Image Segmentation Using Dirichlet Process Mixture Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methods of Monte Carlo Simulation II
Methods of Monte Carlo Simulation II Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2014 Ulm, 2014 2 Contents 1 SomeSimpleStochasticProcesses 7 1.1 StochasticProcesses . 7 1.2 RandomWalks .......................... 7 1.2.1 BernoulliProcesses . 7 1.2.2 RandomWalks ...................... 10 1.2.3 ProbabilitiesofRandomWalks . 13 1.2.4 Distribution of Xn .................... 13 1.2.5 FirstPassageTime . 14 2 Estimators 17 2.1 Bias, Variance, the Central Limit Theorem and Mean Square Error................................ 19 2.2 Non-AsymptoticErrorBounds. 22 2.3 Big O and Little o Notation ................... 23 3 Markov Chains 25 3.1 SimulatingMarkovChains . 28 3.1.1 Drawing from a Discrete Uniform Distribution . 28 3.1.2 Drawing From A Discrete Distribution on a Small State Space ........................... 28 3.1.3 SimulatingaMarkovChain . 28 3.2 Communication .......................... 29 3.3 TheStrongMarkovProperty . 30 3.4 RecurrenceandTransience . 31 3.4.1 RecurrenceofRandomWalks . 33 3.5 InvariantDistributions . 34 3.6 LimitingDistribution. 36 3.7 Reversibility............................ 37 4 The Poisson Process 39 4.1 Point Processes on [0, )..................... 39 ∞ 3 4 CONTENTS 4.2 PoissonProcess .......................... 41 4.2.1 Order Statistics and the Distribution of Arrival Times 44 4.2.2 DistributionofArrivalTimes . 45 4.3 SimulatingPoissonProcesses. 46 4.3.1 Using the Infinitesimal Definition to Simulate Approx- imately .......................... 46 4.3.2 SimulatingtheArrivalTimes . 47 4.3.3 SimulatingtheInter-ArrivalTimes . 48 4.4 InhomogenousPoissonProcesses. 48 4.5 Simulating an Inhomogenous Poisson Process . 49 4.5.1 Acceptance-Rejection. 49 4.5.2 Infinitesimal Approach (Approximate) . 50 4.6 CompoundPoissonProcesses . 51 5 ContinuousTimeMarkovChains 53 5.1 TransitionFunction. 53 5.2 InfinitesimalGenerator . 54 5.3 ContinuousTimeMarkovChains . -
12 : Conditional Random Fields 1 Hidden Markov Model
10-708: Probabilistic Graphical Models 10-708, Spring 2014 12 : Conditional Random Fields Lecturer: Eric P. Xing Scribes: Qin Gao, Siheng Chen 1 Hidden Markov Model 1.1 General parametric form In hidden Markov model (HMM), we have three sets of parameters, j i transition probability matrix A : p(yt = 1jyt−1 = 1) = ai;j; initialprobabilities : p(y1) ∼ Multinomial(π1; π2; :::; πM ); i emission probabilities : p(xtjyt) ∼ Multinomial(bi;1; bi;2; :::; bi;K ): 1.2 Inference k k The inference can be done with forward algorithm which computes αt ≡ µt−1!t(k) = P (x1; :::; xt−1; xt; yt = 1) recursively by k k X i αt = p(xtjyt = 1) αt−1ai;k; (1) i k k and the backward algorithm which computes βt ≡ µt t+1(k) = P (xt+1; :::; xT jyt = 1) recursively by k X i i βt = ak;ip(xt+1jyt+1 = 1)βt+1: (2) i Another key quantity is the conditional probability of any hidden state given the entire sequence, which can be computed by the dot product of forward message and backward message by, i i i i X i;j γt = p(yt = 1jx1:T ) / αtβt = ξt ; (3) j where we define, i;j i j ξt = p(yt = 1; yt−1 = 1; x1:T ); i j / µt−1!t(yt = 1)µt t+1(yt+1 = 1)p(xt+1jyt+1)p(yt+1jyt); i j i = αtβt+1ai;jp(xt+1jyt+1 = 1): The implementation in Matlab can be vectorized by using, i Bt(i) = p(xtjyt = 1); j i A(i; j) = p(yt+1 = 1jyt = 1): 1 2 12 : Conditional Random Fields The relation of those quantities can be simply written in pseudocode as, T αt = (A αt−1): ∗ Bt; βt = A(βt+1: ∗ Bt+1); T ξt = (αt(βt+1: ∗ Bt+1) ): ∗ A; γt = αt: ∗ βt: 1.3 Learning 1.3.1 Supervised Learning The supervised learning is trivial if only we know the true state path. -
Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis
Hierarchical Dirichlet Process Hidden Markov Model for Unsupervised Bioacoustic Analysis Marius Bartcus, Faicel Chamroukhi, Herve Glotin Abstract-Hidden Markov Models (HMMs) are one of the the standard HDP-HMM Gibbs sampling has the limitation most popular and successful models in statistics and machine of an inadequate modeling of the temporal persistence of learning for modeling sequential data. However, one main issue states [9]. This problem has been addressed in [9] by relying in HMMs is the one of choosing the number of hidden states. on a sticky extension which allows a more robust learning. The Hierarchical Dirichlet Process (HDP)-HMM is a Bayesian Other solutions for the inference of the hidden Markov non-parametric alternative for standard HMMs that offers a model in this infinite state space models are using the Beam principled way to tackle this challenging problem by relying sampling [lO] rather than Gibbs sampling. on a Hierarchical Dirichlet Process (HDP) prior. We investigate the HDP-HMM in a challenging problem of unsupervised We investigate the BNP formulation for the HMM, that is learning from bioacoustic data by using Markov-Chain Monte the HDP-HMM into a challenging problem of unsupervised Carlo (MCMC) sampling techniques, namely the Gibbs sampler. learning from bioacoustic data. The problem consists of We consider a real problem of fully unsupervised humpback extracting and classifying, in a fully unsupervised way, whale song decomposition. It consists in simultaneously finding the structure of hidden whale song units, and automatically unknown number of whale song units. We use the Gibbs inferring the unknown number of the hidden units from the Mel sampler to infer the HDP-HMM from the bioacoustic data. -
MCMC Learning (Slides)
Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions MCMC Learning Varun Kanade Elchanan Mossel UC Berkeley UC Berkeley August 30, 2013 Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Outline Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Uniform Distribution Learning • Unknown target function f : {−1; 1gn ! {−1; 1g from some class C • Uniform distribution over {−1; 1gn • Random Examples: Monotone Decision Trees [OS06] • Random Walk: DNF expressions [BMOS03] • Membership Query: DNF, TOP [J95] • Main Tool: Discrete Fourier Analysis X Y f (x) = f^(S)χS (x); χS (x) = xi S⊆[n] i2S • Can utilize sophisticated results: hypercontractivity, invariance, etc. • Connections to cryptography, hardness, de-randomization etc. • Unfortunately, too much of an idealization. In practice, variables are correlated. Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Markov Random Fields • Graph G = ([n]; E). Each node takes some value in finite set A. n • Distribution over A : (for φC non-negative, Z normalization constant) 1 Y Pr((σ ) ) = φ ((σ ) ) v v2[n] Z C v v2C clique C Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Markov Random Fields • MRFs widely used in vision, computational biology, biostatistics etc. • Extensive Algorithmic Theory for sampling from MRFs, recovering parameters and structures • Learning Question: Given f : An ! {−1; 1g. (How) Can we learn with respect to MRF distribution? • Can we utilize the structure of the MRF to aid in learning? Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Learning Model • Let M be a MRF with distribution π and f : An ! {−1; 1g the target function • Learning algorithm gets i.i.d. -
Markov Random Fields: – Geman, Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”, IEEE PAMI 6, No
MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Conglin Lu Medical Image Display and Analysis Group University of North Carolina, Chapel Hill MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Outline: Background; Definition and properties of MRF; Computation; MRF m-reps models. MarkovMarkov RandomRandom FieldsFields Model a large collection of random variables with complex dependency relationships among them. MarkovMarkov RandomRandom FieldsFields • A model based approach; • Has been applied to a variety of problems: - Speech recognition - Natural language processing - Coding - Image analysis - Neural networks - Artificial intelligence • Usually used within the Bayesian framework. TheThe BayesianBayesian ParadigmParadigm X = space of the unknown variables, e.g. labels; Y = space of data (observations), e.g. intensity values; Given an observation y∈Y, want to make inference about x∈X. TheThe BayesianBayesian ParadigmParadigm Prior PX : probability distribution on X; Likelihood PY|X : conditional distribution of Y given X; Statistical inference is based on the posterior distribution PX|Y ∝ PX •PY|X . TheThe PriorPrior DistributionDistribution • Describes our assumption or knowledge about the model; • X is usually a high dimensional space. PX describes the joint distribution of a large number of random variables; • How do we define PX? MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Outline: 9 Background; Definition and properties of MRF; Computation; MRF m-reps models. AssumptionsAssumptions •X = {Xs}s∈S, where each Xs is a random variable; S is an index set and is finite; • There is a common state space R:Xs∈R for all s ∈ S; | R | is finite; • Let Ω = {ω=(x , ..., x ): x ∈ , 1≤i≤N} be s1 sN si R the set of all possible configurations. -
Anomaly Detection Based on Wavelet Domain GARCH Random Field Modeling Amir Noiboar and Israel Cohen, Senior Member, IEEE
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 5, MAY 2007 1361 Anomaly Detection Based on Wavelet Domain GARCH Random Field Modeling Amir Noiboar and Israel Cohen, Senior Member, IEEE Abstract—One-dimensional Generalized Autoregressive Con- Markov noise. It is also claimed that objects in imagery create a ditional Heteroscedasticity (GARCH) model is widely used for response over several scales in a multiresolution representation modeling financial time series. Extending the GARCH model to of an image, and therefore, the wavelet transform can serve as multiple dimensions yields a novel clutter model which is capable of taking into account important characteristics of a wavelet-based a means for computing a feature set for input to a detector. In multiscale feature space, namely heavy-tailed distributions and [17], a multiscale wavelet representation is utilized to capture innovations clustering as well as spatial and scale correlations. We periodical patterns of various period lengths, which often ap- show that the multidimensional GARCH model generalizes the pear in natural clutter images. In [12], the orientation and scale casual Gauss Markov random field (GMRF) model, and we de- selectivity of the wavelet transform are related to the biological velop a multiscale matched subspace detector (MSD) for detecting anomalies in GARCH clutter. Experimental results demonstrate mechanisms of the human visual system and are utilized to that by using a multiscale MSD under GARCH clutter modeling, enhance mammographic features. rather than GMRF clutter modeling, a reduced false-alarm rate Statistical models for clutter and anomalies are usually can be achieved without compromising the detection rate. related to the Gaussian distribution due to its mathematical Index Terms—Anomaly detection, Gaussian Markov tractability. -
A Novel Approach for Markov Random Field with Intractable Normalising Constant on Large Lattices
A novel approach for Markov Random Field with intractable normalising constant on large lattices W. Zhu ∗ and Y. Fany February 19, 2018 Abstract The pseudo likelihood method of Besag (1974), has remained a popular method for estimating Markov random field on a very large lattice, despite various documented deficiencies. This is partly because it remains the only computationally tractable method for large lattices. We introduce a novel method to estimate Markov random fields defined on a regular lattice. The method takes advantage of conditional independence structures and recur- sively decomposes a large lattice into smaller sublattices. An approximation is made at each decomposition. Doing so completely avoids the need to com- pute the troublesome normalising constant. The computational complexity arXiv:1601.02410v1 [stat.ME] 11 Jan 2016 is O(N), where N is the the number of pixels in lattice, making it computa- tionally attractive for very large lattices. We show through simulation, that the proposed method performs well, even when compared to the methods using exact likelihoods. Keywords: Markov random field, normalizing constant, conditional indepen- dence, decomposition, Potts model. ∗School of Mathematics and Statistics, University of New South Wales, Sydney 2052 Australia. Communicating Author Wanchuang Zhu: Email [email protected]. ySchool of Mathematics and Statistics, University of New South Wales, Sydney 2052 Australia. Email [email protected]. 1 1 Introduction Markov random field (MRF) models have an important role in modelling spa- tially correlated datasets. They have been used extensively in image and texture analyses ( Nott and Ryden´ 1999, Hurn et al. 2003), image segmentation (Pal and Pal 1993, Van Leemput et al. -
Markov Random Fields and Stochastic Image Models
Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i. -
Part 2: Basics of Dirichlet Processes 2.1 Motivation
CS547Q Statistical Modeling with Stochastic Processes Winter 2011 Part 2: Basics of Dirichlet processes Lecturer: Alexandre Bouchard-Cˆot´e Scribe(s): Liangliang Wang Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. Last update: May 17, 2011 2.1 Motivation To motivate the Dirichlet process, let us consider a simple density estimation problem: modeling the height of UBC students. We are going to take a Bayesian approach to this problem, considering the parameters as random variables. In one of the most basic models, one would define a mean and variance random parameter θ = (µ, σ2), and a height random variable normally distributed conditionally on θ, with parameters θ.1 Using a single normal distribution is clearly a defective approach, since for example the male/female sub- populations create a skewness in the distribution, which cannot be capture by normal distributions: The solution suggested by this figure is to use a mixture of two normal distributions, with one set of parameters θc for each sub-population or cluster c ∈ {1, 2}. Pictorially, the model can be described as follows: 1- Generate a male/female relative frequence " " ~ Beta(male prior pseudo counts, female P.C) Mean height 2- Generate the sex of each student for each i for men Mult( ) !(1) x1 x2 x3 xi | " ~ " 3- Generate the mean height of each cluster c !(2) Mean height !(c) ~ N(prior height, how confident prior) for women y1 y2 y3 4- Generate student heights for each i yi | xi, !(1), !(2) ~ N(!(xi) ,variance) 1Yes, this has many problems (heights cannot be negative, normal assumption broken, etc). -
Lectures on Bayesian Nonparametrics: Modeling, Algorithms and Some Theory VIASM Summer School in Hanoi, August 7–14, 2015
Lectures on Bayesian nonparametrics: modeling, algorithms and some theory VIASM summer school in Hanoi, August 7–14, 2015 XuanLong Nguyen University of Michigan Abstract This is an elementary introduction to fundamental concepts of Bayesian nonparametrics, with an emphasis on the modeling and inference using Dirichlet process mixtures and their extensions. I draw partially from the materials of a graduate course jointly taught by Professor Jayaram Sethuraman and myself in Fall 2014 at the University of Michigan. Bayesian nonparametrics is a field which aims to create inference algorithms and statistical models, whose complexity may grow as data size increases. It is an area where probabilists, theoretical and applied statisticians, and machine learning researchers all make meaningful contacts and contributions. With the following choice of materials I hope to take the audience with modest statistical background to a vantage point from where one may begin to see a rich and sweeping panorama of a beautiful area of modern statistics. 1 Statistical inference The main goal of statistics and machine learning is to make inference about some unknown quantity based on observed data. For this purpose, one obtains data X with distribution depending on the unknown quantity, to be denoted by parameter θ. In classical statistics, this distribution is completely specified except for θ. Based on X, one makes statements about θ in some optimal way. This is the basic idea of statistical inference. Machine learning originally approached the inference problem through the lense of the computer science field of artificial intelligence. It was eventually realized that machine learning was built on the same theoretical foundation of mathematical statistics, in addition to carrying a strong emphasis on the development of algorithms. -
A Note on Probability Theory
A Note on Probability Theory Ying Nian Wu, Note for STATS 200A Contents 1 Probability 3 1.1 Why probability? . .3 1.2 Three canonical examples . .4 1.3 Long run frequency . .4 1.4 Basic language and notation . .4 1.5 Axioms . .5 1.6 Sigma algebra . .5 1.7 Why sigma-algebra . .6 2 Measure 6 2.1 What is measure? . .6 2.2 Lebesgue measure . .7 2.3 Law of large number . .7 2.4 Concentration of measure . .8 2.5 Lebesgue integral . .9 2.6 Simple functions . 10 2.7 Convergence theorems . 10 3 Univariate distribution and expectation 11 3.1 Discrete random variable, expectation, long run average . 11 3.2 Continuous random variable, basic event, discretization . 12 3.3 How to think about density . 13 3.4 Existence of probability density function . 13 3.5 Cumulative density . 14 3.6 Uniform distribution . 14 3.7 Inversion method . 14 3.8 Transformation . 15 3.9 Polar method for normal random variable . 16 3.10 Counting techniques . 17 3.11 Bernoulli . 17 3.12 Binomial . 18 3.13 Normal approximation . 18 3.14 Geometric . 22 3.15 Poisson process . 22 3.16 Survival analysis . 24 1 4 Joint distribution and covariance 25 4.1 Joint distribution . 25 4.2 Expectation, variance, covariance . 26 4.3 Correlation as cosine of angle . 27 4.4 Correlation as the strength of regression . 28 4.5 Least squares derivation of regression . 28 4.6 Regression in terms of projections . 29 4.7 Independence and uncorrelated . 29 4.8 Multivariate statistics . 30 4.9 Multivariate normal . -
A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr, Richard Everitt, Matthew T
A review on statistical inference methods for discrete Markov random fields Julien Stoehr, Richard Everitt, Matthew T. Moores To cite this version: Julien Stoehr, Richard Everitt, Matthew T. Moores. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v2 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v2 Preprint submitted on 11 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.