Descriptive Stats Volcvolume 1139Records

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Stats Volcvolume 1139Records This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 115 -99 NP Volcano and eruption 355806 355806 Anallajsi, Nevado 130 -99 NP Volcano and eruption 355818 355818 Cerro Cariquima 164 -99 NP Volcano 355832 355832 Cerro del Leon 238 -99 NP Volcano 352021 352021 Atacazo 298 -99 NP Volcano 355112 355112 Cerro Escorial 315 -99 NP Volcano 355832 355832 Cerro del Leon 316 -99 NP Volcano 357110 357110 Llaima 334 -99 NP Volcano 354010 354010 El Misti 366 -99 NP Volcano 351020 351020 Nevado del Ruiz 375 -99 NP Volcano 354031 354031 Ticsani 386 -99 NP Volcano 355150 355150 Cerro Tuzgle 390 -99 NP Volcano 354020 354020 Ubinas 474 -99 NP Volcano 354007 354007 Nevado Chachani 1653 -99 NP Volcano 355012 355012 Parinacota 1705 -99 NP Volcano -99 -99 Aracar Volcano 1748 1 NP Volcano -99 -99 Cerro Santo Tomas 1749 2 NP Volcano -99 -99 NP 1750 3 NP Volcano -99 -99 Cerro Llehuecclla 1751 4 NP Volcano -99 -99 NP 1752 5 NP Volcano -99 -99 NP 1753 6 NP Volcano -99 -99 Cerro Ajochupa 1754 7 NP Volcano -99 -99 Cerro Cristalniyocc 1755 8 NP Volcano -99 -99 NP 1756 9 NP Volcano -99 -99 NP 1757 10 NP Volcano -99 -99 Cerro Huarajuyo 1758 11 NP Volcano -99 -99 NP 1759 12 NP Volcano -99 -99 Cerro Huaracco 1760 13 NP Volcano -99 -99 Cerro Antapuccro 1761 14 NP Volcano -99 -99 Cerro Quichcasora 1762 15 NP Volcano -99 -99 Nevado Carahuaraso 1763 16 NP Volcano -99 -99 Nevado UnknoWn ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1764 17 NP Volcano -99 -99 Nevado UnknoWn 1765 18 NP Volcano -99 -99 Nevado P. de Pesjapuquio 1766 19 NP Volcano -99 -99 Nevado UnknoWn 1767 20 NP Volcano -99 -99 Nevado UnknoWn 1768 21 NP Volcano -99 -99 Nevado UnknoWn 1769 22 NP Volcano -99 -99 Cerro Balcon 1770 23 NP Volcano -99 -99 NP 1771 24 NP Volcano -99 -99 Cerro Alco Loma 1772 25 NP Volcano -99 -99 NP 1773 26 NP Volcano -99 -99 NP 1774 27 NP Volcano -99 -99 Pampa Galeras Caldera 1775 28 NP Volcano -99 -99 Pampa Parccalsuyog 1776 29 NP Volcano -99 -99 Pampa Guiapampa 1777 30 NP Volcano -99 -99 Pampa 1778 31 NP Volcano -99 -99 Pampa 1779 32 NP Volcano -99 -99 Cerro Pumahuiri 1780 33 NP Volcano -99 -99 NP 1781 34 NP Volcano -99 -99 NP 1782 35 NP Volcano -99 -99 NP 1783 36 NP Volcano -99 -99 NP 1784 37 NP Volcano -99 -99 NP 1785 38 NP Volcano -99 -99 NP 1786 39 NP Volcano -99 -99 Cerro Condor Sayana 1787 40 NP Volcano -99 -99 Cerro Huallaja 1788 41 NP Volcano -99 -99 Cerro Ticllaccahua 1789 42 NP Volcano -99 -99 Cerro Huagra 1790 43 NP Volcano -99 -99 Cerro Antapuna 1791 44 NP Volcano -99 -99 NP 1792 45 NP Volcano -99 -99 NP 1793 46 NP Volcano -99 -99 Nevado Firura 1794 47 NP Volcano -99 -99 Cerro Soncco Orcco ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1795 48 NP Volcano -99 -99 Cerro Cosana 1796 49 NP Volcano -99 -99 Cerro Jahsaya 1797 50 NP Volcano -99 -99 Cerro Huaychahuaque 1798 51 NP Volcano -99 -99 NP 1799 52 NP Volcano -99 -99 Cerro Chuquihua 1800 53 NP Volcano -99 -99 NP 1801 54 NP Volcano -99 -99 Cerro Lomas Jochane 1802 55 NP Volcano -99 -99 Nevado Sara Sara 1803 56 NP Volcano -99 -99 Cerro Tirane 1804 57 NP Volcano -99 -99 Cerro Antapuna 1805 58 NP Volcano -99 -99 Cerro Sani 1806 59 NP Volcano -99 -99 NP 1807 60 NP Volcano -99 -99 Nevado Solimana 1808 61 NP Volcano -99 -99 Nevado UnknoWn 1809 62 NP Volcano -99 -99 Cerro Puca Majuras 1810 63 NP Volcano -99 -99 Cerro Quello Apacheta 1811 64 NP Volcano -99 -99 NP 1812 65 NP Volcano -99 -99 NP 1813 66 NP Volcano -99 -99 NP 1814 67 NP Volcano -99 -99 NP 1815 68 NP Volcano -99 -99 Cerro Pumaranra 1816 69 NP Volcano -99 -99 NP 1817 70 NP Volcano -99 -99 Nevado Coropuna (1) 1818 71 NP Volcano -99 -99 Nevado UnknoWn 1819 72 NP Volcano -99 -99 Nevado UnknoWn 1820 73 NP Volcano -99 -99 Nevado Hualca Hualca 1821 74 NP Volcano -99 -99 Nevado UnknoWn 1822 75 NP Volcano -99 -99 Volcano Sabancaya (2) 1823 76 NP Volcano -99 -99 Nevado Ananita 1824 77 NP Volcano -99 -99 Nevado UnknoWn 1825 78 NP Volcano -99 -99 Nevado Ampato ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1826 79 NP Volcano -99 -99 Nevado UnknoWn 1827 80 NP Volcano -99 -99 Nevado UnknoWn 1828 81 NP Volcano -99 -99 Cerro Colquerane 1829 82 NP Volcano -99 -99 Nevado Calcha 1830 83 NP Volcano -99 -99 Nevado Hualcullani 1831 84 NP Volcano -99 -99 Cerro Antasaya 1832 85 NP Volcano -99 -99 Cerro Bangarane 1833 86 NP Volcano -99 -99 NP 1834 87 NP Volcano -99 -99 NP 1835 88 NP Volcano -99 -99 Cerro Nocarane 1836 89 NP Volcano -99 -99 NP 1837 91 NP Volcano -99 -99 Cerro la Horqueta 1838 92 NP Volcano -99 -99 Cerro Condori 1839 93 NP Volcano -99 -99 Cerro Choquepata 1840 94 NP Volcano -99 -99 Cerro Pucara 1841 95 NP Volcano -99 -99 Cerro Pampa de Palacio 1842 96 NP Volcano -99 -99 NP 1843 97 NP Volcano -99 -99 NP 1844 98 NP Volcano -99 -99 Cerro Cana Canari 1845 99 NP Volcano -99 -99 Cerro Tacune 1846 101 NP Volcano -99 -99 Cerro Ccapia 1847 102 NP Volcano -99 -99 Cerro Camata 1848 104 NP Volcano -99 -99 Volcano 1849 105 NP Volcano -99 -99 Volcano 1850 106 NP Volcano -99 -99 Cerro Horquetilla 1851 107 NP Volcano -99 -99 Cerro Bencasa 1852 108 NP Volcano -99 -99 Cerro Huertasora 1853 109 NP Volcano -99 -99 NP 1854 110 NP Volcano -99 -99 NP 1855 111 NP Volcano -99 -99 Cerro Larelare 1856 112 NP Volcano -99 -99 Cerro Creston Gr. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1857 113 NP Volcano -99 -99 Cerro Jaquela 1858 114 NP Volcano -99 -99 Cerro Caamani 1859 115 NP Volcano -99 -99 Cerro Cruzane 1860 116 NP Volcano -99 -99 Cerro Antajarane 1861 117 NP Volcano -99 -99 C.S.F. Patakena 1862 118 NP Volcano -99 -99 Cerro Ccallanave 1863 119 NP Volcano -99 -99 Nevado Curahuara 1864 120 NP Volcano -99 -99 Cerro Condoriquena 1865 121 NP Volcano -99 -99 Cerro Quiroja 1866 122 NP Volcano -99 -99 NP 1867 124 NP Volcano -99 -99 Nevado Ampato (UNK) 1868 125 NP Volcano -99 -99 Cerro Mullijalla 1869 126 NP Volcano -99 -99 Cerro San Francisco de Cachapaque 1870 127 NP Volcano -99 -99 Cerro Toto Bravo 1871 128 NP Volcano -99 -99 Cerro Buena Vista 1872 129 NP Volcano -99 -99 Cerro Aconcahua 1873 130 NP Volcano -99 -99 Cerro Quesllampo 1874 131 NP Volcano -99 -99 Cerro Pacchiauque 1875 132 NP Volcano -99 -99 Cerro Vizcachas 1876 133 NP Volcano -99 -99 NP 1877 134 NP Volcano -99 -99 Cerro Caurapequena 1878 135 NP Volcano -99 -99 Cerro San Francisco de Pinon 1879 136 NP Volcano -99 -99 Cerro Zaparani 1880 137 NP Volcano -99 -99 Cerro Camillata 1881 138 NP Volcano -99 -99 Cerro Huallatauqui 1882 139 NP Volcano -99 -99 Cerro San Francisco de Orcovara 1883 140 NP Volcano -99 -99 Cerro Mesacalene 1884 141 NP Volcano -99 -99 Cerro Antajave 1885 142 NP Volcano -99 -99 Cerro Lluma 1886 143 NP Volcano -99 -99 Cerro Minasa 1887 144 NP Volcano -99 -99 Cerro Huajanane ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 1888 145 NP Volcano -99 -99 Cerro Yaurara 1889 146 NP Volcano -99 -99 Cerro Pantiuso 1890 147 NP Volcano -99 -99 NP 1891 148 NP Volcano -99 -99 Cerro Huaranhuarani 1892 149 NP Volcano -99 -99 Nevado Urjanco 1893 150 NP Volcano -99 -99 Cerro Sallajaque 1894 151 NP Volcano -99 -99 Cerro Toro 1895 152 NP Volcano -99 -99 Nevado Arundane 1896 153 NP Volcano -99 -99 Nevado UnknoWn 1897 154 NP Volcano -99 -99 Nevado UnknoWn 1898 155 NP Volcano -99 -99 Volcano Tutupaca (6) 1899 156 NP Volcano -99 -99 Cerro Chuchuaura 1900 157 NP Volcano -99 -99 Cerro Llallahua 1901 158 NP Volcano -99 -99 Cerro Toccoraque 1902 159 NP Volcano -99 -99 Cerro Suri 1903 160 NP Volcano -99 -99 NP 1904 161 NP Volcano -99 -99 Cerro Ichurasi 1905 162 NP Volcano -99 -99 Cerro Ninacara 1906 163 NP Volcano -99 -99 Cerro Surichico 1907 164 NP Volcano -99 -99 Nov.
Recommended publications
  • Leader in Metals That Facilitate the Future
    Chile Leader in metals that facilitate the future Chile Leader in metals that facilitate the future The Projects section of this document has been prepared based on information provided by third parties. The Ministry of Mining has conducted a review limited to validate the existence and ownership of the projects, but the scope of this process does not confirm the accuracy or veracity of the technical data submitted by the parties. Therefore, the information on each project remains the exclusive responsibility of the interested parties identified on each data sheet. The Ministry of Mining is not responsible for the use and/or misuse of this information, and takes no responsibility for any commercial conditions that may be agreed between sellers and potential purchasers. Second edition Santiago, 2020 Editorial board Francisco Jofré, Ministry of Mining Bastián Espinosa, Ministry of Mining Javier Jara, Ministry of Mining We thank the collaboration of Empresa Nacional de Minería (Enami). Invest Chile. Instituto de Ingenieros en Minas. Colegio de Geólogos. Kura Minerals. Minería Activa. Design, layout and illustration Motif Diseño Integral SpA Photographs Ministry of Mining Printing Imprex Chile Leader in metals that facilitate the future 3 Table of Contents Letter from the Authorities ................................................................ 6 Prologue ............................................................................................. 9 Acknowledgments ...........................................................................
    [Show full text]
  • ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito De Tarata – Región Tacna)
    ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito de Tarata – Región Tacna) Informe Técnico N°010-2021/IGP CIENCIAS DE LA TIERRA SÓLIDA Lima – Perú Mayo, 2021 Instituto Geofísico del Perú Presidente Ejecutivo: Hernando Tavera Director Científico: Edmundo Norabuena Informe Técnico Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni - Casiri (2020 – 2021). Distrito de Tarata – Región Tacna Autores Yanet Antayhua Lizbeth Velarde Katherine Vargas Hernando Tavera Juan Carlos Villegas Este informe ha sido producido por el Instituto Geofísico del Perú Calle Badajoz 169 Mayorazgo Teléfono: 51-1-3172300 Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI - CASIRI (2020 – 2021) Distrito de Tarata – Región Tacna Lima – Perú Mayo, 2021 2 Instituto Geofísico del Perú Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) RESUMEN Este estudio analiza las características sismotectónicas de la actividad sísmica ocurrida en el entorno de la falla Pacollo y volcanes Purupuruni- Casiri (distrito de Tarata – región Tacna), durante el periodo julio de 2020 a mayo de 2021. Desde mayo de 2020 hasta mayo de 2021, en el área de estudio se ha producido dos periodos de crisis sísmica separados por otro en donde la ocurrencia de sismos era constante, pero con menor frecuencia. El primer periodo de crisis sísmica ocurrió en el periodo del 15 al 30 de julio del 2020 con la ocurrencia de 3 eventos sísmicos que alcanzaron magnitud de M4.2.
    [Show full text]
  • Field Excursion Report 2010
    Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010).
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESC Publications - Cambridge Univesity Submitted Manuscript: Confidential Title: Remobilization of crustal carbon may dominate volcanic arc emissions Authors: Emily Mason1, Marie Edmonds1,*, Alexandra V Turchyn1 Affiliations: 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ *Correspondence to: [email protected]. Abstract: The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global dataset for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at -3.8 to -4.6 ‰, than the canonical Mid-Ocean-Ridge Basalt value of -6.0 ‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup. One Sentence Summary: Reworking of crustal carbon dominates volcanic arc outgassing, decreasing the estimate of fractional organic carbon burial. Main Text: The core, mantle and crust contain 90% of the carbon on Earth (1), with the remaining 10% partitioned between the ocean, atmosphere and biosphere. Due to the relatively short residence time of carbon in Earth’s surface reservoirs (~200,000 years), the ocean, atmosphere and biosphere may be considered a single carbon reservoir on million-year timescales.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Redalyc.Geochemistry, U-Pb SHRIMP Zircon Dating and Hf Isotopes of The
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Poma, Stella; Zappettini, Eduardo O.; Quenardelle, Sonia; Santos, João O.; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Andean Geology, vol. 41, núm. 2, mayo, 2014, pp. 267-292 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173931252001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (2): 267-292. May, 2014 Andean Geology doi: 10.5027/andgeoV41n2-a01 formerly Revista Geológica de Chile www.andeangeology.cl Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Stella Poma1, Eduardo O. Zappettini 2, Sonia Quenardelle 1, João O. Santos 3, † Magdalena Koukharsky 1, Elena Belousova 4, Neil McNaughton 3 1 Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II-Ciudad Universitaria, Intendente Güiraldes 2160, C1428 EGA, Argentina. [email protected]; [email protected] 2 Servicio Geológico Minero Argentino (SEGEMAR), Avda. General Paz 5445, edificio 25, San Martín B1650WAB, Argentina. [email protected] 3 University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.
    [Show full text]
  • [email protected].: Tacora/Rev
    [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 LA INDUSTRIA AZUFRERA, EL ANDARIVEL Y EL FERROCARRIL DE TACORA por: Ian Thomson N. ÍNDICE 1. Introducción y conclusiones. 2. Los inicios de la explotación del azufre en Chile. 3. La importancia crítica de los costos de transporte. 4. La explotación del azufre del Tacora y los orígenes del Ferrocarril. 5. El tráfico del Ferrocarril, el personal y la rentabilidad. 6. El trazado y la infraestructura del Ferrocarril. 7. El Ferrocarril de Tacora después de su cierre. 8. La red de andariveles. 9. El material rodante ferroviario. Recuadro 1: El de Aucanquilcha: otro ferrocarril azufrero en altura Recuadro 2: La Asociación para la Conservación de las ex-azufreras y del Ferrocarril de Tacora Referencias seleccionadas El autor es, por profesión, un economista dedicado a temas de transporte. Además, durante largos años, ha sido activo en las áreas de la conservación y del estudio de la historia de sistemas de transporte, especialmente los ferroviarios. Promovió, a principios de la década de 1980, la formación de la Asociación Chilena de Conservación del Patrimonio Ferroviario, sirviendo como su presidente durante unos diez años, con breves intervalos.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Final Copy 2021 03 23 Ituarte
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020.
    [Show full text]
  • Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile
    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 EFFECTS OF VOLCANISM, CRUSTAL THICKNESS, AND LARGE SCALE FAULTING ON THE HE ISOTOPE SIGNATURES OF GEOTHERMAL SYSTEMS IN CHILE Patrick F. DOBSON1, B. Mack KENNEDY1, Martin REICH2, Pablo SANCHEZ2, and Diego MORATA2 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA 2Departamento de Geología y Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago, CHILE [email protected] agree with previously published results for the ABSTRACT Chilean Andes. The Chilean cordillera provides a unique geologic INTRODUCTION setting to evaluate the influence of volcanism, crustal thickness, and large scale faulting on fluid Measurement of 3He/4He in geothermal water and gas geochemistry in geothermal systems. In the Central samples has been used to guide geothermal Volcanic Zone (CVZ) of the Andes in the northern exploration efforts (e.g., Torgersen and Jenkins, part of Chile, the continental crust is quite thick (50- 1982; Welhan et al., 1988) Elevated 3He/4He ratios 70 km) and old (Mesozoic to Paleozoic), whereas the (R/Ra values greater than ~0.1) have been interpreted Southern Volcanic Zone (SVZ) in central Chile has to indicate a mantle influence on the He isotopic thinner (60-40 km) and younger (Cenozoic to composition, and may indicate that igneous intrusions Mesozoic) crust. In the SVZ, the Liquiñe-Ofqui Fault provide the primary heat source for the associated System, a major intra-arc transpressional dextral geothermal fluids. Studies of helium isotope strike-slip fault system which controls the magmatic compositions of geothermal fluids collected from activity from 38°S to 47°S, provides the opportunity wells, hot springs and fumaroles within the Basin and to evaluate the effects of regional faulting on Range province of the western US (Kennedy and van geothermal fluid chemistry.
    [Show full text]
  • The South American Indian As a Pioneer Alpinist
    TI-lE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST 81 THE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST BY EVELIO ECHEVARRfA C. ECENTL Y it has become kno\vn that a number of very high Andean mountain tops had not only been ascended but also permanently occupied by the Indians, possibly as much as three centuries before de Saussure's ascent of Mont Blanc. They climbed peaks of up to 22,ooo ft., they constructed shelters on or near their tops, and they used the high places as watch-towers or as sacrificial shrines. Some authorities believe that this activity took place as early as the late four­ teenth century, though we cannot prove that some of it did not take place long after, possibly as late as the nineteenth century. These Indian accomplishments have been left unmentioned in practi­ cally all mountaineering history books. In this article, which may be the first to attempt a comprehensive survey,1 my purpose is to review briefly the location and the nature of each discovery. The area in which these Indian mountain ascents took place is what in physical geography is known as the Atacama desert (although this name is nowadays used in political and cultural geography for a much more restricted area). It is a treeless, sandy and volcanic waste-land seldom visited by mountaineers. It stretches from the neighbourhood of Arequipa, in Peru, as far south as Elqui in Chile; to the east it reaches the Andean slopes that face the jungles of Argentina and Bolivia, and to the west, the Pacific Ocean.
    [Show full text]