Robust Cell Image Segmentation Via Improved Markov Random Field

Total Page:16

File Type:pdf, Size:1020Kb

Robust Cell Image Segmentation Via Improved Markov Random Field https://doi.org/10.20965/jaciii.2020.p0963 Cell Image Segmentation via Improved Markov Random Field Paper: Robust Cell Image Segmentation via Improved Markov Random Field Based on a Chinese Restaurant Process Model Dongming Li∗1,∗2, Changming Sun∗3,SuWei∗4,YueYu∗2,∗5, and Jinhua Yang∗1,† ∗1College of Opto-Electronic Engineering, Changchun University of Science and Technology No.7089 Weixin Road, Chaoyang District, Changchun, Jilin 130022, China E-mail: [email protected] ∗2School of Information Technology, Jilin Agricultural University No.2888 Xincheng Road, Jingyue District, Changchun, Jilin 130118, China ∗3CSIRO Data61 P.O. Box 76, Epping, New South Wales 1710, Australia ∗4Modern Educational Technology Center, Changchun University of Chinese Medicine No.1035 Boshuo Road, Jingyue District, Changchun, Jilin 130117, China ∗5College of Artificial Intelligence, Tourism College of Changchun University Sheling Town, University Campus District, Changchun, Jilin 130607, China †Corresponding author [Received October 5, 2020; accepted November 18, 2020] In this paper, a segmentation method for cell images common approaches for cell segmentation is image inten- using Markov random field (MRF) based on a Chi- sity thresholding which suffers from the issue of inten- nese restaurant process model (CRPM) is proposed. sity inhomogeneity. Watershed based methods are com- Firstly, we carry out the preprocessing on the cell im- monly utilized for clustered nuclei segmentation. Dunn ages, and then we focus on cell image segmentation proposed the fuzzy C-means (FCM) method for image using MRF based on a CRPM under a maximum a segmentation [2]. The FCM method is an unsupervised posteriori (MAP) criterion. The CRPM can be used clustering algorithm, which has been widely used in the to estimate the number of clusters in advance, adjust- field of image segmentation. However, its high compu- ing the number of clusters automatically according to tational complexity and the fact that its performance de- the size of the data. Finally, the conditional iteration grades significantly with increased noise. Ng et al. pro- mode (CIM) method is used to implement the MRF posed a methodology that incorporates K-means and im- based cell image segmentation process. To validate our proved watershed segmentation algorithms for medical proposed method, segmentation experiments are per- image segmentation [3]. Zong and Tian proposed seg- formed on oral mucosal cell images. The segmentation mentation and feature extraction of brain tumors based on results were compared with other methods, using pre- magnetic resonance images using a K-means method [4]. cision, Dice, and mean square error (MSE) as the ob- K-means clustering is a simple clustering method with jective evaluation criteria. The experimental results low computational complexity compared to FCM. An show that our method produces accurate cell image image threshold segmentation algorithm based on maxi- segmentation results, and our method can effectively mum entropy and a genetic algorithm is presented in [5]. improve segmentation for the nucleus, binuclear cell, Meng et al. proposed an image segmentation method us- and micronucleus cell. This work will play an impor- ing multi-resolution Markov random field (MRF) [6]. The tant role in cell image recognition and analysis. MRF probabilistic framework is a powerful tool for image segmentation. It introduces spatial dependencies between labels, providing a robust-to-noise segmentation. How- Keywords: cell image segmentation, Markov ran- ever, MRF needs to set the initial classification number in dom field, dual-tree complex wavelet transform, Chinese advance, which is greatly influenced by subjective factors restaurant process model, morphology top-hat transform and is time-consuming. Our work focuses on cell image segmentation using an MRF model based on a Chinese restaurant process model (CRPM) under the maximum 1. Introduction a posteriori (MAP) criterion. The quality of segmenta- tion is evaluated on cell images using the precision, Dice, Accurate segmentation of cells in fluorescence mi- and mean square error (MSE) criteria. We have used cell croscopy images plays a key role in high-throughput ap- image datasets to evaluate several segmentation methods. plications such as the study of cell function and quantifi- The results show that our proposed method is better than cation of protein expression [1]. Recently, several meth- threshold based techniques. ods have been proposed for the segmentation of cell nu- The remainder of this paper is organized as follows. In clei in fluorescence microscopy images. One of the most Section 2, the related works on cell image segmentation Vol.24 No.7, 2020 Journal of Advanced Computational Intelligence 963 and Intelligent Informatics © Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/). Li,D.etal. are briefly reviewed. Section 3 introduces and explains is that it can segment complex-shaped objects, and the proposed improved MRF-based cell image segmenta- it can deal with topological changes such as image tion method. The cell image segmentation algorithm is splitting and merging. Li et al. [15] proposed a new applied to real cell images and the results are presented in variational formulation for geometric active contour, Section 4. Finally in Section 5, we conclude. which makes the level-set function close to the signed distance function. Therefore, it completely eliminates the cost of reinitialization and improves the perfor- 2. Related Work mance of cell image segmentation. (c) Localized region-based active contour model meth- In the following section, we review existing methods ods [16–17] are region-based methods that use local for cell image segmentation. A wide range of cell im- region parameters for segmentation. They show su- age segmentation methods have been proposed in recent periority in the location of regional information, and years, and they can be categorized into three groups: man- they have the ability to deal with heterogeneous tex- ual segmentation, semi-automatic segmentation, and fully tures. Lankton and Tannenbaum [16] proposed a nat- automatic segmentation. ural framework that allows any region-based segmen- tation energy to be re-formulated locally. Kaur and (1) Manual segmentation (MS) method requires do- Jindal [17] proposed the thyroid segmentation algo- main experts to first determine the region of interest rithm for ultrasound and scintigraphy images by us- (ROI), and then draw precise boundaries around the ROI ing active contour without edges, localized region- to annotate each image pixel correctly. An MS method based active contour, and distance regularized level- is necessary because it provides a ground-truth image set methods. for further development of semi-automatic and automatic (d) Clustering-based method transforms image seg- segmentation methods. However, the disadvantage of mentation into clustering analysis in pattern recogni- manual segmentation is that it is subjective. Because the tion. There are two clustering-based methods for cell manual segmentation method depends on the knowledge image segmentation: K-means clustering [18] and and experience of domain experts, there will be signifi- FCM [2, 19]. The FCM clustering method has the ad- cant differences among experts and even for one expert vantage of obtaining accurate results because it can but at different times [7]. provide a global optimal value when initialization er- (2) Semi-automatic segmentation method uses auto- ror occurs. Therefore, the FCM clustering method is matic algorithms for small-scale user interaction, and gen- suitable for cell image segmentation with uncertainty erates accurate segmentation results of microscopic cell and complexity. images [8]. In microscopic cell image segmentation, the common methods of semi-automatic segmentation are as (3) Fully automatic segmentation method does not follows: require any user interaction, and the typical representa- tive is deep learning-based methods that are widely used in cell image segmentation. Long et al. [20] proposed (a) Seeded region growing methods [9–13] are based fully convolutional networks (FCN) for semantic segmen- on initial seed points provided by users and it- tation, and realized end-to-end pixel-level semantic seg- eratively fuse neighborhood pixels with similarity. mentation. Ronneberger et al. [21] presented a network In [9], Stewart et al. proposed a novel region grow- (U-Net) and a training strategy on biomedical images, ing method with pulse-coupled neural networks. This which greatly improved the segmentation performance. method introduces a new idea for automatic segmen- Jia et al. [22] developed a new weakly supervised learn- tation. Zhou et al. [10] proposed a region segmen- ing algorithm to learn to segment cancerous regions in tation method based on the Otsu method [11] and histopathology images, which was easy to implement and the Chan–Vese method [12] for cytoskeleton images. could be trained efficiently. In recent years, scholars have The method achieves an ideal processing effect, but made full use of the advantages of deep learning methods has high time and space complexities. In [13], a re- for cell image segmentation, and they continue to propose gion growing method with a multi-seed voting mech- new image segmentation methods to provide a reliable ba- anism
Recommended publications
  • Methods of Monte Carlo Simulation II
    Methods of Monte Carlo Simulation II Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2014 Ulm, 2014 2 Contents 1 SomeSimpleStochasticProcesses 7 1.1 StochasticProcesses . 7 1.2 RandomWalks .......................... 7 1.2.1 BernoulliProcesses . 7 1.2.2 RandomWalks ...................... 10 1.2.3 ProbabilitiesofRandomWalks . 13 1.2.4 Distribution of Xn .................... 13 1.2.5 FirstPassageTime . 14 2 Estimators 17 2.1 Bias, Variance, the Central Limit Theorem and Mean Square Error................................ 19 2.2 Non-AsymptoticErrorBounds. 22 2.3 Big O and Little o Notation ................... 23 3 Markov Chains 25 3.1 SimulatingMarkovChains . 28 3.1.1 Drawing from a Discrete Uniform Distribution . 28 3.1.2 Drawing From A Discrete Distribution on a Small State Space ........................... 28 3.1.3 SimulatingaMarkovChain . 28 3.2 Communication .......................... 29 3.3 TheStrongMarkovProperty . 30 3.4 RecurrenceandTransience . 31 3.4.1 RecurrenceofRandomWalks . 33 3.5 InvariantDistributions . 34 3.6 LimitingDistribution. 36 3.7 Reversibility............................ 37 4 The Poisson Process 39 4.1 Point Processes on [0, )..................... 39 ∞ 3 4 CONTENTS 4.2 PoissonProcess .......................... 41 4.2.1 Order Statistics and the Distribution of Arrival Times 44 4.2.2 DistributionofArrivalTimes . 45 4.3 SimulatingPoissonProcesses. 46 4.3.1 Using the Infinitesimal Definition to Simulate Approx- imately .......................... 46 4.3.2 SimulatingtheArrivalTimes . 47 4.3.3 SimulatingtheInter-ArrivalTimes . 48 4.4 InhomogenousPoissonProcesses. 48 4.5 Simulating an Inhomogenous Poisson Process . 49 4.5.1 Acceptance-Rejection. 49 4.5.2 Infinitesimal Approach (Approximate) . 50 4.6 CompoundPoissonProcesses . 51 5 ContinuousTimeMarkovChains 53 5.1 TransitionFunction. 53 5.2 InfinitesimalGenerator . 54 5.3 ContinuousTimeMarkovChains .
    [Show full text]
  • 12 : Conditional Random Fields 1 Hidden Markov Model
    10-708: Probabilistic Graphical Models 10-708, Spring 2014 12 : Conditional Random Fields Lecturer: Eric P. Xing Scribes: Qin Gao, Siheng Chen 1 Hidden Markov Model 1.1 General parametric form In hidden Markov model (HMM), we have three sets of parameters, j i transition probability matrix A : p(yt = 1jyt−1 = 1) = ai;j; initialprobabilities : p(y1) ∼ Multinomial(π1; π2; :::; πM ); i emission probabilities : p(xtjyt) ∼ Multinomial(bi;1; bi;2; :::; bi;K ): 1.2 Inference k k The inference can be done with forward algorithm which computes αt ≡ µt−1!t(k) = P (x1; :::; xt−1; xt; yt = 1) recursively by k k X i αt = p(xtjyt = 1) αt−1ai;k; (1) i k k and the backward algorithm which computes βt ≡ µt t+1(k) = P (xt+1; :::; xT jyt = 1) recursively by k X i i βt = ak;ip(xt+1jyt+1 = 1)βt+1: (2) i Another key quantity is the conditional probability of any hidden state given the entire sequence, which can be computed by the dot product of forward message and backward message by, i i i i X i;j γt = p(yt = 1jx1:T ) / αtβt = ξt ; (3) j where we define, i;j i j ξt = p(yt = 1; yt−1 = 1; x1:T ); i j / µt−1!t(yt = 1)µt t+1(yt+1 = 1)p(xt+1jyt+1)p(yt+1jyt); i j i = αtβt+1ai;jp(xt+1jyt+1 = 1): The implementation in Matlab can be vectorized by using, i Bt(i) = p(xtjyt = 1); j i A(i; j) = p(yt+1 = 1jyt = 1): 1 2 12 : Conditional Random Fields The relation of those quantities can be simply written in pseudocode as, T αt = (A αt−1): ∗ Bt; βt = A(βt+1: ∗ Bt+1); T ξt = (αt(βt+1: ∗ Bt+1) ): ∗ A; γt = αt: ∗ βt: 1.3 Learning 1.3.1 Supervised Learning The supervised learning is trivial if only we know the true state path.
    [Show full text]
  • MCMC Learning (Slides)
    Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions MCMC Learning Varun Kanade Elchanan Mossel UC Berkeley UC Berkeley August 30, 2013 Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Outline Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Uniform Distribution Learning • Unknown target function f : {−1; 1gn ! {−1; 1g from some class C • Uniform distribution over {−1; 1gn • Random Examples: Monotone Decision Trees [OS06] • Random Walk: DNF expressions [BMOS03] • Membership Query: DNF, TOP [J95] • Main Tool: Discrete Fourier Analysis X Y f (x) = f^(S)χS (x); χS (x) = xi S⊆[n] i2S • Can utilize sophisticated results: hypercontractivity, invariance, etc. • Connections to cryptography, hardness, de-randomization etc. • Unfortunately, too much of an idealization. In practice, variables are correlated. Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Markov Random Fields • Graph G = ([n]; E). Each node takes some value in finite set A. n • Distribution over A : (for φC non-negative, Z normalization constant) 1 Y Pr((σ ) ) = φ ((σ ) ) v v2[n] Z C v v2C clique C Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Markov Random Fields • MRFs widely used in vision, computational biology, biostatistics etc. • Extensive Algorithmic Theory for sampling from MRFs, recovering parameters and structures • Learning Question: Given f : An ! {−1; 1g. (How) Can we learn with respect to MRF distribution? • Can we utilize the structure of the MRF to aid in learning? Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Learning Model • Let M be a MRF with distribution π and f : An ! {−1; 1g the target function • Learning algorithm gets i.i.d.
    [Show full text]
  • Markov Random Fields: – Geman, Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”, IEEE PAMI 6, No
    MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Conglin Lu Medical Image Display and Analysis Group University of North Carolina, Chapel Hill MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Outline: Background; Definition and properties of MRF; Computation; MRF m-reps models. MarkovMarkov RandomRandom FieldsFields Model a large collection of random variables with complex dependency relationships among them. MarkovMarkov RandomRandom FieldsFields • A model based approach; • Has been applied to a variety of problems: - Speech recognition - Natural language processing - Coding - Image analysis - Neural networks - Artificial intelligence • Usually used within the Bayesian framework. TheThe BayesianBayesian ParadigmParadigm X = space of the unknown variables, e.g. labels; Y = space of data (observations), e.g. intensity values; Given an observation y∈Y, want to make inference about x∈X. TheThe BayesianBayesian ParadigmParadigm Prior PX : probability distribution on X; Likelihood PY|X : conditional distribution of Y given X; Statistical inference is based on the posterior distribution PX|Y ∝ PX •PY|X . TheThe PriorPrior DistributionDistribution • Describes our assumption or knowledge about the model; • X is usually a high dimensional space. PX describes the joint distribution of a large number of random variables; • How do we define PX? MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Outline: 9 Background; Definition and properties of MRF; Computation; MRF m-reps models. AssumptionsAssumptions •X = {Xs}s∈S, where each Xs is a random variable; S is an index set and is finite; • There is a common state space R:Xs∈R for all s ∈ S; | R | is finite; • Let Ω = {ω=(x , ..., x ): x ∈ , 1≤i≤N} be s1 sN si R the set of all possible configurations.
    [Show full text]
  • Anomaly Detection Based on Wavelet Domain GARCH Random Field Modeling Amir Noiboar and Israel Cohen, Senior Member, IEEE
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 5, MAY 2007 1361 Anomaly Detection Based on Wavelet Domain GARCH Random Field Modeling Amir Noiboar and Israel Cohen, Senior Member, IEEE Abstract—One-dimensional Generalized Autoregressive Con- Markov noise. It is also claimed that objects in imagery create a ditional Heteroscedasticity (GARCH) model is widely used for response over several scales in a multiresolution representation modeling financial time series. Extending the GARCH model to of an image, and therefore, the wavelet transform can serve as multiple dimensions yields a novel clutter model which is capable of taking into account important characteristics of a wavelet-based a means for computing a feature set for input to a detector. In multiscale feature space, namely heavy-tailed distributions and [17], a multiscale wavelet representation is utilized to capture innovations clustering as well as spatial and scale correlations. We periodical patterns of various period lengths, which often ap- show that the multidimensional GARCH model generalizes the pear in natural clutter images. In [12], the orientation and scale casual Gauss Markov random field (GMRF) model, and we de- selectivity of the wavelet transform are related to the biological velop a multiscale matched subspace detector (MSD) for detecting anomalies in GARCH clutter. Experimental results demonstrate mechanisms of the human visual system and are utilized to that by using a multiscale MSD under GARCH clutter modeling, enhance mammographic features. rather than GMRF clutter modeling, a reduced false-alarm rate Statistical models for clutter and anomalies are usually can be achieved without compromising the detection rate. related to the Gaussian distribution due to its mathematical Index Terms—Anomaly detection, Gaussian Markov tractability.
    [Show full text]
  • A Novel Approach for Markov Random Field with Intractable Normalising Constant on Large Lattices
    A novel approach for Markov Random Field with intractable normalising constant on large lattices W. Zhu ∗ and Y. Fany February 19, 2018 Abstract The pseudo likelihood method of Besag (1974), has remained a popular method for estimating Markov random field on a very large lattice, despite various documented deficiencies. This is partly because it remains the only computationally tractable method for large lattices. We introduce a novel method to estimate Markov random fields defined on a regular lattice. The method takes advantage of conditional independence structures and recur- sively decomposes a large lattice into smaller sublattices. An approximation is made at each decomposition. Doing so completely avoids the need to com- pute the troublesome normalising constant. The computational complexity arXiv:1601.02410v1 [stat.ME] 11 Jan 2016 is O(N), where N is the the number of pixels in lattice, making it computa- tionally attractive for very large lattices. We show through simulation, that the proposed method performs well, even when compared to the methods using exact likelihoods. Keywords: Markov random field, normalizing constant, conditional indepen- dence, decomposition, Potts model. ∗School of Mathematics and Statistics, University of New South Wales, Sydney 2052 Australia. Communicating Author Wanchuang Zhu: Email [email protected]. ySchool of Mathematics and Statistics, University of New South Wales, Sydney 2052 Australia. Email [email protected]. 1 1 Introduction Markov random field (MRF) models have an important role in modelling spa- tially correlated datasets. They have been used extensively in image and texture analyses ( Nott and Ryden´ 1999, Hurn et al. 2003), image segmentation (Pal and Pal 1993, Van Leemput et al.
    [Show full text]
  • Markov Random Fields and Stochastic Image Models
    Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i.
    [Show full text]
  • A Note on Probability Theory
    A Note on Probability Theory Ying Nian Wu, Note for STATS 200A Contents 1 Probability 3 1.1 Why probability? . .3 1.2 Three canonical examples . .4 1.3 Long run frequency . .4 1.4 Basic language and notation . .4 1.5 Axioms . .5 1.6 Sigma algebra . .5 1.7 Why sigma-algebra . .6 2 Measure 6 2.1 What is measure? . .6 2.2 Lebesgue measure . .7 2.3 Law of large number . .7 2.4 Concentration of measure . .8 2.5 Lebesgue integral . .9 2.6 Simple functions . 10 2.7 Convergence theorems . 10 3 Univariate distribution and expectation 11 3.1 Discrete random variable, expectation, long run average . 11 3.2 Continuous random variable, basic event, discretization . 12 3.3 How to think about density . 13 3.4 Existence of probability density function . 13 3.5 Cumulative density . 14 3.6 Uniform distribution . 14 3.7 Inversion method . 14 3.8 Transformation . 15 3.9 Polar method for normal random variable . 16 3.10 Counting techniques . 17 3.11 Bernoulli . 17 3.12 Binomial . 18 3.13 Normal approximation . 18 3.14 Geometric . 22 3.15 Poisson process . 22 3.16 Survival analysis . 24 1 4 Joint distribution and covariance 25 4.1 Joint distribution . 25 4.2 Expectation, variance, covariance . 26 4.3 Correlation as cosine of angle . 27 4.4 Correlation as the strength of regression . 28 4.5 Least squares derivation of regression . 28 4.6 Regression in terms of projections . 29 4.7 Independence and uncorrelated . 29 4.8 Multivariate statistics . 30 4.9 Multivariate normal .
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr, Richard Everitt, Matthew T
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr, Richard Everitt, Matthew T. Moores To cite this version: Julien Stoehr, Richard Everitt, Matthew T. Moores. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v2 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v2 Preprint submitted on 11 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr To cite this version: Julien Stoehr. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v1 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v1 Preprint submitted on 8 Feb 2017 (v1), last revised 11 Apr 2017 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland February 8, 2017 Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing con- stant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the like- lihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    [Show full text]
  • Program Book
    TABLE OF CONTENTS 5 Welcome Message 6 Administrative Program 7 Social Program 9 General Information 13 Program Welcome Message On behalf of the Organizing Committee, I welcome you to Mérida and the 15th Latin American Congress on Probability and Mathematical Statistics. We are truly honored by your presence and sincerely hope that the experience will prove to be professionally rewarding, as well as memorable on a personal level. It goes without saying that your participation is highly significant for promoting the development of this subject matter in our region. Please do not hesitate to ask any member of the staff for assistance during your stay, information regarding academic activities and conference venues, or any other questions you may have. The city of Mérida is renowned within Mexico for its warm hospitality, amid gastronomical, archaeological, and cultural treasures. Do take advantage of any free time to explore the city and its surroundings! Dr. Daniel Hernández Chair of the Organizing Committee, XV CLAPEM Administrative Program REGISTRATION The registration will be at the venue Gamma Mérida El Castellano Hotel. There will be a registration desk at the Lobby. Sunday, December 1, 2019 From 16:00 hrs to 22:00 hrs. Monday, December 2, 2019 From 8:00 to 17:00 hrs. Tuesday, December 3, 2019 From 8:00 to 17:00 hrs Thursday, December 4, 2019 From 8:00 to 16:00 hrs. DO YOU NEED AN INVOICE FOR YOUR REGISTRATION FEE? Please ask for it at the Registration Desk at your arrival. COFFEE BREAKS During the XV CLAPEM there will be coffee break services which will be announced in the program and will be displayed in both venues: Gamma Mérida El Castellano Hotel and CCU, UADY.
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random fields
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields. Keywords: statistics; Markov random fields; parameter estimation; model selection. 1 Introduction The problem of developing satisfactory methodology for the analysis of spatially correlated data has been of a constant interest for more than half a century now. Constructing a joint prob- ability distribution to describe the global properties of such data is somewhat complicated but the difficulty can be bypassed by specifying the local characteristics via conditional probability arXiv:1704.03331v1 [stat.ME] 11 Apr 2017 instead. This proposition has become feasible with the introduction of Markov random fields (or Gibbs distribution) as a family of flexible parametric models for spatial data (the Hammersley- Clifford theorem, Besag, 1974). Markov random fields are spatial processes related to lattice structure, the conditional probability at each nodes of the lattice being dependent only upon its neighbours, that is useful in a wide range of applications.
    [Show full text]