Green Freighter Green Freighter Development of an Eco-Friendly Freighter at HAW Hamburg DIPL.-ING

Total Page:16

File Type:pdf, Size:1020Kb

Green Freighter Green Freighter Development of an Eco-Friendly Freighter at HAW Hamburg DIPL.-ING panorama Green Freighter Green Freighter development of an eco-friendly freighter at HAW Hamburg DIPL.-ING. KOLJA SEECKT; PROF. DR.-ING. DIETER SCHOLZ, MSME Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences » ”Elegant“, ”quiet“, or ”green“ are not normally of the project is to research unconventional cargo catchwords associated with cargo aircraft. In fact, aircraft confi gurations and to compare these to discarded passenger aircraft that have been con- conventional ones. verted for a second life as a freighter are the fi rst thought to cross one‘s mind: robust workhorses, Unconventional Confi gurations: Practically often the last of their kind at European airports. all of today‘s transport aircraft have the con- But for these aircraft, the air is getting thinner. ventional confi guration, or tail-aft as it is also Prof. Dr.-Ing. Nighttime and noise restrictions, rising fuel pri- called. It is defi ned by three main features: a Dieter Scholz ces and the coming emission-related taxes are fuselage which accommodates the payload, a graduated in increasing the pressure on logistics companies to wing attached to the fuselage that produces the mechanical operate more modern aircraft. Today, brand new lift, and an empennage, also called a tailplane engineering at cargo aircraft are already available and in opera- or just a tail, at the aft end of the fuselage for Purdue Univer- sity Lafayette tion. Others, like the Boeing B747-8F or the Air- stability and control. and at Univer- bus A380-800F, are about to follow to meet the Any aircraft confi guration that differs from sity Hannover. fast-growing demand for new freighter aircraft. this in one or more features is unconventional. He worked at The size of the world freighter aircraft fl eet is Unconventional aircraft may be grouped as illus- Airbus and TU expected to double to 4000 aircraft by 2025. trated in Figure 1. The fi rst row depicts aircraft Hamburg-Har- burg and taught This is the tentative date for the entry into service with an arrangement of wing(s) and tail(s) other at Queen’s Uni- of the Green Freighter, which is the subject and than the described confi guration: canard, tan- versity Belfast. title of a current joint aircraft design research pro- dem or biplane, three-surface, joined-wing, and Since 1999 he ject under HAW leadership on environmentally delta-wing. The second row shows aircraft with has been a pro- fessor at Ham- friendly and economic aircraft operation. more than one fuselage: twin- or multi-fuselage. burg University This research includes technical aspects such The third row illustrates aircraft merging fuselage of Applied as low fuel consumption, future fuels (liquid and wing: lifting fuselage and blended wing body Sciences. hydrogen [LH2], synthetic fuels, biofuel), low (BWB). The fourth row displays aircraft with no noise levels, low emissions (CO2, NOx, . .), and extra fuselage but only a wing (with or without low operating costs (zero-pilot operation, little tails): fl ying wing, oblique fl ying wing (OFW), or no environmental control system). The pro- and EKIP (Russian acronym for „ecology and ject was launched at the end of 2006 and has a progress“; fl ying wing with a low aspect ratio; duration of three years. HAW‘s partners in this also see http://www.ekip-aviation-concern.com). project are the Institute of Aircraft Design and The columns indicate groups of different Lightweight Structures (IFL) at Technical Univer- arrangements of one, two or three lifting and sity of Braunschweig (TUBS), Airbus‘ Future Pro- control surfaces. jects Offi ce (FPO), and Bishop GmbH. The aim But why look at new confi gurations at all? Today‘s aircraft are a safe and reliable means of transportation, and over the last couple of years fl ying has become very cheap, particularly due to the launch of many low-cost airlines. Flying is often not only the fastest and safest way of traveling inside Europe, but also the cheapest. What are the driving factors that justify the huge efforts cur- rently underway to research and develop 1 Aircraft Confi gu- 1 new aircraft concepts ration matrix [6] and technologies? 34 panorama Green Freighter Considering the different types of 2 aircraft that have been built over the course of more than one century, there have been major developments. The fi rst fl yers were homemade apparatuses able to make small, more or less controlled hops. But very soon after these initial fl ights, substantial progress was made. Flying became „higher, faster, further,“ as well as safer, more weather- and daylight-independent and more comfortable. In short, aviation became a mature technology. ability to handle 16 million fl ights per year, and a In 1954, 51 years after the Wright brothers‘ 30% reduction in the cost of air transport. Other fi rst sustained powered fl ight in December 1903, aims include a reduction of passenger waiting the Boeing B707 was rolled out: a modern jet air- times at the gate to less than 15 min for short- liner capable of carrying more than 150 passen- haul and less than 30 min for long-haul fl ights gers on transatlantic routes at a speed of more and an improvement in punctuality. As a result, than Mach 0.8. This aircraft may be regarded as less than 5% of all fl ights should be delayed by the prototype of most of today‘s airliners traveling 15 min or more. Last but not least, there are at high subsonic speeds: a pressurized fuselage plans to reduce noise emissions by 50%, while Dipl.-Ing. Kolja with a cylindrical midsection and the empennage CO and NO emissions should be lowered by Seeckt 2 x graduated at its rear end, a tricycle landing gear and a swept 50% and 80% respectively. in 2006 in wing carrying pylon-mounted jet engines. The development over the last decades aeronautical In 2005, another 51 years later, the similar- shows that these goals cannot be achieved solely engineering at looking Airbus A380 was rolled out. Nothing through evolutionary improvements to conventi- Hamburg Uni- versity of Ap- essential has changed, though there are two onal confi gurations. For example, many airports plied Sciences, main decks and many improvements regarding have reached their maximum possible number of started working noise, fuel burn, safety, passenger comfort, etc. departing and arriving fl ights. The only way for at Airbus in But all of these improvements are based on inter- many of these airports to further increase their the same year nal advancements. For example, modern turbo- amount of passengers is to increase the number and has been a postgraduate fan engines have a much higher bypass ratio, of passengers per fl ight. Hence, larger aircraft are at the KTH in which means considerably more air is accelerated needed, but regarding size, the A380 almost sets Stockholm since by the fan than the amount of air that passes the an upper limit for conventional aircraft due to 2007. In 2006 core engine. This, in combination with modern rather simple physical reasons. he joined the engine control and new materials, reduces noise, When scaling up a body of any shape, the Green Freighter project as a sci- fuel burn, and the production of smoke. body‘s volume rises to the power of 3 while its entifi c assistant. Further improvements to conventional-con- surface rises only to the power of 2; this basic fi guration aircraft are only possible on a small principle is called the square-cube law. If, for scale and involve large research and development example, a cube with an edge length of 1 is 2 Sketches of efforts. Furthermore, there are still high aims scaled up to an edge length of 2, its volume rises different possible that need to be achieved in order to tackle the from 1 to 8 (2 × 2 × 2), while its 6 surface areas engine arran- × gements on the demands of the continual growth in air traffi c. only rise from 1 to 4 (2 2). Therefore, the weight- planned new Particularly in light of global warming and other related pressure on the base area rises from 1 (1/1) model of HAW’s current environmental and social demands, the to 2 (8/4). Transposed to aircraft design, the AC20.40 [4] calls are getting louder for sustainable air traffi c square-cube law says that the simple geometri- and green aircraft. cal scale-up of an aircraft leads to an increased In 2001, the major European stakeholders wing loading, which of course cannot rise arbi- in aviation, including the European Commis- trarily for physical reasons. Some unconven- sion, national ministries, research agencies, and tional aircraft confi gurations, like the blen- aircraft and engine manufacturers, formulated ded wing body, offer more potential to realize a vision for the European air transport system: larger aircraft. Vision 2020. Vision 2020 sets several goals to be achieved by 2020 in order to reach the two The Blended Wing Body Confi guration: The top-level objectives of „Responding to Society‘s blended wing body‘s fuselage is shaped like an Needs“ and „Securing Europe‘s Global Leader- airfoil and therefore contributes to the overall ship in Aeronautics.“ lift of the aircraft. Furthermore, the fuselage and Some of the direct goals are the reduction wing merge smoothly into each other. The BWB‘s of accidents in air transport by a factor of 5, the main benefi ts compared to the conventional › 35 panorama Green Freighter confi guration are a lighter airframe structure and These aircraft often bear features, safety mar- improved aerodynamics. gins, and equipment which are not needed for Regarding hydrogen-powered aircraft, the freighter use but have to be paid for and carried BWB offers further advantages as it provides a on each fl ight.
Recommended publications
  • Defense Industry Restructuring in Russia
    S t a n f o r d U n i v e r s i t y C I S A C Center for International Security and Arms Control The Center for International Security and Arms Control, part of Stanford University’s Institute for International Studies, is a multidisciplinary community dedicated to research and train- ing in the field of international security. The Center brings together scholars, policymakers, scientists, area specialists, members of the business community, and other experts to examine a wide range of international security issues. CISAC publishes its own series of working papers and reports on its work and also sponsors a series, Studies in International Se- curity and Arms Control, through Stanford University Press. Center for International Security and Arms Control Stanford University 320 Galvez Street Stanford, California 94305-6165 (415) 723-9625 http://www-leland.stanford.edu/group/CISAC/ Contents Acknowledgments iv Executive Summary v I Introduction 1 Section One: Case Studies II The Central Aerohydrodynamic Research Institute (TsAGI) 9 III ELVIS+ and The Moscow Center for SPARC Technology (MCST) 28 IV Impuls 45 V The Mashinostroenie Enterprise 59 VI The Saratov Aviation Plant 79 Section Two: Analysis VII Privatization at Four Enterprises 111 VIII Organizational Restructuring 137 IX Principal Differences in Accounting Systems in Russia 163 and the United States X Reallocation of the Social Services 183 XI Conclusion 207 Glossary 216 1 Acknowledgments Many people have contributed to this report, and still more have contributed to the research leading up to it. In writing this report, we have not attempted to reach consensus among the authors on the interpretations to be drawn from the data.
    [Show full text]
  • Requirements and Selection of Design Concepts to Be Investigated
    GF_WP1_TN_Requirements GF_WP1_TN_Requirements Department of Automotive and Aeronautical Engineering Hamburg University of Applied Sciences (HAW) Berliner Tor 9 D - 20099 Hamburg Green Freighter – Requirements and Selection of Design Concepts to be Investigated Kolja Seeckt Dieter Scholz 2007-11-29 Technical Note 1 GF_WP1_TN_Requirements Dokumentationsblatt 1. Berichts-Nr. 2. Auftragstitel 3. ISSN / ISBN GF_WP1_TN_Requirements Grüner Frachter (Entwurfsuntersuchungen zu --- umweltfreundlichen und kosteneffektiven Fracht- flugzeugen mit unkonventioneller Konfiguration) 4. Sachtitel und Untertitel 5. Abschlussdatum Green Freighter – Requirements and Selection of Design Concepts to 29.11.2007 be Investigated 6. Ber. Nr. Auftragnehmer GF_WP1_TN_Requirements 7. Autor(en) (Vorname, Name) 8. Vertragskennzeichen Kolja Seeckt ([email protected]) 1710X06 Dieter Scholz ([email protected]) 9. Projektnummer FBMBF06-004 10. Durchführende Institution (Name, Anschrift) 11. Berichtsart Hochschule für Angewandte Wissenschaften Hamburg (HAW) Technische Niederschrift Fakultät Technik und Informatik 12. Berichtszeitraum Department Fahrzeugtechnik und Flugzeugbau Forschungsgruppe Flugzeugentwurf und Systeme (Aero) 06.12.2006 - 20.09.2007 Berliner Tor 9 13. Seitenzahl D - 20099 Hamburg 96 14. Fördernde Institution / Projektträger (Name, Anschrift) 15. Literaturangaben Bundesministerium für Bildung und Forschung (BMBF) 70 Heinemannstraße 2, 53175 Bonn - Bad Godesberg 16. Tabellen Arbeitsgemeinschaft industrieller Forschungsvereinigungen 10 „Otto
    [Show full text]
  • Vortexcell2050
    Sixth EU Framework Programme for Research and Technological Development (FP6) Contract No AST4-CT-2005-012139. 2005-2009 VortexCell2050 Specific Targeted Research Project “Fundamentals of actively controlled flows with trapped vortices ” Publishable executive summary VortexCell2050 aimed at delivering a new technological platform combining two cutting-edge technologies, the trapped-vortex and the active flow control. Trapping vortices is a technology for preventing vortex shedding and reducing drag in flows past bluff bodies. Active flow control is a form of control which requires energy input. The project outcomes will serve the designers of the next-generation thick-wing aircraft, and will also be applied in other areas where reduction in drag in a flow past a bluff body is desirable. VortexCell2050 developed a tool for vortex cell design, collected a substantial amount of data on three-dimensional and actively controlled flows in vortex cells, and demonstrated the advantage of a thick airfoil with a properly designed vortex cell with active control over a thick airfoil without a vortex cell, thus opening a possibility of trying this technology in specific applications. VortexCell2050 also highlighted several promising avenues for further improvement of the vortex cell performance. The results of VortexCell2050 ensure European Aeronautical Sector a leadership in a small but critical area, the importance of which will grow in the future with an increase in aircraft size. This summary outlines the project context, major activities, and outcomes . Partners University of Southampton, UK Politecnico di Torino, Italy Centro Italiano Ricerche Aerospaziali ScpA, Italy Piaggio Aero Industries, Italy Technical University of Munich, Germany University of Bordeaux 1, France Battery Company RIGEL, Russian Federation Glasgow University, UK Technische Universiteit Eindhoven, Netherlands Institute of Mechanics of the Moscow State University, Russian Federation Contacts Prof.
    [Show full text]
  • Los Angeles World Airports
    Los Angeles World Airports April 29, 2013 Los Angeles City Council City of Los Angeles Room 395, City Hall Los Angeles, CA 90012 LAX RE: REVIEW OF COMMENTS RECENTLY RECEIVED ON THE LAX SPECIFIC PLAN AMENDMENT STUDY (COUNCIL FILE NO. 13-0285 and COUNCIL LA/Ontario FILE NO. 13-0285-S1) Van Nuys City of Los Angeles Honorable City Council: Antonio R. Villaraigosa Mayor Over the past several months, the City of Los Angeles has received a number of letters, Board of Airport e-mails, other written materials, and oral testimony pertaining to the LAX Specific Plan Commissioners Amendment Study (SPAS). The aforementioned materials and testimony are in Michael A. Lawson addition to the written comments and public meeting testimony received during the 75- President day public review period for the SPAS Draft Environmental Impact Report (EIR), all of Valeria C. Velasco Vice President which have been addressed in the written responses to comments contained within the SPAS Final EIR that was distributed on January 25, 2013. Joseph A. Aredas Robert D. Beyer Ann M. HOllister Fernando M, rcrres-en Los Angeles World Airports (LAWA) has carefully reviewed the written materials and the oral testimony received after the close of the Draft EIR review period. These materials Gina Marie Lindsey EXecutive Director and testimony do not contain any new issues or significant new information. They primarily reiterate, either verbatim or in essence, many of the same comments received during the SPAS Draft EIR review period. Nevertheless, LAWA staff would like to clarify and amplify certain points in response to these new comments.
    [Show full text]
  • Chinese Telecom Equipment Industry a Thesis Submitted
    STATE-LED CATCH-UP: CHINESE TELECOM EQUIPMENT INDUSTRY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF SOCIAL SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY A. ULAŞ EMİROĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF SCIENCE AND TECHNOLOGY POLICY STUDIES FEBRUARY 2014 Approval of the Graduate School of Social Sciences Prof. Dr. Meliha Altunışık Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of Philosophy. Prof. Dr. Erkan Erdil Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy. Prof. Dr. Haluk Geray Prof. Dr. Erkan Erdil Co-Supervisor Supervisor Examining Committee Members Assoc. Prof. Dr. Teoman Pamukçu (METU,STPS) Prof. Dr. Erkan Erdil (METU, STPS) Assoc. Prof. Dr. Funda Başaran Özdemir (AU, ILEF) Assist. Prof. Dr. Semih Akçomak (METU, STPS) Assist. Prof. Dr. Erdal Akdeve (YBU, IIBF) I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : A. Ulaş Emiroğlu Signature : iii ABSTRACT STATE-LED CATCH-UP: CHINESE TELECOM EQUIPMENT INDUSTRY Emiroğlu, A. Ulaş Ph.D., Department of Science and Technology Policy Studies Supervisor: Prof. Dr. Erkan Erdil Co-Supervisor: Prof. Dr.
    [Show full text]
  • Fen Bilimleri Enstitüsü
    FEN BİLİMLERİ ENSTİTÜSÜ 20.07.1982 tarihinde yürürlüğe giren Yükseköğretim Kurumları Teşkilatı hakkındaki 41 Sayılı Kanun Hükmünde Kararnameyle kurulmuş olan Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 18.08.1993 tarihinde yürürlüğe giren 496 sayılı Kanun Hükmünde Kararnameyle yeni kurulan Osmangazi Üniversitesine devredilmiştir. Aynı Kanun Hükmünde Kararname ile Anadolu Üniversitesi bünyesinde Fen Bilimleri Enstitüsünün yeniden kurulması öngörülmüş ve Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 1993-1994 Öğretim yılı Bahar Yarıyılında eğitim-öğretime başlamıştır. Müdür : Prof. Dr. Hasan Ferdi GERÇEL Müdür Yardımcısı : Doç. Dr. Yunus ÖZDEMİR Müdür Yardımcısı : Yard. Doç. Dr. Erhan AYAS Enstitü Sekreteri : Demet BAYRAKTAR ÖĞRETİM ELEMANLARI Araştırma Görevlileri: Fesih KESKİN, Ahmet Murat TÜRK BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI Anabilim Dalı Başkanı : Doç. Dr. Hüseyin POLAT DOKTORA DERS PROGRAMI I. YARIYIL II. YARIYIL Seçmeli Dersler (4) - 30,0 Seçmeli Dersler (3) - 22,5 30,0 22,5 III. YARIYIL IV. YARIYIL BİM 890 Tez 0+1 30,0 BİM 890 Tez 0+1 30,0 30,0 30,0 SEÇMELİ DERSLER BİL 616 Örüntü Tanıma Uygulamaları 3+0 7,5 BİL 604 Bilişim Teknolojileri Yönetimi 3+0 7,5 BİL 617 Kriptoloji 3+0 7,5 BİL 605 Dağıtık Hesaplama Yöntemleri 3+0 7,5 BİL 619 İleri Ayrık Matematik 3+0 7,5 BİL 606 Doğal Dil İşleme 3+0 7,5 BİL 620 Çok Erkinli Sistemler 3+0 7,5 BİL 607 İleri Bilgi Erişim Sistemleri 3+0 7,5 BİL 621 Metin Analitiği 3+0 7,5 BİL 612 Veri ve Metin Madenciliği 3+0 7,5 UBM 901 Uzmanlık Alan Dersi 5+0 7,5 BİL 613 Makine Öğrenimi 3+0 7,5 UBM 902 Uzmanlık Alan Dersi 5+0 7,5 BİL 615 Bilişim Teknolojilerinde Özel Konular 3+0 7,5 1 TEZLİ YÜKSEK LİSANS 1999-2000 Öğretim Yılı Güz Yarıyılından itibaren Bilişim Yüksek Lisans Programında Tezli ve Tezsiz; 2000-2001 Öğretim Yılı Bahar Yarıyılından itibaren Bilgisayar Mühendisliği Anabilim Dalında Tezli Yüksek Lisans Eğitim ve Öğretimi sürdürülmektedir Bölümümüzün amacı Bilgisayar mühendisliği ve Yazılım Mühendisliği alanlarında gerekli olan nitelikli personeli ve akademik kariyer yapmayı düşünen öğrencileri yetiştirmektir.
    [Show full text]
  • Understanding the Change in Intelligence Organizations
    UNDERSTANDING THE CHANGE IN INTELLIGENCE ORGANIZATIONS: AN INSTITUTIONAL FRAMEWORK by Ahmet Ates A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Political Science and International Relations Summer 2020 © 2020 Ahmet Ates All Rights Reserved UNDERSTANDING THE CHANGE IN INTELLIGENCE ORGANIZATIONS: AN INSTITUTIONAL FRAMEWORK by Ahmet Ates Approved: __________________________________________________________ David Redlawsk, Ph.D. Chair of the Department of Political Science and International Relations Approved: __________________________________________________________ John A. Pelesko, Ph.D. Dean of the College of Arts and Sciences Approved: __________________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education and Dean of the Graduate College ii I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ M.A. Muqtedar Khan, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Daniel M. Green, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Kassra A. R. Oskooii, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Nişantaşi Üniversitesi Meslek Yüksekokulu Uçak
    NİŞANTAŞI ÜNİVERSİTESİ MESLEK YÜKSEKOKULU UÇAK TEKNOLOJİSİ PROGRAMI A.Amaçlar Teorik bilgilerin yanında uygulamaya yönelik öğretim sistemini esas alarak, Uçak Teknolojisi alanında nitelikli insan gücünü yetiştirmek ve mezunlarımızın, sektördeki ulusal ve uluslararası tüm firmalarda görev yapacak donanımda olmalarını sağlamak. Rekabetin yoğunlaştığı havacılık sektöründe çabuk karar verebilen, kavramsal düşünebilen ve aynı zamanda operasyonel düzeydeki faaliyetlere hakim, çok yönlü ara elemanların yetiştirilmesi temel amacımızı oluşturmaktadır. B.Hedefler Son teknik ve bilimsel gelişmeleri yakından takip etmesi gereken uçak teknolojisi teknikerlerini uluslararası standartlarda bilimsel veriler ışığında çalışan ve düşünen, bu alandaki nitelikli insan gücünün boşluğunun doldurulması başlıca hedefimizdir. Mezunlar havacılık sektöründe imalat yapan firmalarda veya büyük çaplı bakım onarım yapan Firmalar da teknik personel olarak çalışabilmektedirler. C. Program Öğrenme Çıktıları 1 Uçaklarda kullanılan her türlü (mekanik,elektrik,elektornik,hidrolik vb.) komponent ve sistemlerin temel çalışma prensiplerini ve fonksiyonlarına ilişkin bilgiye sahiptir. Uçaklarda kullanılan parçaların malzemelerini tanır. 2 Uçakların mekanik ve elektrik sistem /parça çalışma prensiplerini tanır. 3 Atmosfer özelliklerini ve atmosferdeki değişimin uçaklar üzerindeki etkisini bilir. Uçaklarda kaldırma kuvvetinin oluşması ve uçuş teorisini bilir. 4 Pistonlu motorlu uçaklarda bulunan pervaneler hakkında bilgi sahibi olur. 5 Uçak bakım ve onarım yönünden insan faktörlerini
    [Show full text]
  • Flows with Trapped Vortices
    For contact details see http://www3.imperial.ac.uk/people/s.chernyshenko Department of Aeronautics Area of expertise Flows with trapped vortices Wings of the modern aircraft are thin and streamlined Photo from S.Chernyshenko’s archive, the author is not known, but many thus ensuring maximum aerodynamic efficiency. From similar materials are available at http://www.ekip-aviation-concern.com structural viewpoint a thick wing would be more efficient in carrying the load. The tendency of increasing aircraft size shifts the weight of the design balance towards structural considerations. As a result, improving aerodynamics of thick wings is essential for further progress in aviation. Fig.3 In Ekip large-scale separation was prevented by trapped vortices. Ekip, built in 1980th in Russia, became known Fig.1 Fig.2 as a flying saucer in the West. How Trapping vortices is a technology for preventing vortex flying saucers could be observed before ☺ shedding and reducing drag in flows past bluff bodies. 1980th remains a mystery ☺☺. Large vortices forming in high-speed flows past bluff bodies tend to be shed downstream, with new vortices VortexCell2050 outcomes: forming in their stead (Fig. 1). This leads to an increase • A software tool for designing a flow in drag and unsteady loads on the body, and produces past a thick airfoil with a trapped vortex an unsteady wake. If the vortex is kept near the body at assuming that this flow is stable, apart Fig.4. Stabilising the trapped-vortex flow all times it is called trapped. Vortices can be trapped in from small-scale turbulence, was is a challenge.
    [Show full text]
  • REC 5 4800 FP6 Symposiumprempart.Indd
    � � � � � � � � ���������� ������������������ Aeronautics Research in the Sixth framework Programme (2003 - 2006) KI-72-05-427-EN-C This project synopsis represents Aeronautics Research projects from the Sixth European Research Framework Programme from the fi rst and second Aeronautics Research Aeronautics calls for proposals. Grouped by sector and technological areas, projects and other research Research actions are detailed according to their objectives, methodologies and results. Administrative information is also provided and a comprehensive partner index lists all project participants. 2003 - 2006 projects Research Projects from 2003 - 2006 projects Project synopses the fi rst and second calls the fi – volume 1 Project synopses – volume 1 Research Projects from ISBN 92-79-00643-6 the fi rst and second calls PROJECT SYNOPSES 9 789279 006432 Interested in European research? SALES AND SUBSCRIPTIONS RTD info is our quarterly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French and German. A free sample copy or Publications for sale produced by the Office for Official Publications of the European free subscription can be obtained from: Communities are available from our sales agents throughout the world. European Commission You can find the list of sales agents on the Publications Office website Directorate-General for Research (http://publications.eu.int) or you can apply for it by fax (352) 29 29-42758. Information and Communication Unit B-1049 Brussels Contact the sales
    [Show full text]
  • Flow Control on Wing by Means of Trapped Vortex Cell
    European Drag Reduction and Flow Control Meeting – EDRFCM 2010 September 2–4, 2010, Kyiv, Ukraine FLOW CONTROL ON WING BY MEANS OF TRAPPED VORTEX CELL D. Lasagna, G. Iuso Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy [email protected] INTRODUCTION A flow control strategy which has not received a great attention is the so called ”trapped vortex cav- ity”, (TVC). The proposed technique consists in a cavity accommodated on the upper surface of the airfoil, with a shape optimized for trapping a vortex. Under appropriate conditions, a steady, large vor- tical structure forms in the cavity creating a ”moving interface”. The vortex cell causes the boundary layer flowing past it to remain more filled, moving the separation point dowstream. The goal is to in- crease the aerodynamic performances of the wing, both at low and high angles of attack. Most of the work on this subject, see [1], has been done in the framework of the VortexCell2050 project, even if pre- vious implementation of this technique are known, such as the EKIP aircraft [2] and the Kasper wing [3]. Both numerical and experimental investigations have shown that the success of this flow control technique tightly depends on the stabilization of the vortex. In fact theoretical investigations [4] have shown that a trapped vortex can have a limited stability region, i.e. it is unstable and cannot be kept trapped if some control in the cavity region is not exerted. Several authors have demonstrated experimentally [5] and numerically [6] the positive effects of suction for controlling the stability of the vortex in the cavity.
    [Show full text]
  • Numerical Simulation of Vortex Trapped Airfoil Suhaib Salah El
    University of Khartoum Faculty of Engineering Mechanical Engineering Department Numerical simulation of vortex trapped Airfoil A thesis submitted in partial fulfillment of the requirements for the degree of B.Sc. in Mechanical Engineering Presented by: Suhaib Salah El-Tayeb Awad Supervised by: Dr. Obai Younis Taha August 2015 ACKNOWLEDGEMENT I’m greatly indebted and thankful to Dr. Obai Younis Taha for her unlimited support, helpful instructions and closed supervision throughout the year. And also I want to thank prof.Mohammed Hashim Siddig for his great tips and helps. And I’d like to thank Dr.Ali Seory for the great CFD course and being very helpful. In addition great thank for Eng.Ahmed Alrayah hassan. Lastly for my brother Eng.Ammar Mohammed Ahmed For their technically support and advising. I DEDICATION To my lovely mother, Dear father, my brothers and sisters whom suffered very much till I have finished successfully my task. II ABSTRACT The main objective of this research is to study the characteristics of a smoothing section (airfoil) after work on (NACA23012). Vortex trapped is located in the front of the Airfoil section with depth of 50% on a round shape and circular vertical shape, research focused on the study of the influence of flow separation widget and vortex and bubbles formed and also the distribution of pressure at Airfoil Section for both laminated and turbulent flow cases. Also the lift and drag results from these adjustments are compared with the base type account. It was discussed according to results that taken from Application of Computation fluid dynamic ( CFD ).
    [Show full text]