1) the limited number of techniques for tracking sensory surfaces, few of which provide data on the position of the entire body surface, and by 2) our inability to measure the thousands of sensory afferents stimulated during behav- ior. I present research on sensory acquisition in weakly electric fish of the genus Apteronotus, where I overcame the first barrier by developing a markerless tracking system and have de- ployed a computational approach toward overcoming the second barrier.
    [Show full text]
  • Convergent Evolution of Weakly Electric Fishes from Floodplain Habitats in Africa and South America
    Environmental Biology of Fishes 49: 175–186, 1997. 1997 Kluwer Academic Publishers. Printed in the Netherlands. Convergent evolution of weakly electric fishes from floodplain habitats in Africa and South America Kirk O. Winemiller & Alphonse Adite Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, U.S.A. Received 19.7.1995 Accepted 27.5.1996 Key words: diet, electrogenesis, electroreception, foraging, morphology, niche, Venezuela, Zambia Synopsis An assemblage of seven gymnotiform fishes in Venezuela was compared with an assemblage of six mormyri- form fishes in Zambia to test the assumption of convergent evolution in the two groups of very distantly related, weakly electric, noctournal fishes. Both assemblages occur in strongly seasonal floodplain habitats, but the upper Zambezi floodplain in Zambia covers a much larger area. The two assemblages had broad diet overlap but relatively narrow overlap of morphological attributes associated with feeding. The gymnotiform assemblage had greater morphological variation, but mormyriforms had more dietary variation. There was ample evidence of evolutionary convergence based on both morphology and diet, and this was despite the fact that species pairwise morphological similarity and dietary similarity were uncorrelated in this dataset. For the most part, the two groups have diversified in a convergent fashion within the confines of their broader niche as nocturnal invertebrate feeders. Both assemblages contain midwater planktivores, microphagous vegetation- dwellers, macrophagous benthic foragers, and long-snouted benthic probers. The gymnotiform assemblage has one piscivore, a niche not represented in the upper Zambezi mormyriform assemblage, but present in the form of Mormyrops deliciousus in the lower Zambezi and many other regions of Africa.
    [Show full text]
  • Transdifferentiation of Muscle to Electric Organ: Regulation of Muscle-Specific Proteins Is Independent of Patterned Nerve Activity
    DEVELOPMENTAL BIOLOGY 186, 115-126 (1997) ARTICLE NO. DB978580 Transdifferentiation of Muscle to Electric Organ: Regulation of Muscle-Specific Proteins Is Independent of Patterned Nerve Activity John M. Patterson I and Harold H. Zakon 2 Department of Zoology and Center for Developmental Biology, University of Texas at Austin, Austin, Texas 78712 Transdifferentiation is the conversion of one differentiated cell type into another. The electric organ of fishes transdifferen- tiates from muscle but little is known about how this occurs. To begin to address this question, we studied the expression of muscle- and electrocyte-specific proteins with immunohistochemistry during regeneration of the electric organ. In the early stages of regeneration, a blastema forms. Blastemal ceils cluster, express desmin, fuse into myotubes, and then express tr-actinin r tropomyosin, and myosin. Myotubes in the periphery of the blastema continue to differentiate as muscle; those in the center grow in size, probably by fusing with each other, and lose their sarcomeres as they become electrocytes. Tropomyosin is rapidly down.regulated while desmin, tr-actinin, and myosin continue to be diffusely ex- pressed in newly formed electrocytes despite the absence of organized sarcomeres. During this time an isoform of keratin that is a marker for mature electrocytes is expressed. One week later, the immunoreactivities of myosin disappears and t~-actinin weakens, while that of desmin and keratin remain strong. Since nerve fibers grow into the blastema preceding the appearance of any differentiated cells, we tested whether the highly rhythmic nerve activity associated with electromo- tor input plays a role in transdifferentiation and found that electrocytes develop normally in the absence of electromotor neuron activity.
    [Show full text]
  • Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in The
    Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage Sorting SUPPLEMENTARY MATERIAL Table S1. Concordance factors and their 95% CI for the most frequent bipartitios in the concordance tree inferred from the Bayesian concordance analysis in BUCKy with values of α=1, 5, 10 and ∞. Bipartition α=1 α=5 α=10 α=∞ Gymnotiformes|… 0.961 (0.954-0.970) 0.961 (0.951-0.970) 0.96 (0.951-0.967) 0.848 (0.826-0.872) Apteronotidae|… 0.981 (0.973-0.989) 0.979 (0.970-0.986) 0.981 (0.973-0.989) 0.937 (0.918-0.954) Sternopygidae|… 0.558 (0.527-0.601) 0.565 (0.541-0.590) 0.571 (0.541-0.598) 0.347 (0.315-0.380) Pulseoidea|… 0.386 (0.353-0.435) 0.402 (0.372-0.438) 0.398 (0.353-0.440) 0.34 (0.304-0.375) Gymnotidae|… 0.29 (0.242-0.342) 0.277 (0.245-0.312) 0.285 (0.236-0.326) 0.157 (0.128-0.188) Rhamphichthyoidea|… 0.908 (0.886-0.924) 0.903 (0.872-0.924) 0.908 (0.886-0.924) 0.719 (0.690-0.747) Pulseoidea|… 0.386 (0.353-0.435) 0.402 (0.372-0.438) 0.398 (0.353-0.440) 0.34 (0.304-0.375) Table S2. Bootstrap support values recovered for the major nodes of the Gymnotiformes species tree inferred in ASTRAL-II for each one of the filtered and non-filtered datasets.
    [Show full text]
  • Lundiana 6-2 2006.P65
    Lundiana 6(2):121-149, 2005 © 2005 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Análise cladística dos caracteres de anatomia externa e esquelética de Apteronotidae (Teleostei: Gymnotyiformes) Mauro L. Triques Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av. Antônio Carlos 6627, Pampulha, 31270- 901, Belo Horizonte, MG, Brasil. E-mail: [email protected] Abstract Cladistic analysis of external morphology and skeletal characters of Apteronotidae (Teleostei: Gymnotyiformes). Cladistic analysis of external morphology and skeletal characters was undertaken for 37 species of Apteronotidae, Neotropical electric fishes. Orthosternarchus + Sternarchorhamphus (included here in Sternarchorhamphinae status novo) are proposed to be the sister taxa to all remaining apteronotids, most of which form a basal polytomy in Apteronotinae. Several apteronotid species are currently incertae sedis but the monophyly of several genera were corroborated. Sternarchorhynchus is proposed to be the sister group of Ubidia magdalensis + Platyurosternarchus macrostomus, together forming the Sternarchorhynchini. Snout elongation was revealed to have occurred in several independent evolutionary lines as the Sternar- chorhynchini, Orthosternarchus and Sternarchorhamphus. Apteronotus is restricted here to A. albifrons + A. jurubidae and postulated to be the sister group to Parapteronotus, which includes P. hasemani + P. macrostomus. “Apteronotus” leptorhynchus is postulated to be the sister group to “Apteronotus”
    [Show full text]
  • Electric Organ Discharge of Pulse Gymnotiforms: the Transformation of a Simple Impulse Into a Complex Spatio- Temporal Electromotor Pattern
    The Journal of Experimental Biology 202, 1229–1241 (1999) 1229 Printed in Great Britain © The Company of Biologists Limited 1999 JEB2082 THE ELECTRIC ORGAN DISCHARGE OF PULSE GYMNOTIFORMS: THE TRANSFORMATION OF A SIMPLE IMPULSE INTO A COMPLEX SPATIO- TEMPORAL ELECTROMOTOR PATTERN ANGEL ARIEL CAPUTI* Division Neuroanatomia Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Avenue Italia 3318, Montevideo, Uruguay *e-mail: [email protected] Accepted 25 January; published on WWW 21 April 1999 Summary An understanding of how the nervous system processes their caudal face or at both faces, depending on the site of an impulse-like input to yield a stereotyped, species-specific the organ and the species. Thus, the species-specific electric electromotor output is relevant for electric fish physiology, organ discharge patterns depend on the electric organ but also for understanding the general mechanisms of innervation pattern and on the coordinated activation of coordination of effector patterns. In pulse gymnotids, the the electrocyte faces. The activity of equally oriented faces electromotor system is repetitively activated by impulse- is synchronised by a synergistic combination of delay lines. like signals generated by a pacemaker nucleus in the The activation of oppositely oriented faces is coordinated medulla. This nucleus activates a set of relay cells whose in a precise sequence resulting from the orderly axons descend along the spinal cord and project to recruitment of subsets of electromotor neurones according electromotor neurones which, in turn, project to to the ‘size principle’ and to their position along the spinal electrocytes. Relay neurones, electromotor neurones and cord. The body of the animal filters the electric organ electrocytes may be considered as layers of a network output electrically, and the whole fish is transformed into arranged with a lattice hierarchy.
    [Show full text]
  • Phylogenetic Comparative Analysis of Electric Communication Signals in Ghost Knifefishes (Gymnotiformes: Apteronotidae) Cameron R
    4104 The Journal of Experimental Biology 210, 4104-4122 Published by The Company of Biologists 2007 doi:10.1242/jeb.007930 Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae) Cameron R. Turner1,2,*, Maksymilian Derylo3,4, C. David de Santana5,6, José A. Alves-Gomes5 and G. Troy Smith1,2,7 1Department of Biology, 2Center for the Integrative Study of Animal Behavior (CISAB) and 3CISAB Research Experience for Undergraduates Program, Indiana University, Bloomington, IN 47405, USA, 4Dominican University, River Forest, IL 60305, USA, 5Laboratório de Fisiologia Comportamental (LFC), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM 69083-000, Brazil, 6Smithsonian Institution, National Museum of Natural History, Division of Fishes, Washington, DC 20560, USA and 7Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA *Author for correspondence (e-mail: [email protected]) Accepted 30 August 2007 Summary Electrocommunication signals in electric fish are diverse, species differences in these signals, chirp amplitude easily recorded and have well-characterized neural control. modulation, frequency modulation (FM) and duration were Two signal features, the frequency and waveform of the particularly diverse. Within this diversity, however, electric organ discharge (EOD), vary widely across species. interspecific correlations between chirp parameters suggest Modulations of the EOD (i.e. chirps and gradual frequency that mechanistic trade-offs may shape some aspects of rises) also function as active communication signals during signal evolution. In particular, a consistent trade-off social interactions, but they have been studied in relatively between FM and EOD amplitude during chirps is likely to few species. We compared the electrocommunication have influenced the evolution of chirp structure.
    [Show full text]
  • Data Supporting Phylogenetic Reconstructions of the Neotropical Clade Gymnotiformes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Data in Brief 7 (2016) 23–59 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data article Data supporting phylogenetic reconstructions of the Neotropical clade Gymnotiformes Victor A. Tagliacollo a,b,n, Maxwell J. Bernt b, Jack M. Craig b, Claudio Oliveira a, James S. Albert b a Universidade Estadual Paulista – UNESP, Instituto de Biociências de Botucatu, Botucatu, SP 18618-970, Brazil b University of Louisiana at Lafayette, Department of Biology, Lafayette, LA 70504-2451, USA article info abstract Article history: Data is presented in support of model-based total evidence (MBTE) Received 20 November 2015 phylogenetic reconstructions of the Neotropical clade of Gymnoti- Received in revised form formes “Model-based total evidence phylogeny of Neotropical electric 26 January 2016 knifefishes (Teleostei, Gymnotiformes)” (Tagliacollo et al., 2016) [1]). Accepted 30 January 2016 The MBTE phylogenies were inferred using a comprehensive dataset Available online 6 February 2016 comprised of six genes (5277 bp) and 223 morphological characters for an ingroup taxon sample of 120 of 218 valid species and 33 of the 34 extant genera. The data in this article include primer sequences for gene amplification and sequencing, voucher information and Gen- Bank accession numbers, descriptions of morphological characters, morphological synapomorphies for the recognized clades of Gym- notiformes, a supermatrix comprised of concatenated molecular and morphological data, and computer scripts to replicate MBTE infer- ences. We also included here Maximum-likelihood and Bayesian topologies, which support two main gymnotiform clades: Gymnoti- dae and Sternopygoidei, the latter comprised of Rhamphichthyoidea (RhamphichthyidaeþHypopomidae) and Sinusoidea (Sternopygi- daeþApteronotidae).
    [Show full text]
  • The Life of Apteronotus Rostratus in the Wild
    The Life of Apteronotus rostratus, a Panamanian Species of Weakly Electric Fish: A Field Study Jan Gogarten McGill University Panamá Field Study Semester 2008 Independent Project - ENVR 451 Host Laboratories: Eldredge Bermingham [email protected] Smithsonian Tropical Research Institute Apartado Postal 0843-03092 Balboa, Ancon, Republic of Panama Rüdiger Krahe [email protected] McGill University - Department of Biology 1205 Docteur Penfield Montreal, Quebec H3A 1B1 Gogarten 2 TABLE OF CONTENTS I. Executive Summary i. English p. 3 ii. Español p. 4 II. Host Information p. 5 III. Introduction p. 6 - 11 IV. Methodology p. 11 - 18 V. Results p. 18 - 30 VI. Discussion p. 31– 33 VII. Limitations and Problems p. 33 VIII. Acknowledgements/Reconocimientos p. 34 IX. Bibliography p. 35-36 X. Appendix i. Budget p. 37 ii. Chronogram of Activities p. 38-39 Gogarten 3 I. EXECUTIVE SUMMARY ENGLISH: This study sought to provide insight into the life of Apteronotus rostratus, a species of weakly electric fish encountered in the rivers of Panama. Weakly electric fish have had their ability to actively generate electricity to sense their environment extensively studied in the laboratory, but little is known about their lives in the wild. A suitable study site was found at Piriati, in the Bayano region, where numerous Apteronotus rostratus were found in the river on an initial field outing. In order to fill the knowledge void about Apteronotus rostratus in the wild, four 200m transects were conducted in the Piriati river, and the location, habitat and frequency of every individual was taken (for a total of 240 Apteronotus rostratus sampled).
    [Show full text]
  • The Evolution of Echolocation for Predation
    Symp. zool. Soc. Land. (1993) No. 65: 39-63 The evolution of echolocation for predation J. R. SPEAKMAN DepartmentofZoowgy University of Aberdeen Aberdeen AB9 2TN, UK Synopsis Active detection of food items by echolocation has some obvious advantages over passive detection, since it affords independence from ambient light and sound levels. For predatory animals, however, echolocation would also appear to have a significant disadvanrage-i-the echolocation calls might alert prey to the predator's presence. Surprisingly, therefore, all but two of the different groups of vertebrates that have evolved echolocation are predatory. Despite the diversity of predatory taxa in which echolocation has evolved it is still a relatively uncommon form of perception. It has been suggested that a major constraint on the evolution of echolocation is its high energy cost, due to rapid attenuation of sound in air. The cost of producing echolocation calls has been measured in insectivorous bats, whilst hanging at rest. These measures confirm that echolocation is extremely costly. However, bats normally echolocate in flight which also has a high cost. How bats cope with the high cost of echolocation, when it is combined with flight, is therefore of extreme interest. Measures of the energy cost of flight of small echolocating bats ggest that the cost is no greater than that for non-echolocating birds and bats. The son for this apparent economy is that the same muscles which flap the wings also tilate the lungs, and produce the pulse of breath which generates the echolocation For a bat in flight, therefore, the additional cost of echolocating is very low, sr for a bat on the ground, and presumably other terrestrial vertebrates, the cost ry high.
    [Show full text]
  • Evidence for Mutual Allocation of Social Attention Through Interactive Signaling in a Mormyrid Weakly Electric Fish
    Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish Martin Worma,1, Tim Landgrafb, Julia Prumea, Hai Nguyenb, Frank Kirschbaumc, and Gerhard von der Emdea aInstitut für Zoologie, Neuroethologie/Sensorische Ökologie, Universität Bonn, 53115 Bonn, Germany; bInstitut für Informatik, Fachbereich Informatik und Mathematik, Freie Universität Berlin, 14195 Berlin, Germany; and cBiologie und Ökologie der Fische, Lebenswissenschaftliche Fakultät, Humboldt-Universität-zu Berlin, 10115 Berlin, Germany Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved May 16, 2018 (received for review January 26, 2018) Mormyrid weakly electric fish produce electric organ discharges responses from a conspecific. We solved both problems by using (EODs) for active electrolocation and electrocommunication. These a freely moving robotic fish capable of emitting either predefined pulses are emitted with variable interdischarge intervals (IDIs) or dynamic sequences of playback EODs in an interactive be- resulting in temporal discharge patterns and interactive signaling havioral experiment with single individuals of the weakly electric episodes with nearby conspecifics. However, unequivocal assign- fish Mormyrus rume proboscirostris. ment of interactive signaling to a specific behavioral context has Robotic fish have been successfully employed to investigate the proven to be challenging. Using an ethorobotical approach, we features determining attraction between individual fish (14–16), as confronted single individuals of weakly electric Mormyrus rume well as collective decision making and internal dynamics in groups – proboscirostris with a mobile fish robot capable of interacting of fish in shoals (17 22). Similar experiments have demonstrated both physically, on arbitrary trajectories, as well as electrically, that mormyrids are attracted to a mobile fish replica playing back by generating echo responses through playback of species- electric signals (23, 24).
    [Show full text]