Markov Random Field Terrain Classification for Autonomous Robots in Unstructured Terrain

Total Page:16

File Type:pdf, Size:1020Kb

Markov Random Field Terrain Classification for Autonomous Robots in Unstructured Terrain Fachbereich 4: Informatik Arbeitsgruppe Aktives Sehen MARKOV RANDOM FIELD TERRAIN CLASSIFICATION FOR AUTONOMOUS ROBOTS IN UNSTRUCTURED TERRAIN Vom Promotionsausschuss des Fachbereichs 4: Informatik an der Universität Koblenz-Landau zur Verleihung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte DISSERTATION von Dipl.-Inform. Marcel Häselich Koblenz - 2014 Datum der Einreichung: 27. Juni 2014 Datum der wissenschaftlichen Aussprache: 17. Dezember 2014 Vorsitzender des Promotionsausschusses: Prof. Dr. Ralf Lämmel Vorsitzender der Promotionskommision: Prof. Dr. Ulrich Furbach Erster Berichterstatter: Prof. Dr. Dietrich Paulus Zweiter Berichterstatter Prof. Dr. Marcin Grzegorzek Veröffentlicht als Dissertation der Universität Koblenz-Landau. Zusammenfassung Diese Doktorarbeit beschäftigt sich mit dem Problem der Terrainklassifikation im unstrukturierten Außengelände. Die Terrainklassifikation umfasst dabei das Erkennen von Hindernissen und flachen Bereichen mit der einhergehenden Anal- yse der Bodenoberfläche. Ein 3D Laser-Entfernungsmesser wurde als primärer Sensor verwendet, um das Umfeld des Roboters zu vermessen. Zunächst wird eine Gitterstruktur zur Reduktion der Daten eingeführt. Diese Datenrepräsentation ermöglicht die Integration mehrerer Sensoren, z.B. Kameras für Farb- und Textur- informationen oder weitere Laser-Entfernungsmesser, um die Datendichte zu er- höhen. Anschließend werden für alle Terrainzellen des Gitters Merkmale berech- net. Die Klassifikation erfolgt mithilfe eines Markov Zufallsfeldes für Kontextsen- sitivität um Sensorrauschen und variierender Datendichte entgegenzuwirken. Ein Gibbs-Sampling Ansatz wird zur Optimierung eingesetzt und auf der CPU sowie der auf GPU parallelisiert um Ergebnisse in Echtzeit zu berechnen. Weiterhin werden dynamische Hindernisse unter Verwendung verschiedener State-of-the-Art Techniken erkannt und über die Zeit verfolgt. Die berechneten Informationen, wohin sich andere Verkehrsteilnehmer bewegen und in Zukunft hinbewegen kön- nten, werden verwendet, um Rückschlüsse auf Bodenoberflächen zu ziehen die teilweise oder vollständig unsichtbar für die Sensoren sind. Die Algorithmen wurden auf unterschiedlichen autonomen Roboter-Plattformen getestet und eine Evaluation gegen von Menschen annotierte Grundwahrheiten von Karten aus mehreren Millionen Messungen wird präsentiert. Der in dieser Arbeit entwick- elte Ansatz zur Terrainklassifikation hat sich in allen Anwendungsbereichen be- währt und neue Erkenntnisse geliefert. Kombiniert mit einem Pfadplanungsal- gorithmus ermöglicht die Terrain Klassifikation die vollständige Autonomie für radgetriebene Roboter in natürlichem Außengelände. Abstract This thesis addresses the problem of terrain classification in unstructured outdoor environments. Terrain classification includes the detection of obstacles and pass- able areas as well as the analysis of ground surfaces. A 3D laser range finder is used as primary sensor for perceiving the surroundings of the robot. First of all, a grid structure is introduced for data reduction. The chosen data representation allows for multi-sensor integration, e.g., cameras for color and texture information or further laser range finders for improved data density. Subsequently, features are computed for each terrain cell within the grid. Classification is performed with a Markov random field for context-sensitivity and to compensate for sensor noise and varying data density within the grid. A Gibbs sampler is used for opti- mization and is parallelized on the CPU and GPU in order to achieve real-time performance. Dynamic obstacles are detected and tracked using different state-of- the-art approaches. The resulting information — where other traffic participants move and are going to move to — is used to perform inference in regions where the terrain surface is partially or completely invisible for the sensors. Algorithms are tested and validated on different autonomous robot platforms and the eval- uation is carried out with human-annotated ground truth maps of millions of measurements. The terrain classification approach of this thesis proved reliable in all real-time scenarios and domains and yielded new insights. Furthermore, if combined with a path planning algorithm, it enables full autonomy for all kinds of wheeled outdoor robots in natural outdoor environments. Acknowledgments A thesis is a complex project over a long period of one’s life. Mine covered almost half a decade and I owe thanks to a lot of people who accompanied and supported me during that time. I was only able to reach my goal with their support. First of all my thanks goes to the person who made all this possible, my supervisor Prof. Dr.-Ing. Dietrich Paulus. He granted me all the freedom I needed to perform my research while his advice and ideas were equally of great help for this thesis. Secondly, I would like to thank Prof. Dr.-Ing. Marcin Grzegorzek for his will- ingness to mentor my work. Never will I forget that one week in Poland, my first scientific excursion ever, where the Markov random fields idea was forged in the first place. I would also like to express my sincere thanks to all my colleagues. Most notably Frank Neuhaus and Nicolai Wojke who suffered the most from my life- long struggle with cmake and my proclivity for making the same mistakes again. Christian Winkens for sharpening the idea of integrating dynamic obstacles into terrain classification during a workshop in France. Detlev Droege for letting us turn his car into a robot so many times. And of course Dagmar Lang, for her critical eye and excellent reviewing skills. I would like to thank Nicolai a second time, this time for his great work in car detection and tracking. I as well owe a lot of thanks to students that contributed to this thesis: Denis Dillenberger and Frank Neuhaus for putting all the sensors and the platform into operation, and preparing all the stuff I used so frequently later on. Marc Arends for his pioneering work with Markov random fields. Nikolay Handzhiyski and Laura Haraké for their contribution to the robot’s path planning. René Bing for creating the calibration pattern and the useful calibration graphical user interface. Michael Klostermann, Martin Prinzen, and Benedikt Jöbgen for their contribution to the pedestrian detection and tracking system. Furthermore, I would like to thank the employees of the Wehrtechnische Dienststelle 51 in Koblenz for the long-lasting research and development cooperation. Also, my thanks go to Simon Eggert and Benjamin Knopp for always keeping the coffee flowing when fatigue threatened to overwhelm me. And of course my parents: studying computer sciences would not have been possible without their support and financial assistance. Finally, I am grateful to my wife Sabrina, for giving birth to our two wonderful children. Thank you for all the support you gave me and for enduring my moods before important deadlines. Contents 1 Introduction 1 1.1 Motivation............................... 5 1.2 OwnContribution........................... 7 1.3 Outline................................. 9 2 Fundamentals of Markov Random Fields 11 2.1 SitesandLabels............................ 12 2.2 TheLabelingProblem ........................ 12 2.3 NeighborhoodsandCliques . 13 2.4 MarkovRandomFields. 15 2.5 GibbsRandomFields......................... 17 2.6 The Hammersley-Clifford Theorem . 18 2.7 TheIsingandPottsModels . 19 2.8 Probabilistic Graphical Models . 22 2.9 Optimization and Gibbs Sampling . 23 2.10 TheMahalanobisDistance . 27 3 Software Architecture 31 4 Markov Random Field Classification 35 4.1 RelatedWork ............................. 36 4.2 CameraandLaserDataFusion . 39 4.2.1 RelatedWork ......................... 40 4.2.2 Camera Calibration and Camera to Laser Calibration . 41 4.3 MarkovRandomFieldApplication . 46 4.3.1 TerrainDataRepresentation . 46 4.3.2 TerrainFeatures . .. .. 47 4.3.3 Acquisition of Terrain Features . 48 4.3.4 MarkovModeloftheTerrain . 48 9 10 CONTENTS 4.4 EvaluationandOptimization . 51 4.4.1 Gibbs Sampler Optimization . 55 4.5 EgomotionEstimation . 61 4.6 Evaluationon3DMaps ....................... 64 4.7 Spline Templates as Proof of Concept . 72 5 Detection and Tracking of Moving Objects 75 5.1 Detection and Tracking of Vehicles . 75 5.1.1 RelatedWork ......................... 76 5.1.2 SensorDataInterpretation . 78 5.1.3 ForegroundSeparation . 79 5.1.4 Vehicle Detection and Tracking . 82 5.1.5 EgomotionEstimation . 83 5.1.6 Evaluation........................... 84 5.2 Detection and Tracking of Pedestrians . 85 5.2.1 RelatedWork ......................... 86 5.2.2 Pedestrian Detection in Camera Images . 88 5.2.3 Pedestrian Detection and Tracking in Laser Data . 95 6 Integration of Dynamic Obstacles 103 6.1 TrailsandExtrapolation . 104 6.2 IntegrationintotheMarkovRandomField . 107 6.3 Experiments.............................. 109 7 Conclusion 113 Appendices 117 A Data Sheet of the Velodyne HDL-64E 117 B Data Sheet of the Velodyne HDL-32E 121 C Notation Similarities and Differences 125 D Haralick Features 127 List of Abbreviations 129 List of Notations 131 List of Tables 133 List of Figures 135 Own Publications 137 CONTENTS 11 Bibliography 139 Internet resources 159 Chapter 1 Introduction Autonomous navigation and exploration in unstructured environments is a major challenge in robotics and an active field of research. In order to fulfill complex outdoor tasks, a robot needs enhanced sensing and interpreting abilities to detect drivable regions and to avoid collisions. For an autonomous outdoor system,
Recommended publications
  • Methods of Monte Carlo Simulation II
    Methods of Monte Carlo Simulation II Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2014 Ulm, 2014 2 Contents 1 SomeSimpleStochasticProcesses 7 1.1 StochasticProcesses . 7 1.2 RandomWalks .......................... 7 1.2.1 BernoulliProcesses . 7 1.2.2 RandomWalks ...................... 10 1.2.3 ProbabilitiesofRandomWalks . 13 1.2.4 Distribution of Xn .................... 13 1.2.5 FirstPassageTime . 14 2 Estimators 17 2.1 Bias, Variance, the Central Limit Theorem and Mean Square Error................................ 19 2.2 Non-AsymptoticErrorBounds. 22 2.3 Big O and Little o Notation ................... 23 3 Markov Chains 25 3.1 SimulatingMarkovChains . 28 3.1.1 Drawing from a Discrete Uniform Distribution . 28 3.1.2 Drawing From A Discrete Distribution on a Small State Space ........................... 28 3.1.3 SimulatingaMarkovChain . 28 3.2 Communication .......................... 29 3.3 TheStrongMarkovProperty . 30 3.4 RecurrenceandTransience . 31 3.4.1 RecurrenceofRandomWalks . 33 3.5 InvariantDistributions . 34 3.6 LimitingDistribution. 36 3.7 Reversibility............................ 37 4 The Poisson Process 39 4.1 Point Processes on [0, )..................... 39 ∞ 3 4 CONTENTS 4.2 PoissonProcess .......................... 41 4.2.1 Order Statistics and the Distribution of Arrival Times 44 4.2.2 DistributionofArrivalTimes . 45 4.3 SimulatingPoissonProcesses. 46 4.3.1 Using the Infinitesimal Definition to Simulate Approx- imately .......................... 46 4.3.2 SimulatingtheArrivalTimes . 47 4.3.3 SimulatingtheInter-ArrivalTimes . 48 4.4 InhomogenousPoissonProcesses. 48 4.5 Simulating an Inhomogenous Poisson Process . 49 4.5.1 Acceptance-Rejection. 49 4.5.2 Infinitesimal Approach (Approximate) . 50 4.6 CompoundPoissonProcesses . 51 5 ContinuousTimeMarkovChains 53 5.1 TransitionFunction. 53 5.2 InfinitesimalGenerator . 54 5.3 ContinuousTimeMarkovChains .
    [Show full text]
  • 12 : Conditional Random Fields 1 Hidden Markov Model
    10-708: Probabilistic Graphical Models 10-708, Spring 2014 12 : Conditional Random Fields Lecturer: Eric P. Xing Scribes: Qin Gao, Siheng Chen 1 Hidden Markov Model 1.1 General parametric form In hidden Markov model (HMM), we have three sets of parameters, j i transition probability matrix A : p(yt = 1jyt−1 = 1) = ai;j; initialprobabilities : p(y1) ∼ Multinomial(π1; π2; :::; πM ); i emission probabilities : p(xtjyt) ∼ Multinomial(bi;1; bi;2; :::; bi;K ): 1.2 Inference k k The inference can be done with forward algorithm which computes αt ≡ µt−1!t(k) = P (x1; :::; xt−1; xt; yt = 1) recursively by k k X i αt = p(xtjyt = 1) αt−1ai;k; (1) i k k and the backward algorithm which computes βt ≡ µt t+1(k) = P (xt+1; :::; xT jyt = 1) recursively by k X i i βt = ak;ip(xt+1jyt+1 = 1)βt+1: (2) i Another key quantity is the conditional probability of any hidden state given the entire sequence, which can be computed by the dot product of forward message and backward message by, i i i i X i;j γt = p(yt = 1jx1:T ) / αtβt = ξt ; (3) j where we define, i;j i j ξt = p(yt = 1; yt−1 = 1; x1:T ); i j / µt−1!t(yt = 1)µt t+1(yt+1 = 1)p(xt+1jyt+1)p(yt+1jyt); i j i = αtβt+1ai;jp(xt+1jyt+1 = 1): The implementation in Matlab can be vectorized by using, i Bt(i) = p(xtjyt = 1); j i A(i; j) = p(yt+1 = 1jyt = 1): 1 2 12 : Conditional Random Fields The relation of those quantities can be simply written in pseudocode as, T αt = (A αt−1): ∗ Bt; βt = A(βt+1: ∗ Bt+1); T ξt = (αt(βt+1: ∗ Bt+1) ): ∗ A; γt = αt: ∗ βt: 1.3 Learning 1.3.1 Supervised Learning The supervised learning is trivial if only we know the true state path.
    [Show full text]
  • MCMC Learning (Slides)
    Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions MCMC Learning Varun Kanade Elchanan Mossel UC Berkeley UC Berkeley August 30, 2013 Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Outline Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Uniform Distribution Learning • Unknown target function f : {−1; 1gn ! {−1; 1g from some class C • Uniform distribution over {−1; 1gn • Random Examples: Monotone Decision Trees [OS06] • Random Walk: DNF expressions [BMOS03] • Membership Query: DNF, TOP [J95] • Main Tool: Discrete Fourier Analysis X Y f (x) = f^(S)χS (x); χS (x) = xi S⊆[n] i2S • Can utilize sophisticated results: hypercontractivity, invariance, etc. • Connections to cryptography, hardness, de-randomization etc. • Unfortunately, too much of an idealization. In practice, variables are correlated. Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Markov Random Fields • Graph G = ([n]; E). Each node takes some value in finite set A. n • Distribution over A : (for φC non-negative, Z normalization constant) 1 Y Pr((σ ) ) = φ ((σ ) ) v v2[n] Z C v v2C clique C Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Markov Random Fields • MRFs widely used in vision, computational biology, biostatistics etc. • Extensive Algorithmic Theory for sampling from MRFs, recovering parameters and structures • Learning Question: Given f : An ! {−1; 1g. (How) Can we learn with respect to MRF distribution? • Can we utilize the structure of the MRF to aid in learning? Uniform Distribution Learning Markov Random Fields Harmonic Analysis Experiments and Questions Learning Model • Let M be a MRF with distribution π and f : An ! {−1; 1g the target function • Learning algorithm gets i.i.d.
    [Show full text]
  • Markov Random Fields: – Geman, Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”, IEEE PAMI 6, No
    MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Conglin Lu Medical Image Display and Analysis Group University of North Carolina, Chapel Hill MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Outline: Background; Definition and properties of MRF; Computation; MRF m-reps models. MarkovMarkov RandomRandom FieldsFields Model a large collection of random variables with complex dependency relationships among them. MarkovMarkov RandomRandom FieldsFields • A model based approach; • Has been applied to a variety of problems: - Speech recognition - Natural language processing - Coding - Image analysis - Neural networks - Artificial intelligence • Usually used within the Bayesian framework. TheThe BayesianBayesian ParadigmParadigm X = space of the unknown variables, e.g. labels; Y = space of data (observations), e.g. intensity values; Given an observation y∈Y, want to make inference about x∈X. TheThe BayesianBayesian ParadigmParadigm Prior PX : probability distribution on X; Likelihood PY|X : conditional distribution of Y given X; Statistical inference is based on the posterior distribution PX|Y ∝ PX •PY|X . TheThe PriorPrior DistributionDistribution • Describes our assumption or knowledge about the model; • X is usually a high dimensional space. PX describes the joint distribution of a large number of random variables; • How do we define PX? MarkovMarkov RandomRandom FieldsFields withwith ApplicationsApplications toto MM--repsreps ModelsModels Outline: 9 Background; Definition and properties of MRF; Computation; MRF m-reps models. AssumptionsAssumptions •X = {Xs}s∈S, where each Xs is a random variable; S is an index set and is finite; • There is a common state space R:Xs∈R for all s ∈ S; | R | is finite; • Let Ω = {ω=(x , ..., x ): x ∈ , 1≤i≤N} be s1 sN si R the set of all possible configurations.
    [Show full text]
  • Anomaly Detection Based on Wavelet Domain GARCH Random Field Modeling Amir Noiboar and Israel Cohen, Senior Member, IEEE
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 5, MAY 2007 1361 Anomaly Detection Based on Wavelet Domain GARCH Random Field Modeling Amir Noiboar and Israel Cohen, Senior Member, IEEE Abstract—One-dimensional Generalized Autoregressive Con- Markov noise. It is also claimed that objects in imagery create a ditional Heteroscedasticity (GARCH) model is widely used for response over several scales in a multiresolution representation modeling financial time series. Extending the GARCH model to of an image, and therefore, the wavelet transform can serve as multiple dimensions yields a novel clutter model which is capable of taking into account important characteristics of a wavelet-based a means for computing a feature set for input to a detector. In multiscale feature space, namely heavy-tailed distributions and [17], a multiscale wavelet representation is utilized to capture innovations clustering as well as spatial and scale correlations. We periodical patterns of various period lengths, which often ap- show that the multidimensional GARCH model generalizes the pear in natural clutter images. In [12], the orientation and scale casual Gauss Markov random field (GMRF) model, and we de- selectivity of the wavelet transform are related to the biological velop a multiscale matched subspace detector (MSD) for detecting anomalies in GARCH clutter. Experimental results demonstrate mechanisms of the human visual system and are utilized to that by using a multiscale MSD under GARCH clutter modeling, enhance mammographic features. rather than GMRF clutter modeling, a reduced false-alarm rate Statistical models for clutter and anomalies are usually can be achieved without compromising the detection rate. related to the Gaussian distribution due to its mathematical Index Terms—Anomaly detection, Gaussian Markov tractability.
    [Show full text]
  • A Novel Approach for Markov Random Field with Intractable Normalising Constant on Large Lattices
    A novel approach for Markov Random Field with intractable normalising constant on large lattices W. Zhu ∗ and Y. Fany February 19, 2018 Abstract The pseudo likelihood method of Besag (1974), has remained a popular method for estimating Markov random field on a very large lattice, despite various documented deficiencies. This is partly because it remains the only computationally tractable method for large lattices. We introduce a novel method to estimate Markov random fields defined on a regular lattice. The method takes advantage of conditional independence structures and recur- sively decomposes a large lattice into smaller sublattices. An approximation is made at each decomposition. Doing so completely avoids the need to com- pute the troublesome normalising constant. The computational complexity arXiv:1601.02410v1 [stat.ME] 11 Jan 2016 is O(N), where N is the the number of pixels in lattice, making it computa- tionally attractive for very large lattices. We show through simulation, that the proposed method performs well, even when compared to the methods using exact likelihoods. Keywords: Markov random field, normalizing constant, conditional indepen- dence, decomposition, Potts model. ∗School of Mathematics and Statistics, University of New South Wales, Sydney 2052 Australia. Communicating Author Wanchuang Zhu: Email [email protected]. ySchool of Mathematics and Statistics, University of New South Wales, Sydney 2052 Australia. Email [email protected]. 1 1 Introduction Markov random field (MRF) models have an important role in modelling spa- tially correlated datasets. They have been used extensively in image and texture analyses ( Nott and Ryden´ 1999, Hurn et al. 2003), image segmentation (Pal and Pal 1993, Van Leemput et al.
    [Show full text]
  • Markov Random Fields and Stochastic Image Models
    Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i.
    [Show full text]
  • A Note on Probability Theory
    A Note on Probability Theory Ying Nian Wu, Note for STATS 200A Contents 1 Probability 3 1.1 Why probability? . .3 1.2 Three canonical examples . .4 1.3 Long run frequency . .4 1.4 Basic language and notation . .4 1.5 Axioms . .5 1.6 Sigma algebra . .5 1.7 Why sigma-algebra . .6 2 Measure 6 2.1 What is measure? . .6 2.2 Lebesgue measure . .7 2.3 Law of large number . .7 2.4 Concentration of measure . .8 2.5 Lebesgue integral . .9 2.6 Simple functions . 10 2.7 Convergence theorems . 10 3 Univariate distribution and expectation 11 3.1 Discrete random variable, expectation, long run average . 11 3.2 Continuous random variable, basic event, discretization . 12 3.3 How to think about density . 13 3.4 Existence of probability density function . 13 3.5 Cumulative density . 14 3.6 Uniform distribution . 14 3.7 Inversion method . 14 3.8 Transformation . 15 3.9 Polar method for normal random variable . 16 3.10 Counting techniques . 17 3.11 Bernoulli . 17 3.12 Binomial . 18 3.13 Normal approximation . 18 3.14 Geometric . 22 3.15 Poisson process . 22 3.16 Survival analysis . 24 1 4 Joint distribution and covariance 25 4.1 Joint distribution . 25 4.2 Expectation, variance, covariance . 26 4.3 Correlation as cosine of angle . 27 4.4 Correlation as the strength of regression . 28 4.5 Least squares derivation of regression . 28 4.6 Regression in terms of projections . 29 4.7 Independence and uncorrelated . 29 4.8 Multivariate statistics . 30 4.9 Multivariate normal .
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr, Richard Everitt, Matthew T
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr, Richard Everitt, Matthew T. Moores To cite this version: Julien Stoehr, Richard Everitt, Matthew T. Moores. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v2 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v2 Preprint submitted on 11 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    [Show full text]
  • Robust Cell Image Segmentation Via Improved Markov Random Field
    https://doi.org/10.20965/jaciii.2020.p0963 Cell Image Segmentation via Improved Markov Random Field Paper: Robust Cell Image Segmentation via Improved Markov Random Field Based on a Chinese Restaurant Process Model Dongming Li∗1,∗2, Changming Sun∗3,SuWei∗4,YueYu∗2,∗5, and Jinhua Yang∗1,† ∗1College of Opto-Electronic Engineering, Changchun University of Science and Technology No.7089 Weixin Road, Chaoyang District, Changchun, Jilin 130022, China E-mail: [email protected] ∗2School of Information Technology, Jilin Agricultural University No.2888 Xincheng Road, Jingyue District, Changchun, Jilin 130118, China ∗3CSIRO Data61 P.O. Box 76, Epping, New South Wales 1710, Australia ∗4Modern Educational Technology Center, Changchun University of Chinese Medicine No.1035 Boshuo Road, Jingyue District, Changchun, Jilin 130117, China ∗5College of Artificial Intelligence, Tourism College of Changchun University Sheling Town, University Campus District, Changchun, Jilin 130607, China †Corresponding author [Received October 5, 2020; accepted November 18, 2020] In this paper, a segmentation method for cell images common approaches for cell segmentation is image inten- using Markov random field (MRF) based on a Chi- sity thresholding which suffers from the issue of inten- nese restaurant process model (CRPM) is proposed. sity inhomogeneity. Watershed based methods are com- Firstly, we carry out the preprocessing on the cell im- monly utilized for clustered nuclei segmentation. Dunn ages, and then we focus on cell image segmentation proposed the fuzzy C-means (FCM) method for image using MRF based on a CRPM under a maximum a segmentation [2]. The FCM method is an unsupervised posteriori (MAP) criterion. The CRPM can be used clustering algorithm, which has been widely used in the to estimate the number of clusters in advance, adjust- field of image segmentation.
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr To cite this version: Julien Stoehr. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v1 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v1 Preprint submitted on 8 Feb 2017 (v1), last revised 11 Apr 2017 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland February 8, 2017 Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing con- stant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the like- lihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    [Show full text]
  • Program Book
    TABLE OF CONTENTS 5 Welcome Message 6 Administrative Program 7 Social Program 9 General Information 13 Program Welcome Message On behalf of the Organizing Committee, I welcome you to Mérida and the 15th Latin American Congress on Probability and Mathematical Statistics. We are truly honored by your presence and sincerely hope that the experience will prove to be professionally rewarding, as well as memorable on a personal level. It goes without saying that your participation is highly significant for promoting the development of this subject matter in our region. Please do not hesitate to ask any member of the staff for assistance during your stay, information regarding academic activities and conference venues, or any other questions you may have. The city of Mérida is renowned within Mexico for its warm hospitality, amid gastronomical, archaeological, and cultural treasures. Do take advantage of any free time to explore the city and its surroundings! Dr. Daniel Hernández Chair of the Organizing Committee, XV CLAPEM Administrative Program REGISTRATION The registration will be at the venue Gamma Mérida El Castellano Hotel. There will be a registration desk at the Lobby. Sunday, December 1, 2019 From 16:00 hrs to 22:00 hrs. Monday, December 2, 2019 From 8:00 to 17:00 hrs. Tuesday, December 3, 2019 From 8:00 to 17:00 hrs Thursday, December 4, 2019 From 8:00 to 16:00 hrs. DO YOU NEED AN INVOICE FOR YOUR REGISTRATION FEE? Please ask for it at the Registration Desk at your arrival. COFFEE BREAKS During the XV CLAPEM there will be coffee break services which will be announced in the program and will be displayed in both venues: Gamma Mérida El Castellano Hotel and CCU, UADY.
    [Show full text]