Progesterone-Induced Changes to the Murine Vaginal Microbiota and Host Immunity Enhance Susceptibility to Chlamydial Infection

Total Page:16

File Type:pdf, Size:1020Kb

Progesterone-Induced Changes to the Murine Vaginal Microbiota and Host Immunity Enhance Susceptibility to Chlamydial Infection From the Department of Infectious Diseases and Microbiology of the University of Lübeck Director: Prof. Dr. med. Jan Rupp Progesterone-induced changes to the murine vaginal microbiota and host immunity enhance susceptibility to chlamydial infection Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Natural Sciences Submitted by Nathalie Loeper from Berlin Lübeck 2018 First Referee: Prof. Dr. med. Jan Rupp Second Referee: Prof. Dr. rer. nat. Hauke Busch Date of oral examination: 07.02.2019 Approved for printing: 21.02.2019 Table of content Table of content List of figures .................................................................................................................. V List of tables................................................................................................................... VI Abbreviations ................................................................................................................ VII Abstract ............................................................................................................................ 1 Zusammenfassung .......................................................................................................... 2 1. Introduction ............................................................................................................... 4 1.1 Sexually transmitted infections with Chlamydia trachomatis ........................................ 4 1.1.1 The pathogen Chlamydia trachomatis........................................................... 4 1.1.2 Clinical aspects: treatment and sequels ........................................................ 5 1.1.3 The impact of vaginal microbiota on female health and disease ................... 6 1.2 Experimental design of chlamydial infections ............................................................ 10 1.2.1 Development and characterization of a mouse infection model .................. 10 1.2.2 Host immune response towards chlamydial infections ................................ 12 1.3 The impact of female sex hormones on infectious diseases ...................................... 16 1.3.1 The estrous cycle of rodents ....................................................................... 16 1.3.2 Sex hormones modulate various infections ................................................. 19 2. Aim of the study ...................................................................................................... 21 3. Material and methods ............................................................................................. 22 3.1 Material ..................................................................................................................... 22 3.1.1 Devices ....................................................................................................... 22 3.1.2 Consumables.............................................................................................. 24 3.1.3 Chemicals ................................................................................................... 25 3.1.4 Medical products ........................................................................................ 26 3.1.5 Buffers and solutions .................................................................................. 27 3.1.6 Cultivation media ........................................................................................ 27 3.1.7 Antibodies ................................................................................................... 28 3.1.8 Enzymes ..................................................................................................... 28 3.1.9 Kits ............................................................................................................. 29 I Table of content 3.1.10 Primer for PCR ........................................................................................... 29 3.1.11 Bacterial strains .......................................................................................... 29 3.1.12 Cell lines ..................................................................................................... 30 3.1.13 Mice ............................................................................................................ 30 3.2 Cell culture ................................................................................................................ 30 3.3 Infection biology ........................................................................................................ 31 3.3.1 Cell infection with Chlamydia muridarum .................................................... 31 3.3.2 Recovery assay .......................................................................................... 31 3.3.3 Quantification of Chlamydia ........................................................................ 31 3.3.4 Infection modulation with antibiotics ............................................................ 32 3.4 Microscopy ................................................................................................................ 32 3.4.1 Indirect immunofluorescence of Chlamydia ................................................ 32 3.4.2 Direct immunofluorescence of Chlamydia ................................................... 32 3.5 Animal experiments .................................................................................................. 33 3.5.1 Experimental procedures ............................................................................ 33 3.5.2 Pathology score .......................................................................................... 34 3.6 Microbiota sequencing .............................................................................................. 35 3.6.1 Library preparation...................................................................................... 35 3.6.2 Next-generation sequencing ....................................................................... 37 3.7 Flow cytometry .......................................................................................................... 37 3.7.1 Tissue digestion and preparation of a single cell suspension ...................... 37 3.7.2 Staining ...................................................................................................... 38 3.7.3 Measurements and gating strategy ............................................................. 38 3.8 Histological examination ........................................................................................... 39 3.9 Bioinformatics and statistics ...................................................................................... 40 3.9.1 Software ..................................................................................................... 40 3.9.2 Processing of raw NGS data ....................................................................... 40 3.9.3 Graphical plotting ........................................................................................ 41 3.9.4 Statistical analysis ...................................................................................... 41 4. Results ..................................................................................................................... 42 II Table of content 4.1 Characterization of murine vaginal microbiota and tissue composition ...................... 42 4.1.1 Commensal vaginal microbiota ................................................................... 42 4.1.2 Vaginal tissue composition ......................................................................... 43 4.2 Modulation of the vaginal milieu by sex hormones .................................................... 44 4.2.1 Reduced immune cells in uterine tissue after progesterone and β-estradiol treatment .................................................................................................... 44 4.2.2 Vaginal microbiota was altered in mice treated with progesterone, but not with β-estradiol ................................................................................................... 45 4.2.3 Gut microbiota was unaffected by progesterone treatment ......................... 48 4.3 Progesterone enhanced susceptibility of mice to genital C. muridarum infection ....... 49 4.3.1 Enhanced bacterial shedding by progesterone-treatment ........................... 49 4.3.2 Progesterone-treated mice developed pathology ........................................ 50 4.3.3 Vaginal microbiota during chlamydial infection ............................................ 52 4.3.4 Infection-induced host immune response was elevated in progesterone-treated mice .......................................................................... 54 4.4 Application of antibiotics – effects on Chlamydiae and microbiota ............................. 56 4.4.1 Antibiotic efficacy in vitro ............................................................................ 56 4.4.2 Efficacies of antibiotics varied in eradicating chlamydial infection ............... 57 4.4.3 Ampicillin affected vaginal microbiota but not chlamydial infection .............. 58 5. Discussion ............................................................................................................... 62 5.1 Sex hormones alter site specific microbiota .............................................................. 62 5.1.1 Commensal vaginal microbiota shape a stable vaginal milieu ....................
Recommended publications
  • Battistuzzi2009chap07.Pdf
    Eubacteria Fabia U. Battistuzzia,b,* and S. Blair Hedgesa shown increasing support for lower-level phylogenetic Department of Biology, 208 Mueller Laboratory, The Pennsylvania clusters (e.g., classes and below), they have also shown the State University, University Park, PA 16802-5301, USA; bCurrent susceptibility of eubacterial phylogeny to biases such as address: Center for Evolutionary Functional Genomics, The Biodesign horizontal gene transfer (HGT) (20, 21). Institute, Arizona State University, Tempe, AZ 85287-5301, USA In recent years, three major approaches have been used *To whom correspondence should be addressed (Fabia.Battistuzzi@ asu.edu) for studying prokaryote phylogeny with data from com- plete genomes: (i) combining gene sequences in a single analysis of multiple genes (e.g., 7, 9, 10), (ii) combining Abstract trees from individual gene analyses into a single “super- tree” (e.g., 22, 23), and (iii) using the presence or absence The ~9400 recognized species of prokaryotes in the of genes (“gene content”) as the raw data to investigate Superkingdom Eubacteria are placed in 25 phyla. Their relationships (e.g., 17, 18). While the results of these dif- relationships have been diffi cult to establish, although ferent approaches have not agreed on many details of some major groups are emerging from genome analyses. relationships, there have been some points of agreement, A molecular timetree, estimated here, indicates that most such as support for the monophyly of all major classes (85%) of the phyla and classes arose in the Archean Eon and some phyla (e.g., Proteobacteria and Firmicutes). (4000−2500 million years ago, Ma) whereas most (95%) of 7 ese A ndings, although criticized by some (e.g., 24, 25), the families arose in the Proterozoic Eon (2500−542 Ma).
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Bacterial Communities Associated with the Pine Wilt Disease Vector Monochamus Alternatus (Coleoptera: Cerambycidae) During Different Larval Instars
    Journal of Insect Science, (2017)17(6): 115; 1–7 doi: 10.1093/jisesa/iex089 Research Article Bacterial Communities Associated With the Pine Wilt Disease Vector Monochamus alternatus (Coleoptera: Cerambycidae) During Different Larval Instars Xia Hu,1 Ming Li,1 Kenneth F. Raffa,2 Qiaoyu Luo,1 Huijing Fu,1 Songqing Wu,1 Guanghong Liang,1 Rong Wang,1 and Feiping Zhang1,3 1College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China, 2Department of Entomology, University of Wisconsin-Madison, 345 Russell Labs 1630 Linden Dr., Madison, WI 53706, and 3Corresponding author, e-mail: [email protected] Subject Editor: Campbell Mary and Lancette Josh Received 14 June 2017; Editorial decision 20 September 2017 Abstract We investigated the influence of larval instar on the structure of the gut bacterial community in the Japanese pine sawyer, Monochamus alternatus (Hope; Coleoptera: Cerambycidae). The diversity of the gut bacterial community in early, phloem-feeding larvae is significantly higher than in later, wood-feeding larvae. Many of these associates were assigned into a few taxonomic groups, of which Enterobacteriaceae was the most abundant order. The predominant bacterial genus varied during the five instars of larval development.Erwinia was the most abundant genus in the first and fifth instars,Enterobacter was predominant in the third and fourth instars, and the predominant genus in the second instars was in the Enterobacteriaceae (genus unclassified). Actinobacteria were reported in association with M. alternatus for the first time in this study. Cellulomonadaceae (Actinobacteria) was the second most abundant family in the first instar larvae (10.6%). These data contribute to our understanding of the relationships among gut bacteria and M.
    [Show full text]
  • Stone-Dwelling Actinobacteria Blastococcus Saxobsidens, Modestobacter Marinus and Geodermatophilus Obscurus Proteogenomes
    Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes Item Type Article Authors Sghaier, Haïtham; Hezbri, Karima; Ghodhbane-Gtari, Faten; Pujic, Petar; Sen, Arnab; Daffonchio, Daniele; Boudabous, Abdellatif; Tisa, Louis S; Klenk, Hans-Peter; Armengaud, Jean; Normand, Philippe; Gtari, Maher Citation Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes 2015 The ISME Journal Eprint version Post-print DOI 10.1038/ismej.2015.108 Publisher Springer Nature Journal The ISME Journal Rights Archived with thanks to The ISME Journal Download date 28/09/2021 04:14:08 Link to Item http://hdl.handle.net/10754/577333 1 Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus & 2 Geodermatophilus obscurus proteogenomes 3 Haïtham Sghaier1, Karima Hezbri2, Faten Ghodhbane-Gtari2, Petar Pujic3, Arnab Sen4, Daniele 4 Daffonchio5, Abdellatif Boudabous2, Louis S Tisa6, Hans-Peter Klenk7, Jean Armengaud8, Philippe 5 Normand3*, Maher Gtari2 6 7 1 National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020 Ariana, Tunisia. 8 2 Laboratoire Microorganismes et Biomolécules ActiVes, UniVersité de Tunis Elmanar (FST) & UniVersité de Carthage 9 (INSAT), Tunis, 2092, Tunisia. 10 3 UniVersité de Lyon, UniVersité Lyon 1, Lyon, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 11 Villeurbanne, Cedex, France. 12 4 NBU Bioinformatics Facility, Department of Botany, UniVersity of North Bengal, Siliguri, 734013, India. 13 5 King Abdullah UniVersity of Science and Technology (KAUST), BESE, Biological and EnVironmental Sciences and 14 Engineering Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia & Department of Food, Environmental and 15 Nutritional Sciences (DeFENS), UniVersity of Milan, Via Celoria 2, 20133 Milan, Italy. 16 6 Department of Molecular, Cellular & Biomedical Sciences, UniVersity of New Hampshire, 46 College Road, Durham, 17 NH 03824-2617, USA.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Granulicella Tundricola Type Strain MP5ACTX9T, an Acidobacteria from Tundra Soil
    Standards in Genomic Sciences (2014) 9:449-461 DOI:10.4056/sig s.4648353 Complete genome sequence of Granulicella tundricola type strain MP5ACTX9T, an Acidobacteria from tundra soil Suman R. Rawat1, Minna K. Männistö 2, Valentin Starovoytov3, Lynne Goodwin4, Matt Nolan5 Loren Hauser6, Miriam Land 6, Karen Walston Davenport4, Tanja Woyke5 and Max M. Häggblom1* 1 Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey USA 2 Finnish Forest Research Institute, Rovaniemi, Finland 3 Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA. 4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 5 DOE Joint Genome Institute, Walnut Creek, California, USA 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA *Correspondence: Max M Häggblom ([email protected]) Keywords: cold adapted, acidophile, tundra soil, Acidobacteria Granulicella tundricola strain MP5ACTX9T is a novel species of the genus Granulicella in subdivision 1 Acidobacteria. G. tundricola is a predominant member of soil bacterial communities, active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. The organism is a cold-adapted acidophile and a versatile heterotroph that hydro- lyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates, including g ene modules encoding for the carbohydrate-active enzyme (CAZy) families for the break- down, utilization and biosy nthesis of diverse structural and storag e polysaccharides suc h as plant based carbon polymers. The g enome of G. tundricola strain MP5ACTX9T consists of 4,309,151 bp of a circular chromosome and five meg a plasmids with a total genome con- tent of 5,503,984 bp.
    [Show full text]
  • Full Paper Ilumatobacter Fluminis Gen. Nov., Sp. Nov., a Novel Actinobacterium Isolated from the Sediment of an Estuary
    J. Gen. Appl. Microbiol., 55, 201‒205 (2009) Full Paper Ilumatobacter fl uminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary Atsuko Matsumoto,1 Hiroki Kasai,2 Yoshihide Matsuo,2 Satoshi Ōmura,1 Yoshikazu Shizuri,2 and Yōko Takahashi1,* 1 Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108‒8641, Japan 2 Marine Biotechnology Institute, Kitasato University, Kamaishi, Iwate 026‒0001, Japan (Received December 1, 2008; Accepted February 2, 2009) Bacterial strain YM22-133T was isolated from the sediment of an estuary and grew in media with an artifi cial seawater base. Strain YM22-133T was Gram-positive, aerobic, non-motile and rod shaped. The cell-wall peptidoglycan contained LL-DAP, glycine, alanine and hydroxyglutamate. The predominant menaquinone was MK-9 (H8), with MK-9 (H0), MK-9 (H2), MK-9 (H4) and MK-9 (H6) present as minor menaquinones. The G+C content of the genomic DNA from the strain was 68 mol%. Phylogenetic analysis of the 16S rRNA gene sequence showed that the strain is near- est to Acidimicrobium ferrooxidans DSM 10331T. However, the similarity is relatively low (87.1%) and the physiological characteristics are also different: Acidimicrobium ferrooxidans is thermo- tolerant and acidophilic. Therefore, strain YM22-133T can be classifi ed as a novel genus and species, Ilumatobacter fl uminis gen. nov., sp. nov. (type strain YM22-133T =DSM 18936T=MBIC 08263T). Key Words—Acidimicrobium; Actinobacteria; artifi cial sea water; Ilumatobacter fl uminis gen. nov., sp. nov. Introduction isolated as part of this study. Phylogenetic analysis on the basis of 16S rRNA gene sequence analysis showed Recently, bacteria isolated from marine environ- that the strain is most closely related to the genus Aci- ments have attracted attention due to the recognition dimicrobium (Clark and Norris, 1996).
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • 26Sor Em2rray /Mmucd
    D4006- Gut Microbiota Analysis UC Davis MMPC - Microbiome & Host Response Core Contents 1 Methods: 1 1.1 Sequencing . .1 1.2 Data processing . .1 2 Summary of Findings: 2 2.1 Sequencing analysis . .2 2.2 Microbial diversity . .2 2.2.1 Alpha Diversity . .2 2.2.2 Beta Diversity . 10 2.3 Data analysis using taxa abundance data . 13 2.3.1 Stacked bar graphs of Taxa abundances at each level . 14 A Appendix 1 (Taxa Abundance Tables) 30 B Appendix 2 (Taxa removed from filtered datasets at each level) 37 References: 43 Core Contacts: Helen E. Raybould, Ph.D., Core Leader ([email protected]) Trina A. Knotts, Ph.D., Core Co-Leader ([email protected]) Michael L. Goodson, Ph.D., Core Scientist ([email protected]) Client(s): Kent Lloyd, DVM PhD ;MMRRC; UC Davis Project #: MBP-2079 MMRRC strain ID: MMRRC_043514 Animal Information: The strain was donated to the MMRRC by Russell Ray at Baylor College of Medicine. Fecal samples were obtained from animals housed under the care of Russell Ray at Baylor College of Medicine. 1 Methods: Brief Project Description: MMRRC strains are often contributed to the MMRRC to fulfill the resource sharing aspects of NIH grants. Since transporting mice to another facilty often causes a microbiota shift, having a record of the original fecal microbiota from the donor institution where the original phenotyping or testing was performed may prove helpful if a phenotype is lost after transfer. Several MMRRC mouse lines were selected for fecal microbiota profiling of the microbiota. Table 1: Animal-Strain Information X.SampleID TreatmentGroup Animal_ID Genotype Line Sex MMRRC.043514.Mx054 MMRRC.043514_Het_M Mx054 Het MMRRC.043514 M MMRRC.043514.Mx415 MMRRC.043514_Het_M Mx415 Het MMRRC.043514 M 1 1.1 Sequencing Frozen fecal or regional gut samples were shipped on dry ice to UC Davis MMPC and Host Microbe Systems Biology Core.
    [Show full text]
  • Unexpected Diversity During Community Succession in the Apple Flower Microbiome
    RESEARCH ARTICLE Unexpected Diversity during Community Succession in the Apple Flower Microbiome Ashley Shade,a Patricia S. McManus,b Jo Handelsmana Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USAa; Department of Plant Pathology, University of Wisconsin— Madison, Madison, Wisconsin, USAb ABSTRACT Despite its importance to the host, the flower microbiome is poorly understood. We report a culture-independent, community-level assessment of apple flower microbial diversity and dynamics. We collected flowers from six apple trees at five time points, starting before flowers opened and ending at petal fall. We applied streptomycin to half of the trees when flowers opened. Assessment of microbial diversity using tag pyrosequencing of 16S rRNA genes revealed that the apple flower communi- ties were rich and diverse and dominated by members of TM7 and Deinococcus-Thermus, phyla about which relatively little is known. From thousands of taxa, we identified six successional groups with coherent dynamics whose abundances peaked at dif- ferent times before and after bud opening. We designated the groups Pioneer, Early, Mid, Late, Climax, and Generalist commu- nities. The successional pattern was attributed to a set of prevalent taxa that were persistent and gradually changing in abun- dance. These taxa had significant associations with other community members, as demonstrated with a cooccurrence network based on local similarity analysis. We also detected a set of less-abundant, transient taxa that contributed to general tree-to-tree variability but not to the successional pattern. Communities on trees sprayed with streptomycin had slightly lower phylogenetic diversity than those on unsprayed trees but did not differ in structure or succession.
    [Show full text]