Determination of Genes Involved in Bacterial Phosphate Solubilisation

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Genes Involved in Bacterial Phosphate Solubilisation Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. DETERMINATION OF GENES INVOLVED IN BACTERIAL PHOSPHATE SOLUBILISATION A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Pei-Chun (Lisa) Hsu Lincoln University New Zealand 2014 Abstract of a thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Molecular Microbiology Determination of Genes Involved in Bacterial Phosphate Solubilisation Pei-Chun (Lisa) Hsu Agricultural systems depend on continued inputs of phosphate fertiliser to maintain productivity. However, due to ever increasing global demand, the finite reserves of phosphate rock are being rapidly depleted. This is compounded by the fact that half of the soluble phosphate in fertiliser applied to soil is converted to sparingly-soluble minerals such as calcium phosphate which are unavailable for plant uptake. It is therefore important to investigate strategies that will improve the utilisation of phosphate in soil-plant systems. While it has been demonstrated that phosphate- solubilising bacteria can utilise sparingly-soluble phosphate minerals in soil, the mechanisms by which this occur remain unclear. In this project, 105 rhizobacteria were assessed for a number of plant growth-promoting traits, such as production of 1-aminocyclopropane-1-carboxylate deaminase, phytase, and inorganic phosphate solubilisation using plate screening assays. Ten of the most effective phosphate-solubilising isolates were further assessed using an in vitro hydroxyapatite liquid culture assay. Analysis of culture filtrates revealed that the effective phosphate-solubilising isolates, Pseudomonas spp. and Burkholderia sp., were predominantly secreting 2-keto-gluconic acid rather than the expected gluconic acid. In addition, a yet to be characterised organic acid was secreted by several Pseudomonas spp. strains which may also be involved in phosphate solubilisation. In an attempt to identify novel genes involved in phosphate solubilisation, three isolates of different bacterial genera, Enterobacter sp. Wi28, Pseudomonas sp. Ha200 and Burkholderia sp. Ha185, derived from diverse geographic locations were subjected to random transposon mutagenesis. This enabled the identification of two unique uncharacterised genes from Burkholderia sp. Ha185. One mutant, hemX::Tn5(F18), with a mutation in hemX gene involved in haem biosynthesis, exhibited an almost complete abolition in hydroxyapatite solubilisation. The second mutant bxpC::Tn5(F13) i exhibited partial and delayed solubilisation. The translated product of the bxpC gene encodes a novel hypothetical protein with unknown function. However, based on a combination of organic acid, qRT- PCR and bioinformatics analysis, it is hypothesised that BxpC is a potential cargo protein involved in protection and transport of the calcium bound 2-ketogluconic acid compound. Through the use of a Burkholderia sp. Ha185 GFP-tagged strain in conjunction with a gnotobiotic in vivo plant assay developed in this study, the colonisation pattern of Burkholderia sp. Ha185 and its derivatives on ryegrass roots over three week duration was defined. The preliminary characterisation of the bxpC and hemX identified in the study and defining the interaction of Burkholderia sp. Ha185 on the plant root provides a greater understanding of phosphate cycling by bacteria and its relationship to the plant. The novel pathways and findings of this study have provided further insights into the underlying mechanisms of inorganic phosphate solubilisation in soil-plant systems. Keywords: Burkholderia, Pseudomonas, phosphate solubilisation, perennial ryegrass, plant-growth promotion, hydroxyapatite, gene regulation, rhizosphere, rhizoplane. ii Acknowledgements First and foremost, I would like to express my sincere appreciation to Dr. Mark Hurst, for the inspiration he has been to me and who has shown the elements of a genius. His valuable and constructive suggestions have guided me through many difficulties and challenges faced during this research. His willingness to give precious time and effort in this project highlighted his generosity and benevolent personality, which has been very much appreciated. Without Dr. Mark Hurst’s daily supervision and constant help, this PhD research would not have been possible. I would like to extend my heartfelt gratitude to Dr. Maureen O'Callaghan and Dr. Carolyn Mander for giving me the opportunity to undertake this challenging project and fulfil the Degree of Doctor of Philosophy. I am extremely grateful to both of them for constant support and advice throughout this project, for professional guidance and for patiently reading and proofreading my thesis even during the stressful periods and afterhours. I would also like to express my sincere gratitude to my supervisor Professor Leo Condron for the enormous support throughout the study and research. I am particularly grateful for his motivation, enthusiasm, optimism, and positive spirit! His guidance and endless encouragement helped me all the way through. The success and final outcome of this research project would simply not have been possible without Professor Leo Condron, and I could not have imagined having a better supervisor for my PhD study. Advice and supervision given by Professor Tim Clough and Dr. Steven Wakelin has been a great help, especially by sharing the most current journal articles related to this field of research from time to time and by providing useful critiques of this research work. In addition, I wish to thank my office mates Daria Rybakova, and Molly and Polly who constantly supported me throughout these years. Thanks for putting up with me unconditionally through the ups and downs and for understanding the stresses encountered during the PhD study. I could not possibly to go through the PhD without all of your company and support. I wish to acknowledge the help provided by the following colleagues from AgResearch; thanks to Emily Gerard for technical support and assistance in the lab, Sandra Young for thoughtful discussion and sharing her professional knowledge in microbiology, Lincoln Harper for his help and patient explanations of molecular techniques, Amy Beattie for her company in the lab and whose presence created a comfortable workspace, thanks to Sandra Jones who taught me and guided me through protein purification, and shared valuable personal experiences, Dr. Jana Monk for sharing her methodology in various microbiology experiments, Dr. Sean Marshall for insightful guidance and iii encouragement, Dr. Chikako van Koten for mathematical calculation and statistical assessments, Paul Maclean and Aurelie Laugraud for their bioinformatics support, Pauline Hunt for preparing posters for conferences and amazing artistic drawing in this thesis, Brent Conlan and Russel McAuliffe for IT support. I would also like to extend my many thanks to the Lincoln University analytical group, especially Joy Jiao for developing and optimising the HPLC method, and Lynne Clucas for the ICP assessment and analysis. Special thanks to Manfred Ingerfeld from Canterbury University at the Confocal Microscope Facility for assisting with plant sample preparation and taking images using the confocal microscope. I would also like to thank Dr. Sam Yu from Izon Science Ltd. who offered the quantitative size measurement of particles by qNano. Furthermore, I wish to thanks Dr. Courtney Giles, Dr. Alan Richardson and Dr. Jane Hill for their support and kind collaborations. Special thanks to Dr. Courtney Giles for hosting me while I visited her at the University of Vermont and her new research group, Research on Adaptation to Climate Change, USA in 2012. I also thank the Ministry of Business, Innovation and Employment (MBIE) for funding this project and granting my scholarship over three years. Many thanks to both MBIE and AgResearch for granting my attendance and travel to the New Zealand Microbiological Society conference, Rhizosphere 3 conference, and to the International Society for Microbial Ecology 14 conference. Last but not least, I would like to express my deepest gratitude and appreciation to my beloved parents Tony Hsu and Mei Wang, my brother David Hsu, and my partner Mark Mai for their tremendous support both morally and financially. Thank you all for always being there for me, believing in me, understanding me, and for your unconditional love throughout these years. Without all of your constant encouragement and support I would have never made it this far. The Pseudomonas sp. Ha200 strain characterised from this study has been published in: Giles, C. D., Hsu, P.-C., Richardson, A. E., Hurst, M. R. H., & Hill, J. E. (2014). Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp. Soil Biology and Biochemistry, 68(0), 263-269. doi: http://dx.doi.org/10.1016/ j.soilbio.2013.09.026 iv Table of Contents Abstract………………………………………………………………………………………………………………………………………………………
Recommended publications
  • Estudio Molecular De Poblaciones De Pseudomonas Ambientales
    Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES T E S I S D O C T O R A L DAVID SÁNCHEZ BERMÚDEZ DIRECTORA: ELENA GARCÍA-VALDÉS PUKKITS Departamento de Biología Universitat de les Illes Balears Palma de Mallorca, Septiembre 2013 Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES Tesis Doctoral presentada por David Sánchez Bermúdez para optar al título de Doctor en el programa Microbiología Ambiental y Biotecnología, de la Universitat de les Illes Balears, bajo la dirección de la Dra. Elena García-Valdés Pukkits. Vo Bo Director de la Tesis El doctorando DRA. ELENA GARCÍA-VALDÉS PUKKITS DAVID SÁNCHEZ BERMÚDEZ Catedrática de Universidad Universitat de les Illes Balears PALMA DE MALLORCA, SEPTIEMBRE 2013 III IV Index Agradecimientos .................................................................................................... IX Resumen ................................................................................................................ 1 Abstract ................................................................................................................... 3 Introduction ............................................................................................................ 5 I.1. The genus Pseudomonas ............................................................................................ 7 I.1.1. Definition ................................................................................................................ 7 I.1.2.
    [Show full text]
  • Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile
    diversity Article Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile Héctor Herrera 1 , Tedy Sanhueza 1, AlžbˇetaNovotná 2, Trevor C. Charles 3 and Cesar Arriagada 1,* 1 Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Forestales, Departamento de Ciencias Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; [email protected] (H.H.); [email protected] (T.S.) 2 Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 3 Department of Biology, University of Waterloo, University Avenue West, Waterloo, ON N2L 3G1, Canada; [email protected] * Correspondence: [email protected]; Tel.: +56-045-232-5635; Fax: +56-045-234-1467 Received: 24 December 2019; Accepted: 24 January 2020; Published: 30 January 2020 Abstract: Endophytic bacteria are relevant symbionts that contribute to plant growth and development. However, the diversity of bacteria associated with the roots of terrestrial orchids colonizing Andean ecosystems is limited. This study identifies and examines the capabilities of endophytic bacteria associated with peloton-containing roots of six terrestrial orchid species from southern Chile. To achieve our goals, we placed superficially disinfected root fragments harboring pelotons on oatmeal agar (OMA) with no antibiotic addition and cultured them until the bacteria appeared. Subsequently, they were purified and identified using molecular tools and examined for plant growth metabolites production and antifungal activity. In total, 168 bacterial strains were isolated and assigned to 8 OTUs. The orders Pseudomonadales, Burkholderiales, and Xanthomonadales of phylum Proteobacteria were the most frequent. The orders Bacillales and Flavobacteriales of the phylla Firmicutes and Bacteroidetes were also obtained.
    [Show full text]
  • Microbial Degradation of Acetaldehyde in Freshwater, Estuarine and Marine Environments
    Microbial Degradation of Acetaldehyde in Freshwater, Estuarine and Marine Environments Phillip Robert Kenneth Pichon A thesis submitted for the degree of Doctor of Philosophy in Microbiology School of Life Sciences University of Essex October 2020 This thesis is dedicated to the memory of my mum, Elizabeth “Taylor” Pichon Acknowledgements I would like to begin by thanking my supervisors Professor Terry McGenity, Dr Boyd McKew, Dr Joanna Dixon, and Professor J. Colin Murrell, all of whom have provided invaluable guidance and support throughout this project. Their advice and encouragement have been greatly appreciated during the last four years and I am grateful for all of their contributions to this research. I would also like to thank Dr Michael Steinke for his continued support and insightful discussions during this project. Special thanks also go to Dr Metodi Metodiev and Dr Gergana Metodieva for their help with sample preparation and initial data analysis during the proteomics experiment. I would especially like to thank Farid Benyahia and Tania Cresswell-Maynard for their technical support with a variety of molecular methods, and John Green for his help and expertise in gas chromatography. I would also like to thank all of my friends and colleagues who have worked with me in Labs 5.28 and 5.32 during the last four years. My thanks also to NERC for funding this project and to the EnvEast DTP for providing a range of valuable training opportunities. To my Dad and Roisin, your support and encouragement have helped me through the toughest parts of my project. My love and thanks to you both.
    [Show full text]
  • Aquatic Microbial Ecology 80:15
    The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.
    [Show full text]
  • Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
    (19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.
    [Show full text]
  • Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil 1 Wah
    *Manuscript 1 Pseudomonas versuta sp. nov., isolated from Antarctic soil 1 2 3 1,2 3 1 2,4 1,5 4 2 Wah Seng See-Too , Sergio Salazar , Robson Ee , Peter Convey , Kok-Gan Chan , 5 6 3 Álvaro Peix 3,6* 7 8 4 1Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of 9 10 11 5 Science University of Malaya, 50603 Kuala Lumpur, Malaysia 12 13 6 2National Antarctic Research Centre (NARC), Institute of Postgraduate Studies, University of 14 15 16 7 Malaya, 50603 Kuala Lumpur, Malaysia 17 18 8 3Instituto de Recursos Naturales y Agrobiología. IRNASA -CSIC, Salamanca, Spain 19 20 4 21 9 British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK 22 23 10 5UM Omics Centre, University of Malaya, Kuala Lumpur, Malaysia 24 25 11 6Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca- 26 27 28 12 IRNASA ( CSIC) 29 30 13 , IRNASA-CSIC, 31 32 33 14 c/Cordel de Merinas 40 -52, 37008 Salamanca, Spain. Tel.: +34 923219606. 34 35 15 E-mail address: [email protected] (A. Peix) 36 37 38 39 16 Abstract: 40 41 42 43 17 In this study w e used a polyphas ic taxonomy approach to analyse three bacterial strains 44 45 18 coded L10.10 T, A4R1.5 and A4R1.12 , isolated in the course of a study of quorum -quenching 46 47 19 bacteria occurring Antarctic soil . The 16S rRNA gene sequence was identical in the three 48 49 50 20 strains and showed 99.7% pairwise similarity with respect to the closest related species 51 52 21 Pseudomonas weihenstephanensis WS4993 T, and the next closest related species were P.
    [Show full text]
  • Biological Influence of Cry1ab Gene Insertion on the Endophytic Bacteria Community in Transgenic Rice
    Turkish Journal of Biology Turk J Biol (2018) 42: 231-239 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1708-32 Biological influence of cry1Ab gene insertion on the endophytic bacteria community in transgenic rice 1 1 1,2, Xu WANG , Mengyu CAI , Yu ZHOU * 1 State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, P.R. China 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China Received: 13.08.2017 Accepted/Published Online: 19.04.2018 Final Version: 13.06.2018 Abstract: The commercial release of genetically modified (GMO) rice for insect control in China is a subject of debate. Although a series of studies have focused on the safety evaluation of the agroecosystem, the endophytes of transgenic rice are rarely considered. Here, the influence of endophyte populations and communities was investigated and compared for transgenic and nontransgenic rice. Population-level investigation suggested that cry1Ab gene insertion influenced to a varying degree the rice endophytes at the seedling stage, but a significant difference was only observed in leaves of Bt22 (Zhejiang22 transgenic rice) between the GMO and wild-type rice. Community-level analysis using the 16S rRNA gene showed that strains of the phyla Proteobacteria and Firmicutes were the predominant groups occurring in the three transgenic rice plants and their corresponding parents.
    [Show full text]
  • Articles (Mansour Et Al., and Particularly on Aquatic Environments (Konrad and Booth, 2018)
    Hydrol. Earth Syst. Sci., 24, 4257–4273, 2020 https://doi.org/10.5194/hess-24-4257-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Coalescence of bacterial groups originating from urban runoffs and artificial infiltration systems among aquifer microbiomes Yannick Colin1,a, Rayan Bouchali1, Laurence Marjolet1, Romain Marti1, Florian Vautrin1,2, Jérémy Voisin1,2, Emilie Bourgeois1, Veronica Rodriguez-Nava1, Didier Blaha1, Thierry Winiarski2, Florian Mermillod-Blondin2, and Benoit Cournoyer1 1Research Team “Bacterial Opportunistic Pathogens and Environment”, UMR Ecologie Microbienne Lyon (LEM), Université Claude Bernard Lyon 1, VetAgro Sup, INRA 1418, CNRS 5557, University of Lyon, 69680 Marcy-l’Étoile, France 2UMR Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), CNRS 5023, ENTPE, Université Claude Bernard Lyon 1, University of Lyon, 69622 Villeurbanne, France apresent address: UMR Morphodynamique Continentale et Côtière, CNRS 6143, Normandie University, UNIROUEN, UNICAEN, 76000 Rouen, France Correspondence: Yannick Colin ([email protected]) and Benoit Cournoyer ([email protected]) Received: 26 January 2020 – Discussion started: 17 February 2020 Revised: 28 May 2020 – Accepted: 20 July 2020 – Published: 31 August 2020 Abstract. The invasion of aquifer microbial communities by enabled the tracking of bacterial species from 24 genera in- aboveground microorganisms, a phenomenon known as com- cluding Pseudomonas, Aeromonas and Xanthomonas, among munity coalescence, is likely to be exacerbated in groundwa- these communities. Several tpm sequence types were found ters fed by stormwater infiltration systems (SISs). Here, the to be shared between the aboveground and aquifer samples. incidence of this increased connectivity with upslope soils Reads related to Pseudomonas were allocated to 50 species, and impermeabilized surfaces was assessed through a meta- of which 16 were found in the aquifer samples.
    [Show full text]
  • Coalescence of Bacterial Groups Originating from Urban Runoffs And
    https://doi.org/10.5194/hess-2020-39 Preprint. Discussion started: 17 February 2020 c Author(s) 2020. CC BY 4.0 License. 1 Coalescence of bacterial groups originating from urban runoffs 2 and artificial infiltration systems among aquifer microbiomes 3 Yannick Colin1‡, Rayan Bouchali1, Laurence Marjolet1, Romain Marti1, Florian Vautrin1,2, Jérémy Voisin1,2, 4 Emilie Bourgeois1, Veronica Rodriguez-Nava1, Didier Blaha1, Thierry Winiarski2, Florian Mermillod-Blondin2 5 and Benoit Cournoyer1 6 1University of Lyon, UMR Ecologie Microbienne Lyon (LEM), Research Team “Bacterial Opportunistic 7 Pathogens and Environment”, University Lyon 1, CNRS 5557, INRA 1418, VetAgro Sup, 69680 Marcy L’Etoile, 8 France. 9 2University of Lyon, UMR Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 10 Université Lyon 1, CNRS 5023, ENTPE, 69622 Villeurbanne, France. 11 ‡ Present address : Normandie Université, UNIROUEN, UNICAEN, UMR CNRS 6143, Morphodynamique 12 Continentale et Côtière, 76000 Rouen, France 13 14 Running title: Y. Colin et al.: Urban runoff bacteria among recharged aquifer 15 Keywords: Stormwater infiltration; Microbial contamination; Aquifer; Source-tracking; Biofilms 16 17 Correspondence : [email protected] / [email protected] 1 https://doi.org/10.5194/hess-2020-39 Preprint. Discussion started: 17 February 2020 c Author(s) 2020. CC BY 4.0 License. 18 Abstract. The invasion of aquifer microbial communities by aboveground micro-organisms, a phenomenon 19 known as community coalescence, is likely to be exacerbated in groundwaters fed by stormwater infiltration 20 systems (SIS). Here, the incidence of this increased connectivity with upslope soils and impermeabilized surfaces 21 was assessed through a meta-analysis of 16S rRNA gene libraries.
    [Show full text]
  • Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera
    biology Article Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera Zaki Saati-Santamaría 1,2,* , Ezequiel Peral-Aranega 1,2 , Encarna Velázquez 1,2,3, Raúl Rivas 1,2,3 and Paula García-Fraile 1,2,3 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (E.V.); [email protected] (R.R.); [email protected] (P.G.-F.) 2 Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain 3 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Simple Summary: Pseudomonas represents a very important bacterial genus that inhabits many environments and plays either prejudicial or beneficial roles for higher hosts. However, there are many Pseudomonas species which are too divergent to the rest of the genus. This may interfere in the correct development of biological and ecological studies in which Pseudomonas are involved. Thus, we aimed to study the correct taxonomic placement of Pseudomonas species. Based on the study of their genomes and some evolutionary-based methodologies, we suggest the description of three new genera (Denitrificimonas, Parapseudomonas and Neopseudomonas) and many reclassifications of species Citation: Saati-Santamaría, Z.; previously included in Pseudomonas. Peral-Aranega, E.; Velázquez, E.; Rivas, R.; García-Fraile, P. Abstract: Pseudomonas is a large and diverse genus broadly distributed in nature. Its species play Phylogenomic Analyses of the Genus relevant roles in the biology of earth and living beings. Because of its ubiquity, the number of new Pseudomonas Lead to the species is continuously increasing although its taxonomic organization remains quite difficult to Rearrangement of Several Species and unravel.
    [Show full text]
  • Analysis of the Microbial Community in a Wastewater Sequencing Batch Reactor
    Brittane Miller (Q-079) Jeffrey D. Newman Biology Department Analysis of the Microbial Community in a Wastewater Sequencing Batch Reactor 700 College Place Williamsport, PA 17701 Office: 570-321-4386 Brittane Miller and Jeffrey D. Newman, Lycoming College Biology Department, Williamsport PA, USA Fax: 570-321-4073 Abstract Results Pseudomonas koreensis - BM19 Table 1 – Cultured 16S rRNA sequence identifications and NO3 reduction (NR)/ denitrification (Denit) test results from biofilm after two weeks of SBR operation. Pseudomonas koreensis BM23 Sequencing Batch Reactors (SBRs) increase the biofilm surface area in sewage Pseudomonas koreensis - BM70 Strain Seq % Match Most Similar Type Strain Phylogeny NR Denit Pseudomonas umsongensis - BM9 treatment units that decrease the nitrogen content of wastewater. Our hypothesis is BMI,K,N 99.7 Citrobacter fruendii –Proteobacteria; Enterobacteriaceae + - Pseudomonas koreensis - BMR that the species composition of the SBR biofilm will change during the course of Pseudomonas umsongensis - BMA Pseudomonads BMG 98.5 Enterobacter asburiae –Proteobacteria; Enterobacteriaceae + - Pseudomonas umsongensis - BMD operation. Early, denitrification-positive biofilm samples were collected after two BMO 98.9 Klebsiella granulomatis –Proteobacteria; Enterobacteriaceae + - Pseudomonas veronii - BMQ weeks of SBR operation and 16S rRNA genes from uncultured organisms were Pseudomonas veronii - BMS BM42 99.3 Klebsiella granulomatis –Proteobacteria; Enterobacteriaceae - - Pseudomonas rhodesiae - BMP amplified, cloned,
    [Show full text]
  • Pseudomonas Versuta Sp. Nov., Isolated from Antarctic Soil
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Accepted Manuscript Title: Pseudomonas versuta sp. nov., isolated from Antarctic soil Authors: Wah Seng See-Too, Sergio Salazar, Robson Ee, Peter Convey, Kok-Gan Chan, Alvaro´ Peix PII: S0723-2020(17)30039-5 DOI: http://dx.doi.org/doi:10.1016/j.syapm.2017.03.002 Reference: SYAPM 25827 To appear in: Received date: 12-1-2017 Revised date: 20-3-2017 Accepted date: 24-3-2017 Please cite this article as: Wah Seng See-Too, Sergio Salazar, Robson Ee, Peter Convey, Kok-Gan Chan, Alvaro´ Peix, Pseudomonas versuta sp.nov., isolated from Antarctic soil, Systematic and Applied Microbiologyhttp://dx.doi.org/10.1016/j.syapm.2017.03.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Pseudomonas versuta sp. nov., isolated from Antarctic soil Wah Seng See-Too1,2, Sergio Salazar3, Robson Ee1, Peter Convey 2,4, Kok-Gan Chan1,5, Álvaro Peix3,6* 1Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia 2National Antarctic Research Centre (NARC), Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia 3Instituto de Recursos Naturales y Agrobiología.
    [Show full text]