Psychrophilic Pseudomonads from Antarctica: Pseudomonas Antarctica Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류
Korean Journal of Microbiology (2019) Vol. 55, No. 1, pp. 39-45 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2019.8099 eISSN 2383-9902 Copyright ⓒ 2019, The Microbiological Society of Korea 토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류 김현중1 ・ 정유정2 ・ 김해영1 ・ 허문석2* 1 2 경희대학교 생명과학대학 식품생명공학 전공, 국립생물자원관 생물자원연구부 미생물자원과 Isolation and characterization of 6 unrecorded Pseudomonas spp. from Korean soil 1 2 1 2 Hyun-Joong Kim , You-Jung Jung , Hae-Yeong Kim , and Moonsuk Hur * 1 Institute of Life Sciences and Resources Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2 Biological Resources Research Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea (Received November 30, 2018; Revised December 19, 2018; Accepted December 19, 2018) In 2017, as a study to discover indigenous prokaryotic species 물의 공통된 특징은 그람 음성(Gram-negative), 호기성, Oxidase in Korea, a total of 6 bacterial strains assigned to the genus 양성 또는 음성, Catalase 양성, 형태학적으로 간균의 모양을 Pseudomonas were isolated from soil. From the high 16S 하고 있다. DNA의 GC 함량은 58~69 mol%이며 하나 혹은 몇 rRNA gene sequence similarity (≥ 99.5%) and phylogenetic 개의 극편모(polar flagella)를 이용하여 운동성을 갖는 것으로 analysis with closely related species, the isolated strains were 알려져 있으며, 현재까지 총 253개 종이 보고 되어 있다(http:// identified as independent Pseudomonas species which were unrecorded in Korea. The six Pseudomonas species were www.bacterio.net/pseudomonas.html) (Palleroni, 1984; Peix Pseudomonas mandelii, P. canadensis, P. thivervalensis, P. et al., 2009; Mulet et al., 2010). -
Symbiotic Bacteria Associated with Ascidian Vanadium Accumulation Identified by 16S Rrna Amplicon Sequencing
Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing Author Tatsuya Ueki, Manabu Fujie, Romaidi, Noriyuki Satoh journal or Marine Genomics publication title volume 43 page range 33-42 year 2018-11-09 Publisher Elsevier B.V. Rights (C) 2018 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000917/ doi: info:doi/10.1016/j.margen.2018.10.006 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (https://creativecommons.org/licenses/by-nc-nd/4.0/) Marine Genomics 43 (2019) 33–42 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Full length article Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing T ⁎ Tatsuya Uekia,b, , Manabu Fujiec, Romaidia,d, Noriyuki Satohe a Molecular Physiology Laboratory, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan b Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan c DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan d Biology Department, Science and Technology Faculty, State Islamic University of Malang, Malang, Jawa Timur, Indonesia e Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan ARTICLE INFO ABSTRACT Keywords: Ascidians belonging to Phlebobranchia accumulate vanadium to an extraordinary degree (≤ 350 mM). Bacterial population Vanadium levels are strictly regulated and vary among ascidian species; thus, they represent well-suited models 16S rRNA for studies on vanadium accumulation. No comprehensive study on metal accumulation and reduction in marine Marine invertebrates organisms in relation to their symbiotic bacterial communities has been published. -
Abundance, Diversity and Prospecting of Culturable Phosphate Solubilizing Bacteria On
*Manuscript Click here to view linked References 1 Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on 2 soils under crop-pasture rotations in a no-tillage regime in Uruguay. 3 Gastón Azziza*, Natalia Bajsaa,b, Tandis Haghjoua, Cecilia Tauléa1, Ángel Valverdec, 4 José Mariano Igualc, Alicia Ariasa. 5 (a)- Laboratorio de Ecología Microbiana, Instituto de Investigaciones Biológicas 6 Clemente Estable. Av. Italia 3318. CP 11600. Montevideo, Uruguay. 7 (b)- Sección Bioquímica, Facultad de Ciencias, Universidad de la República. Iguá 4225. 8 CP 11400. Montevideo, Uruguay. 9 (c)- Departamento de Producción Vegetal, IRNASA-CSIC. C/Cordel de Merinas, 40- 10 52. E-37008. Salamanca, España. 11 *Corresponding author. E-mail: [email protected]; Tel.: +598 2 4871616; Fax: +598 12 24875548. Correspondence address: Av. Italia 3318. CP 11600. Montevideo, Uruguay. 13 14 1Present Address: Laboratorio de Bioquímica y Genómica Microbianas, Instituto de 15 Investigaciones Biológicas Clemente Estable. Av. Italia 3318. CP 11600. Montevideo, 16 Uruguay. 17 Abstract 18 Phosphate solubilizing bacteria (PSB) abundance and diversity were examined during 19 two consecutive years, 2007 and 2008, in a crop/pasture rotation experiment in 20 Uruguay. The study site comprised five treatments with different soil use intensity 21 under a no-tillage regime. In the first year of sampling, abundance of PSB was 22 significantly higher in Natural Prairie (NP) and Permanent Pasture (PP) than in 23 Continuous Cropping (CC); rotation treatments harbored populations that did not differ 24 significantly from those in the others. The percentage of PSB relative to total 25 heterotrophic bacteria ranged between 0.18% and 13.13%. -
Antibiotic Resistance of Symbiotic Marine Bacteria Isolated From
phy ra and og n M Park et al., J Oceanogr Mar Res 2018, 6:2 a a r e i c n e O DOI: 10.4172/2572-3103.1000181 f R Journal of o e l s a e a n r r c ISSN:u 2572-3103 h o J Oceanography and Marine Research Research Article OpenOpen Access Access Antibiotic Resistance of Symbiotic Marine Bacteria Isolated from Marine Organisms in Jeju Island of South Korea Yun Gyeong Park1, Myeong Seok Lee1, Dae-Sung Lee1, Jeong Min Lee1, Mi-Jin Yim1, Hyeong Seok Jang2 and Grace Choi1* 1 Marine Biotechnology Research Division, Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Chungcheongnam-do, 33662, Korea 2 Fundamental Research Division, Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon-gun, Chungcheongnam-do, 33662, Korea Abstract We investigated antibiotics resistance of bacteria isolated from marine organisms in Jeju Island of South Korea. We isolated 17 strains from a marine sponge, algaes, and sea water collected from Biyangdo on Jeju Island. Seven- teen strains were analyzed by 16S rRNA gene sequencing for species identification and tested antibiotic susceptibility of strains against six antibiotics. Strain JJS3-4 isolated from S. siliquastrum showed 98% similarity to the 16S rRNA gene of Formosa spongicola A2T and was resistant to six antibiotics. Strains JJS1-1, JJS1-5, JJS2-3, identified as Pseudovibrio spp., and Stappia sp. JJS5-1, were susceptive to chloramphenicol and these four strains belonged to the order Rhodobacterales in the class Alphaproteobacteria. Halomonas anticariensis JJS2-1, JJS2-2 and JJS3-2 and Pseudomonas rhodesiae JJS4-1 and JJS4-2 showed similar resistance pattern against six antibiotics. -
Comparative Analysis of the Core Proteomes Among The
Diversity 2020, 12, 289 1 of 25 Article Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species‐Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis Marios Nikolaidis 1, Dimitris Mossialos 2, Stephen G. Oliver 3 and Grigorios D. Amoutzias 1,* 1 Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 2 Microbial Biotechnology‐Molecular Bacteriology‐Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 3 Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; [email protected] * Correspondence: [email protected]; Tel.: +30‐2410‐565289; Fax: +30‐2410‐565290 Received: 22 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core‐orthologues. The subsequent phylogenomic analysis revealed two well‐defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus‐level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group‐specific core proteins were also identified, with P. -
Diverse Environmental Pseudomonas Encode Unique Secondary Metabolites That Inhibit Human Pathogens
DIVERSE ENVIRONMENTAL PSEUDOMONAS ENCODE UNIQUE SECONDARY METABOLITES THAT INHIBIT HUMAN PATHOGENS Elizabeth Davis A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Hans Wildschutte, Advisor Ray Larsen Jill Zeilstra-Ryalls © 2017 Elizabeth Davis All Rights Reserved iii ABSTRACT Hans Wildschutte, Advisor Antibiotic resistance has become a crisis of global proportions. People all over the world are dying from multidrug resistant infections, and it is predicted that bacterial infections will once again become the leading cause of death. One human opportunistic pathogen of great concern is Pseudomonas aeruginosa. P. aeruginosa is the most abundant pathogen in cystic fibrosis (CF) patients’ lungs over time and is resistant to most currently used antibiotics. Chronic infection of the CF lung is the main cause of morbidity and mortality in CF patients. With the rise of multidrug resistant bacteria and lack of novel antibiotics, treatment for CF patients will become more problematic. Escalating the problem is a lack of research from pharmaceutical companies due to low profitability, resulting in a large void in the discovery and development of antibiotics. Thus, research labs within academia have played an important role in the discovery of novel compounds. Environmental bacteria are known to naturally produce secondary metabolites, some of which outcompete surrounding bacteria for resources. We hypothesized that environmental Pseudomonas from diverse soil and water habitats produce secondary metabolites capable of inhibiting the growth of CF derived P. aeruginosa. To address this hypothesis, we used a population based study in tandem with transposon mutagenesis and bioinformatics to identify eight biosynthetic gene clusters (BGCs) from four different environmental Pseudomonas strains, S4G9, LE6C9, LE5C2 and S3E10. -
Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS .................................................................................................... -
16S Rdna Analysis for Characterization of Pesudomonas Sp
16S rDNA analysis for characterization of Pseudomonas sp. strain MF30 isolated from Rumex acetocella roots in northern Sweden (Received: 15.09 .2006; Accepted: 28.09.2006) Idress H. Attitalla*;Ali A. Bataw**; Jolanta J. Borowicz***and Sture Brishammar*** *Omar Al-Mukhtar University, Faculty of Science, Botany Department, Box 919, El-Beida, Libya **Omar Al-Mukhtar University, Faculty of Science, Zoology Department, Box 919, El-Beida, Libya ***Maselaboratoratorerna AB, Box 148, Uppsala, Sweden Corresponding author1. [email protected] ABSTRACT A bacterial strain obtained from the northern part of Sweden previously classified as Pseudomonas veronii based on biochemical and physioloical tests. In this study, phylogenetic tree was constructed using a nearly complete sequence within the 16S rDNA gene. The strain of Pseudomonas sp. subdivided into two rather distinctly related groups, neither of which is very close to the group within the Pseudomonas fluorescens cluster. Although the phylogenetic analysis is not conclusive, it is consistent with other observations, especially the capacities of the this strain as a biocontrol agent. Taken all together, the results suggest that the MF30 strain should be classifed as another Pseudomonas species, either Pseudomonas antarctica or P. meridina. Key words: Phylogenetic analysis, 16S rDNA gene, Pseudomonas species, P. veronii, P. antarctica, P. meridina. INTRODUCTION received attention even though they possess abilities to influence plant growth and acteria belonging to the fluorescent development through different mechanisms pseudomonads, known for the (Weller, 1988; O’Sullivan and O’Gara, 1992). B diversity of their metabolites They are now recognised as being antagonistic (Leisinger and Margaff, 1979), contain to several opportunistic soil-borne fungi species that are recognized as human and as (Weller, 1988; Keel et al., 1996) and to seed- animal pathogens (Nakazawa and Abe, 1996) borne fungi (Hökeberg et al., 1997). -
Wild Apple-Associated Fungi and Bacteria Compete to Colonize the Larval Gut of an Invasive Wood-Borer Agrilus Mali in Tianshan Forests
Wild apple-associated fungi and bacteria compete to colonize the larval gut of an invasive wood-borer Agrilus mali in Tianshan forests Tohir Bozorov ( [email protected] ) Xinjiang Institute of Ecology and Geography https://orcid.org/0000-0002-8925-6533 Zokir Toshmatov Plant Genetics Research Unit: Genetique Quantitative et Evolution Le Moulon Gulnaz Kahar Xinjiang Institute of Ecology and Geography Daoyuan Zhang Xinjiang Institute of Ecology and Geography Hua Shao Xinjiang Institute of Ecology and Geography Yusufjon Gafforov Institute of Botany, Academy of Sciences of Uzbekistan Research Keywords: Agrilus mali, larval gut microbiota, Pseudomonas synxantha, invasive insect, wild apple, 16S rRNA and ITS sequencing Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-287915/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: The gut microora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of gut bacteria to address this absence of fungi in the larval gut. Results: The results demonstrated that gut bacteria were able to selectively inhibit wild apple tree-associated fungi. However, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identied. -
Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile
diversity Article Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile Héctor Herrera 1 , Tedy Sanhueza 1, AlžbˇetaNovotná 2, Trevor C. Charles 3 and Cesar Arriagada 1,* 1 Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Forestales, Departamento de Ciencias Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; [email protected] (H.H.); [email protected] (T.S.) 2 Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 3 Department of Biology, University of Waterloo, University Avenue West, Waterloo, ON N2L 3G1, Canada; [email protected] * Correspondence: [email protected]; Tel.: +56-045-232-5635; Fax: +56-045-234-1467 Received: 24 December 2019; Accepted: 24 January 2020; Published: 30 January 2020 Abstract: Endophytic bacteria are relevant symbionts that contribute to plant growth and development. However, the diversity of bacteria associated with the roots of terrestrial orchids colonizing Andean ecosystems is limited. This study identifies and examines the capabilities of endophytic bacteria associated with peloton-containing roots of six terrestrial orchid species from southern Chile. To achieve our goals, we placed superficially disinfected root fragments harboring pelotons on oatmeal agar (OMA) with no antibiotic addition and cultured them until the bacteria appeared. Subsequently, they were purified and identified using molecular tools and examined for plant growth metabolites production and antifungal activity. In total, 168 bacterial strains were isolated and assigned to 8 OTUs. The orders Pseudomonadales, Burkholderiales, and Xanthomonadales of phylum Proteobacteria were the most frequent. The orders Bacillales and Flavobacteriales of the phylla Firmicutes and Bacteroidetes were also obtained. -
(12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep. -
Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.