Caryophyllaceae) Species Using ISSR Molecular Marker

Total Page:16

File Type:pdf, Size:1020Kb

Caryophyllaceae) Species Using ISSR Molecular Marker Jordan Journal of Agricultural Sciences, Volume 11, No.4 2015 Assessment of Genetic Diversity of Silene (Caryophyllaceae) Species Using ISSR Molecular Marker Tahereh Aghaee Bargish1 and Fatemeh Rahmani2 ABSTRACT In the present work, we employed Inter-Simple Sequence Repeat (ISSR), a polymerase chain reaction (PCR)- based system to evaluate the genetic diversity of thirteen species of Silene in Iran. Thirteen ISSR primers amplified a total of 207 DNA fragments, of which 204 (98.85%) were polymorphic. The obtained mean polymorphism information content (PIC) value was 0.88. Jaccard’s similarity coefficient ranged from 0.15 to 0.38 according to ISSR. Cluster analysis data revealed three main clusters. ISSR detected high polymorphism level and represented high genetic variation at interspecies level in Silene genus. Keywords: Genetic variation; Silene; Polymorphism; ISSR. INTRODUCTION Jurgens et al. 2002, a; Moore et al. 2003; Tero et al. 2003; Bernasconi et al. 2009). Most of the Silene species are Silene L. is one of the largest genera of the world’s flora diploid having 2n = 2x = 24, or 2n = 2x = 20, some others with 700 species worldwide (Greuter, 1995). The genus is are tetraploid (4x = 48) and hexaploid (6x = 72) with a few widespread and most abundant in the Mediterranean species showing higher polyploidy level, 2n =96, 120 and (Oxelman et al. 1997). In Iran, Silene includes 110 species 192 (Bari, 1973). which 35 are endemic (Melzheimer, 1988). It contains Different molecular markers have been used in several important weeds, horticultural plants and some systematic and genetic diversity studies (Tonguc and medicinal species (Swank, 1932; Vestal, 1952). Silene often Griffiths, 2004; Hale and Farnham, 2006; Louarn et al. 2007; serves as model system for manifold scientific questions Lu et al. 2009; Lingling et al. 2012). Knowledge of genetic due to its enormous diversity of ecological and diversity among individuals provides an important data such morphological characters, reproductive systems and as genetic structure and gene flow (Al-Fawaeer et al. 2011). parasite host interactions (Alexander and Antonovics 1988; Molecular analyses provide an effectively scientific Delph and Meagher 1995; Desfeux and Lejeune 1996; basis for parent’s selection; development of the right strategy for germplasm collection, evaluation, conservation, 1 MSc, Department of Biology and Institute of and foreign genes introgression or exchange. The Inter- Biotechnology, Urmia University, Urmia, Iran 2 PhD, Assistant of Professor, Department of Biology Simple Sequence Repeat (ISSR) marker involves and Institute of Biotechnology, Urmia University, polymerase chain reaction (PCR) amplifications of DNA Urmia, Iran using a primer composed of a microsatellite sequence [email protected] Received on 14/7/2014 and Accepted for Publication on (Zietkiewicz et al. 1994). ISSRs have been successfully 30/11/2014. used in genetic diversity studies of large number of plants (Al-Maarri et al. 2014). © 2015 DAR Publishers/The University of Jordan. All Rights Reserved. -1037- Assessment of Genetic… Tahereh Aghaee Bargish and Fatemeh Rahmani A few molecular studies have been performed on Silene MATERIALS AND METHODS in the world and there are not much systematic studies on Plant materials. Species of Silene genus were the genetic relationship among the species of Silene based collected from their natural growing regions of West on molecular markers in Iran. In the present study; we Azerbijan and Khorasan area (Figure 1).The details on systematically investigate the genetic relationship between sample collection are given in Table 1. Fresh young thirteen species of Silene genus in Iran using ISSR marker. leaves of 5 to 6 plants were collected from the field- grown plants and stored at -80°C prior to DNA extraction. Plant leaves of the same species were mixed prior to DNA extraction. Table 1. Location of Silene species used in the present study. Species Location 1 S. bupleuroides Urmia, Salmas road, Ghoshchi 1800 m. 2 S. vulgaris Maku Between GarehKhaj and Dibak, 1850 m. 3 S. aucheriana Maku Between GarehKhaj and Torkan 1850 m. 4 S. dichotoma Urmia, Jade Sero, Nazlu, 1273 m. 5 S. latifolia Urmia, Jade Emamzade, 1273 m. 6 S. chlorifolia Urmia, Ghoshchi, koheSomakh, 1800 m. 7 S. araratica Maku Between GarehKhaj and Dibak, 1850 m. 8 S. conoidea Khoy, Psak Village,1700 m. 9 S. spergulifolia Urmia,45 km Oshnaviyeh, 1300 m. 10 S. parjumanensis Western Khorasan, W-Ghaeen, Tajan mountains, 2000 m. 11 S. noctiflora North Khorasan, W-S Bojnord, Rien, 1700 m. 12 S. indeprensa Khorasan, Daregaz, International Park Tounduoreh, 2400 m. 13 S. coronaria Goulestan, E-N International Park Goulestan, 1200 m. -1038- Jordan Journal of Agricultural Sciences, Volume 11, No.4 2015 Figure 1.Geographical distribution of selected Silene spp. used in this study. The collection area has been highliighted with grrey color. DNA extraction. The genomic DNA was extracted (1cycle); 2) Denaturation at 95˚С for 30 s, 54˚С for 45 s following the modified CTAB method (Liu et al. 2003). using Auto Delta program with reduction of one degree in The concentration of each DNA sample was determined every cycle, extension at 72˚С for 2 min (35 cycles); 3) spectrophotometrically at 260 nm (Biophotometer 6131; final extension at 72˚С for 10 min (1 cycles). The PCR Eppendorf, Hamburg, Germany). DNA samples having products were electrophoresed (Bio-Rad) on 1.5% agarose good degree of purity (1.8-2) were considered for PCR in 0.5X TBE buffer. The gels stained with ethidium amplifications. The integrity of genomic DNA was bromide (10μg /ml) and phhotographed under ultraviolet determined by electrophoresis on1.0% (w/v) agarose gel (UV) light in a gel documentation system (Carestream and then diluted to 10 ng /µl for PCR reactions. 212 Pro Imaging System, USA). Primers which gave ISSR-PCR amplification. Thirteen ISSR primers were reproducible fingerprints (DNA bands) were considered purchased from Cinnagen; Tehran, Iran (Table 2). DNA for data analysis. Size of DNA fragments were estimated amplifications were performed in a 96-well Applied by comparison with the Gene Ruler DNA size marker Biosystem using Touchdown program with the following 1Kb (Fermentas). cycle profile: 1) Initial denaturation at 95˚С for 3 min -1039- Assessment of Genetic… Tahereh Aghaee Bargish and Fatemeh Rahmani Table 2. Primer sequences used for ISSR analysis in performed using the numerical taxonomy multivariate this study. analysis system Software package (NTSYS-pc); version Annealing 2.02 (Yap and Nelson, 1996; Rohlf, 2002). ISSR primers (5’ -3’) temperature Polymorphism information content (PIC) values were UBC807 (AG)8T 48˚C estimated according to the formula: PIC= 1 – Σ (Pij) 2, UBC816 (CA)8T 44˚C Where, Pij is the frequency of the ith pattern revealed UBC826 (AC)8C 44˚C by the jth primer summed across all patterns revealed by UBC835 (AG)8TC 44˚C the primers (Botstein et al. 1980). Dendrogram was UBC836 (AG)8YA 44˚C constructed based on the genetic similarity matrix using UBC841 (GA)8YC 42˚C Complete Linkage method. The representativeness of the UBC842 (GA)8YG 44˚C dendrogram was evaluated by estimating cophenetic UBC847 (CA)8RC 49˚C correlation coefficient and comparing it with the UBC868 (GAA)6 62˚C similarity matrix using Mantel matrix correspondence UBC888 BDB(CA)7 52˚C test (Mantel, 1967). UBC889 DBD(AC)7 50˚C UBC890 VHV(GT)7 52˚C RESULTS UBC891 HVH(GT)7 44˚C ISSR analysis. Thirteen ISSR primers amplified a R = (A, G); Y = (C, T); B = (C, G, T); D = (A, G, T); H total of 207scorable bands (Table 3) of which 204 were = (A, C, T); V = (A, C, G) polymorphic (99%). High level of molecular polymorphism was detected ranging from 89.47% Data analyses. ISSR amplifications were repeated (primer UBC 847) to 100% (most of the other primers). twice and only clear bands considered for scoring. Faint Typical result obtained with the UBC 888 primer is or unclear bands were not considered .The amplified shown in Figure 2. The number of scorable bands DNA fragments were recorded as either (1) or (0), produced per primer ranged from 9 (UBC 835& UBC representing the presence or absence of the band, 868) to 27(UBC 826), with an average of 15.9 fragments respectively. Data analysis was conducted using per primer. The size of the amplified products ranged polymorphic bands. Amplified fragments were scored to from 190 bp to 2500 bp. create binary data matrices. Data analyses were -1040- Jordan Journal of Agricultural Sciences, Volume 11, No.4 2015 Table 3. Genetic diversity of Silene species revealed by ISSR. Total number Number of Number of Percentage of PIC Primers of bands polymorphic bands monomorphic bands polymorphic bands (PPB) value UBC807 17 17 0 100 0.91 UBC816 13 13 0 100 0.86 UBC826 27 27 0 100 0.95 UBC835 9 9 0 100 0.74 UBC836 13 13 0 100 0.91 UBC841 12 12 0 100 0.94 UBC842 23 22 1 95.6 0.92 UBC847 19 17 2 89.47 0.85 UBC868 9 9 0 100 0.78 UBC888 14 14 0 100 0.87 UBC889 11 11 0 100 0.86 UBC890 23 23 0 100 0.91 UBC891 17 17 0 100 0.91 Total 207 204 0 - - Mean 15.9 15.6 - 98.85 0.87 Figure 2.Amplified results of Silene species using primer UBC 888. The numbers from left to right are representative of 1) S.bupleuroides; 2 ) S.vulgaris; 3) S.aucheriana; 4) S.dichotoma; 5) S.latifolia; 6) S.chlorifolia; 7) S.araratica; 8) S. conoidea; 9) S.spergulifolia; 10) S.parjumanensis; 11) S.noctiflora; 12) S.indeprensa; 13) S.coronaria. L represents 1Kb DNA ladder. -1041- Assessment of Genetic… Tahereh Aghaee Bargish and Fatemeh Rahmani The PIC values, a reflection of allele diversity and bupleuroide, S.
Recommended publications
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]
  • Pala Earctic G Rassland S
    Issue 46 (July 2020) ISSN 2627-9827 - DOI 10.21570/EDGG.PG.46 Journal of the Eurasian Dry Grassland Group Dry Grassland of the Eurasian Journal PALAEARCTIC GRASSLANDS PALAEARCTIC 2 Palaearctic Grasslands 46 ( J u ly 20 2 0) Table of Contents Palaearctic Grasslands ISSN 2627-9827 DOI 10.21570/EDGG.PG46 Palaearctic Grasslands, formerly published under the names Bulletin of the European Editorial 3 Dry Grassland Group (Issues 1-26) and Bulletin of the Eurasian Dry Grassland Group (Issues 27-36) is the journal of the Eurasian Dry Grassland Group (EDGG). It usually appears in four issues per year. Palaearctic Grasslands publishes news and announce- ments of EDGG, its projects, related organisations and its members. At the same time it serves as outlet for scientific articles and photo contributions. News 4 Palaearctic Grasslands is sent to all EDGG members and, together with all previous issues, it is also freely available at http://edgg.org/publications/bulletin. All content (text, photos, figures) in Palaearctic Grasslands is open access and available under the Creative Commons license CC-BY-SA 4.0 that allow to re-use it provided EDGG Publications 8 proper attribution is made to the originators ("BY") and the new item is licensed in the same way ("SA" = "share alike"). Scientific articles (Research Articles, Reviews, Forum Articles, Scientific Reports) should be submitted to Jürgen Dengler ([email protected]), following the Au- Aleksanyan et al.: Biodiversity of 12 thor Guidelines updated in Palaearctic Grasslands 45: 4. They are subject to editorial dry grasslands in Armenia: First review, with one member of the Editorial Board serving as Scientific Editor and deciding results from the 13th EDGG Field about acceptance, necessary revisions or rejection.
    [Show full text]
  • (Bromeliaceae) in Den Südamerikanischen Anden
    Phylogeographie und Populationsgenetik der Arten der Gattung Fosterella (Bromeliaceae) in den südamerikanischen Anden Dissertation Natascha Wagner Phylogeographie und Populationsgenetik der Arten der Gattung Fosterella (Bromeliaceae) in den südamerikanischen Anden Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) angefertigt in der Abteilung Morphologie und Systematik der Pflanzen, Institut für Biologie, Fachbereich 10/ Mathematik und Naturwissenschaften, Universität Kassel von Natascha Wagner Kassel, 2012 Als Dissertation vom Fachbereich 10 der Universität Kassel angenommen am: 13. Dezember 2012 Betreuer: Prof. Dr. Kurt Weising Promotionskommission: Prof. Dr. Kurt Weising (1. Gutachter) Prof. Dr. Pierre Ibisch (Beisitzer) Prof. Dr. Georg Zizka (2. Gutachter) Prof. Dr. Rüdiger Wagner (Beisitzer) Datum der Disputation: 26. Februar 2013 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung .............................................................................................. 1 1.1 Eine kurze Übersicht über die Erdgeschichte Südamerikas..................................... 1 1.2 Bromeliaceae ............................................................................................................ 3 1.3 Fosterella................................................................................................................. 5 1.3.1 penduliflora-Gruppe ........................................................................................ 10 1.3.2 micrantha-Gruppe...........................................................................................
    [Show full text]
  • Population Genetic Structure and Plant Fitness of Natural and Ex Situ
    Population genetic structure and plant fitness of natural and ex situ populations in Silene chlorantha (W ILLD .) EHRH . and Silene otites (L.) WIBEL Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Daniel Lauterbach aus Brandenburg an der Havel 2012 Die Arbeit wurde im Zeitraum von Juni 2008 bis Februar 2012 an der Zentraleinrichtung Botanischer Garten und Botanisches Museum Berlin - Dahlem, Freie Universität Berlin unter der Leitung von Herrn Prof. Dr. Thomas Borsch angefertigt. 1. Gutachter: Prof. Dr. Thomas Borsch 2. Gutachter: Prof. Dr. Ingo Kowarik Disputation am 04.07.2012 Index Table of contents 1 General Introduction .................................................................................................... 1 1.1 Effects of land-use changes on dry grasslands .................................................. 1 1.2 The study species: Silene chlorantha (WILLD .) EHRH . and Silene otites (L.) WIBEL 2 1.3 Population genetic structure and plant fitness ................................................... 7 1.4 Ex situ plant conservation .................................................................................. 10 1.5 Comments to the structure of the presented thesis .......................................... 12 2 Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha
    [Show full text]
  • Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties
    Diversity 2014, 6, 415-499; doi:10.3390/d6030415 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties Nilufar Z. Mamadalieva 1, Rene Lafont 2 and Michael Wink 3,* 1 Institute of the Chemistry of Plant Substances AS RUz, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan; E-Mail: [email protected] 2 Sorbonne Universités, Université Pierre et Marie Curie, IBPS-BIOSIPE, Case Courrier n°29, 7 Quai Saint Bernard F-75252, Paris cedex 05, France; E-Mail: [email protected] 3 Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-6221-54-4881; Fax: +49-6221-54-4884. Received: 21 May 2014; in revised form: 26 June 2014 / Accepted: 1 July 2014 / Published: 11 July 2014 Abstract: The genus Silene (family Caryophyllaceae) comprises more than 700 species, which are widely distributed in temperate zones of the Northern Hemisphere, but are also present in Africa and have been introduced in other continents. Silene produces a high diversity of secondary metabolites and many of them show interesting biological and pharmacological activities. More than 450 compounds have been isolated; important classes include phytoecdysteroids (which mimic insect molting hormones), triterpene saponins (with detergent properties), volatiles, other terpenoids and phenolics. This review focusses on the phytochemical diversity, distribution of Silene secondary metabolites and their biological activities. Keywords: Silene; Caryophyllaceae; diversity; secondary metabolites; pharmacology; biological properties Diversity 2014, 6 416 1.
    [Show full text]
  • Caryophyllaceae) Species
    African Journal of Biotechnology Vol. 11(48), pp. 10859-10867, 14 June, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.513 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Inter-populations genetic and morphological diversity in three Silene (Caryophyllaceae) species Masoud Sheidai1*, Roza Eftekharian1, Zahra Noormohammadi2 and Abbas Gholipoor3 1Shahid Beheshti University, GC, Faculty of Biological Sciences, Tehran, Iran 2Biology Department, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Poonak, Tehran, Iran. 3Department of Biology, Faculty of Science, Payame Noor University, P. O. Box 19395-3697 Tehran, Iran. Accepted 30 March, 2012 The inter-populations morphological and genetic variations were studied in three species of Silene (Silene indeprensa, Silene gynodioica and Silene crispans) of the section Auriculatae, which grow and form several populations in different regions of Iran. Morphological analysis of variance (ANOVA) and analysis of molecular (AMOVA) analyses showed the species distinctness. Unweighted paired group with arithmetic average (UPGMA) clustering of morphological characters and neighbor-joining (NJ) tree of molecular features almost separated the species from each other. In S. gynodioica, Soltaneiyes and Gheydar populations differed from the other populations in both morphological and molecular features, and in case of S. indeprensa, Ghorkhood and Hezarmasjed populations differed significantly from the other populations in both morphological and molecular features. Therefore, these populations are considered as a new subspecies in these two species. Some of the populations showed the presence of specific inter-simple sequence repeat (ISSR) band/locus, indicting genetic divergence of the populations possibly either due to local adaptations or genetic drift.
    [Show full text]
  • Thesis Eduardo Cires
    Universidad de Oviedo Departamento de Biología de Organismos y Sistemas TESIS DOCTORAL Unravelling the polyploid complex Ranunculus parnassiifolius L. (Ranunculaceae) A combined morphologic and molecular-genetic approach Eduardo Cires Rodríguez Oviedo, 2011 Director de la Tesis Doctoral: Dr. José Antonio Fernández Prieto (Universidad de Oviedo) Codirectora de la Tesis Doctoral: Dra. María Ángeles Matilde Revilla Bahillo (Universidad de Oviedo) Miembros del Tribunal: Presidente: Dr. Ricardo Sánchez Tamés (Universidad de Oviedo) Secretario: Dr. Miguel Álvaro Bueno Sánchez (Universidad de Oviedo) Vocal: Dr. Pedro Sosa Henríquez (Universidad de Las Palmas de Gran Canaria) Vocal: Dra. Mercedes Herrera Gallastegui (Universidad del País Vasco) Vocal: Dra. Marie-Stéphanie Samain (Ghent University) Suplente: Dra. María Carmen Acedo Casado (Universidad de León) Suplente: Dra. Itziar García Mijangos (Universidad del País Vasco) Revisores externos para la obtención de la mención “Doctorado Europeo”: Dr. Christoph Neinhuis (Technische Universität Dresden, Germany) Dr. Jan Suda (Charles University / Academy of Sciences, Czech Republic) Dra. Judita Zozomová-Lihová (Academy of Sciences, Slovak Republic) Páginas Web: Universidad de Oviedo: www.uniovi.es Departamento de Biología de Organismos y Sistemas: www.unioviedo.es/BOS/ Homepage Eduardo Cires Rodríguez: http://cireseduardo.moonfruit.com/ Citación de la Tesis: Cires, E. (2011). Unravelling the polyploid complex Ranunculus parnassiifolius L. (Ranunculaceae): A combined morphologic and molecular-genetic approach. Memoria de Tesis Doctoral. Universidad de Oviedo, 212 pp. Diseño: Eduardo Cires Rodríguez & Candela Cuesta Moliner Fotografías e Imágenes: Eduardo Cires Rodríguez (páginas: 1, 21, 85, 125, 165); Candela Cuesta Moliner (página: 51); Miguel Álvaro Bueno Sánchez (página: 143); Tomás Emilio Díaz González (página: 207. Imagen modificada de: Fernández Prieto, J.A., Díaz González, T.E., Nava Fernández, H.S.
    [Show full text]
  • Caryophyllaceae) Farzaneh Jafari,1,5 Shahin Zarre,1 Abbas Gholipour,2 Frida Eggens,3 Richard K
    TAXON 69 (2) • April 2020: 337–368 Jafari & al. • Infrageneric classification of Silene SYSTEMATICS AND PHYLOGENY A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae) Farzaneh Jafari,1,5 Shahin Zarre,1 Abbas Gholipour,2 Frida Eggens,3 Richard K. Rabeler4 & Bengt Oxelman5,6 1 Department of Plant Science, Centre of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 Department of Biology, Faculty of Sciences, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran 3 Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden 4 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 5 Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, 40530 Göteborg, Sweden 6 Gothenburg Global Biodiversity Centre, University of Gothenburg, P.O. Box 461, 40530 Göteborg, Sweden Addresses for correspondence: Shahin Zarre, [email protected]; Bengt Oxelman, [email protected] DOI https://doi.org/10.1002/tax.12230 Abstract The systematization of species in plant taxonomy based on the phylogenetic relationships among them are of utmost importance and also very challenging in large genera. In those, phylogenetic results often may suggest substantially different rela- tionships than previous classifications, and call for large-scale taxonomic revisions. Delimitation of the genus Silene has been and is still somewhat controversial, and recent molecular phylogenetic studies have settled several monophyletic groups that differ sub- stantially from previous taxonomies.
    [Show full text]
  • De Novo Transcriptome Assembly and Polymorphism Detection in the flowering Plant Silene Vulgaris (Caryophyllaceae)
    Molecular Ecology Resources (2011) doi: 10.1111/j.1755-0998.2011.03079.x De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae) DANIEL B. SLOAN,* STEPHEN R. KELLER,† ANDREA E. BERARDI,* BRIAN J. SANDERSON,* JOHN F. KARPOVICH‡andDOUGLAS R. TAYLOR* *Department of Biology, University of Virginia, Charlottesville, VA 22903, USA, †Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, USA, ‡Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA Abstract Members of the angiosperm genus Silene are widely used in studies of ecology and evolution, but available genomic and population genetic resources within Silene remain limited. Deep transcriptome (i.e. expressed sequence tag or EST) sequencing has proven to be a rapid and cost-effective means to characterize gene content and identify polymorphic mark- ers in non-model organisms. In this study, we report the results of 454 GS-FLX Titanium sequencing of a polyA-selected and normalized cDNA library from Silene vulgaris. The library was generated from a single pool of transcripts, combining RNA from leaf, root and floral tissue from three genetically divergent European subpopulations of S. vulgaris.Asingle full-plate 454 run produced 959 520 reads totalling 363.6 Mb of sequence data with an average read length of 379.0 bp after quality trimming and removal of custom library adaptors. We assembled 832 251 (86.7%) of these reads into 40 964 contigs, which have a total length of 25.4 Mb and can be organized into 18 178 graph-based clusters or ‘isogroups’. Assembled sequences were annotated based on homology to genes in multiple public databases.
    [Show full text]
  • Redalyc.Phytoecdysteroids from Silene Plants: Distribution, Diversity
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MAMADALIEVA, Nilufar Z. Phytoecdysteroids from Silene plants: distribution, diversity and biological (antitumour, antibacterial and antioxidant) activities Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 11, núm. 6, noviembre, 2012, pp. 474-497 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85624607001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2012 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 11 (6): 474 - 497 ISSN 0717 7917 www.blacpma.usach.cl Revision | Review Phytoecdysteroids from Silene plants: distribution, diversity and biological (antitumour, antibacterial and antioxidant) activities [Fitoecdiesteroides de plantas Silene: distribución, diversidad y actividades biológicas (antitumorales, antibacterianas y antioxidantes)] Nilufar Z. MAMADALIEVA Laboratory of the Chemistry of Glycosides, Institute of the Chemistry of Plant Substances AS RUz, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan. Contactos | Contacts: Nilufar Z. MAMADALIEVA - E-mail address: [email protected] Abstract Silene is a genus of the Caryophyllaceae family, contains more than 700 species, which are widely distributed in Northern Hemisphere, but also in Africa, Asia and South American. Phytochemical investigations of Silene species have revealed that many components from this genus are highly bioactive. More than 400 compounds has been isolated, among them major are phytoecdysteroids. The paper reviews the biological (antitumour, antibacterial and antioxidant) activities and the phytoecdysteroids of genus Silene.
    [Show full text]
  • An Overview of the Alien Flora of the Yamal-Nenets Autonomous Area (Russia)
    Proceedings BDI-2020, 51-65 doi: 10.3897/ap.2.e56848 III Russian National Conference “Information Technology in Biodiversity Research” An overview of the alien flora of the Yamal-Nenets Autonomous Area (Russia) Elena V. Pismarkina*(a), Olga V. Khitun (b), Alexander A. Egorov (c,d), Vyacheslav V. Byalt (b) (a) ORCID: 0000-0001-8413-3860, Russian Academy of Sciences, Ural Branch: Institute Botanic Garden, 202а 8 Marta Street, 620144 Ekaterinburg, Russia (b) ORCID: 0000-0001-6832-8115, ORCID 0000-0002-2529-4389, Komarov Botanical Institute RAS, 2 Prof. Popov Street, 197376 Saint-Petersburg, Russia (c) ORCID: 0000-0002-1800-0389, St. Petersburg State University, 7–9 Universitetskaya emb., 199034 Saint-Petersburg, Russia (d) St. Petersburg State Forest Technical University, 5 Institutskyi per., 194021 Saint-Petersburg, Russia Abstract From eight years, 2012–2019, of field research, critical work in herbariums and literature reviews, we have established and identified as alien in the Yamal-Nenets Autonomous Area (YaNAA) a list of 216 vascular plant species from 144 genera and 35 families. The set of the ten richest families, by the number of species, alters in that the alien flora includes such families as Fabaceae, Polygonaceae and Chenopodiaceae, whereas the Cyperaceae, Salicaceae and Juncaceae families are absent from it. The richest by the number of species genus in the alien flora of the YaNAA is Chenopodium. We have classified the non-native species by the degree of naturalization, means of introduction and frequency of occurrence. We considered all alien species as kenophytes. For some arrival into the region can be traced back to 17th century, but most of them appeared at, or since, the end of 20th century or later.
    [Show full text]