Full Text in Pdf Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain). -
Development of Species-Specific Edna-Based Test Systems For
REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe). -
Translation 3889
FISHERIES AND MARINE SERVICE Translation Series No. 3889 RE R. Decapoda, Pantopoda LIBRARY FISHERIES AND OCEANS BIBLIOTHÈQUE PELHLS ET OCÉANS by V. A. Yashnov and E. S. Bronshtein Original title: Desyatinogiye raki, Piknogony From: In Keys to the fauna and flora of northern seas of the USSR, 1948 p. 328-351 Translated by the Translation Bureau (NDe) Multilingual Services Division Department of the Secretary of State of Canada Department of the Environment Fisheries and Marine Service Freshwater Institute Winnipeg, Man. 1976 43 pages typescript .t Follinw3n>9 DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS É+ 4.i 11> MULTILINGUAL SERVICES DIVISION DES SERVICES CANADA DIVISION MULTILINGUES TRANSLATED FROM — TRADUCTION DE INTO — EN Russian English AUTHOR — AUTEUR V.A. Yashnov, E.S. Bronshtein TITLE IN ENGLISH — TITRE ANGLAIS Decapoda, Pantopoda TITLE IN FOREIGN LANGUAGE (TRANSLITERATE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÉRE (TRANSCRIRE EN CARACTERES ROMAINS) Desyatinogiye raki, Piknogony REFERENCE IN FOREIGN LANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE,FOREIGN CHARACTERS. RÉFÉRENCE EN LANGUE ÉTRANGÉRE (NOM DU LIVRE OU PUBLICATION), 'di COMPLET, TRANSCRIRE EN CARACT'ERES ROMAINS. Opredelitel' fauny i flory severnykh morei SSSR REFERENCE IN ENGLISH — RÉFÉRENCE EN ANGLAIS Keys to the fauna and flora of the northern seas of the USSR PUBLISHER — ÉDITEUR PAGE NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMÉROS DES PAGES DANS not available DATE DE PUBLICATION L'ORIGINAL YEAR ISSUE NO. 328-351 VOLUME PLACE OF PUBLICATION ANNÉE NUMÉRO NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE. PAGES USSR 1948 DACTYLOGRAPHIÉES 43 REQUESTING DEPARTMENT En v i ronmnt TRANSLATION BUREAU NO. -
Challenging the Cold: Crabs Reconquer the Antarctic
Ecology, 86(3), 2005, pp. 619±625 q 2005 by the Ecological Society of America CHALLENGING THE COLD: CRABS RECONQUER THE ANTARCTIC SVEN THATJE,1,5 KLAUS ANGER,2 JAVIER A. CALCAGNO,3 GUSTAVO A. LOVRICH,4 HANS-OTTO POÈ RTNER,1 AND WOLF E. ARNTZ1 1Alfred Wegener Institute for Polar and Marine Research, Columbusstr. D-27568 Bremerhaven, Germany 2Biologische Anstalt Helgoland, Foundation Alfred Wegener Institute, Helgoland, Germany 3Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente GuÈiraldes 2160, C1428EHA, Buenos Aires, Argentina 4Consejo Nacional de Investigaciones Cientõ®cas y TeÂcnicas, Centro Austral de Investigaciones Cientõ®cas, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina Abstract. Recent records of lithodid crabs in deeper waters off the Antarctic continental slope raised the question of the return of crabs to Antarctic waters, following their extinction in the lower Miocene ;15 million years ago. Antarctic cooling may be responsible for the impoverishment of the marine high Antarctic decapod fauna, presently comprising only ®ve benthic shrimp species. Effects of polar conditions on marine life, including lowered metabolic rates and short seasonal food availability, are discussed as main evolutionary driving forces shaping Antarctic diversity. In particular, planktotrophic larval stages should be vulnerable to the mismatch of prolonged development and short periods of food avail- ability, selecting against complex life cycles. We hypothesize that larval lecithotrophy and cold tolerance, as recently observed in Subantarctic lithodids, represent, together with other adaptations in the adults, key features among the life-history adaptations of lithodids, potentially enabling them to conquer polar ecosystems. The return of benthic top predators to high Antarctic waters under conditions of climate change would considerably alter the benthic communities. -
The American Slipper Limpet Crepidula Fornicata (L.) in the Northern Wadden Sea 70 Years After Its Introduction
Helgol Mar Res (2003) 57:27–33 DOI 10.1007/s10152-002-0119-x ORIGINAL ARTICLE D. W. Thieltges · M. Strasser · K. Reise The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction Received: 14 December 2001 / Accepted: 15 August 2001 / Published online: 25 September 2002 © Springer-Verlag and AWI 2002 Abstract In 1934 the American slipper limpet 1997). In the centre of its European distributional range Crepidula fornicata (L.) was first recorded in the north- a population explosion has been observed on the Atlantic ern Wadden Sea in the Sylt-Rømø basin, presumably im- coast of France, southern England and the southern ported with Dutch oysters in the preceding years. The Netherlands. This is well documented (reviewed by present account is the first investigation of the Crepidula Blanchard 1997) and sparked a variety of studies on the population since its early spread on the former oyster ecological and economic impacts of Crepidula. The eco- beds was studied in 1948. A field survey in 2000 re- logical impacts of Crepidula are manifold, and include vealed the greatest abundance of Crepidula in the inter- the following: tidal/subtidal transition zone on mussel (Mytilus edulis) (1) Accumulation of pseudofaeces and of fine sediment beds. Here, average abundance and biomass was 141 m–2 through the filtration activity of Crepidula and indi- and 30 g organic dry weight per square metre, respec- viduals protruding in stacks into the water column. tively. On tidal flats with regular and extended periods of This was reported to cause changes in sediments and emersion as well as in the subtidal with swift currents in near-bottom currents (Ehrhold et al. -
The Zoology of East Greenland
/V ^^^tAx^^T^' MEDDELELSER OM GR0NLAND UDGIVNE AF ^ KOMMISSIONEN FOR VIDENSKABELIGE UNDERS0GELSERIGR0NLAND BD. 126 • NR. 6 THE ZOOLOGY OF EAST GREENLAND Edited by M. Degerbel, Ad. S. Jensen, R. Sparck and G. Thorson, Dr. phil. Professor, Dr. phil. Professor, Dr. phil. Dr. phil. in Cooperation with the Editorial Committee of »MeddeleIser om GronIand«. DECAPOD CRUSTACEANS BY P. E. HEEGAARD WITH 27 FIGURES IN THE TEXT 't! % K0BENHAVN C. A. REITZELS FORLAG BIANCO LUNOS BOGTRYKKKRI A/S 1941 Pris: Kr. 3.50. MEDDELELSER OM GR0NLAND UDGIVNE AF KOMMISSIONEN FOR VIDENSKABELIGE UNDERS0GELSER I GR0NLAND BD. 121 • NR. 6 THE ZOOLOGY OF EAST GREENLAND DECAPOD CRUSTACEANS BY P. E. HEEGAARD WITH 27 FIGURES IN THE TEXT K0BENHAVN C. A. REITZELS FORLAG BIANCO LUNOS BOGTRYKKERI A/S 1941 CONTENTS Pa Re Introduction 5 Brachyura Hyas coaretains Anornura Lithode.s- maja — grimaldii Paralomis spectabilis — bouvicri '5 Eupagurus pubescens !*"> Munida lenuimana. Galacanta roslrata Munidopsis eurriroslra 1 — si His Macrura 20 Polycheles nanus Sclerocra.ngon jero.t: 20 — borcas 24 Neetocrangon lar 28 Sabinea, hystri.r sepleincannala 31 Pont o phi I us norvegieus 34 Glyphocrangon sculptus Spirontocaris gainiardu — spin us 39 — lilijeborgii 42 — turgida 42 — polar is 45 groenlandiea 47 Bythocaris payeri 50 — leucopis °2 — simplicirostris 53 Pandalus boreahs 54 — propinquus 5(> Pasiphae tarda. 57 Hymenodora glacial is 58 Amalopeneus elegans 59 Sergestes arclicus "0 General remarks Literature INTRODUCTION The present paper comprises an account of the Crustacean Decapods so far found off the coast of East Greenland. Tt is primarily based on collections made by Danish Expeditions during the last few years, amongst which can be mentioned: ,,Treaarsexpeditionen til Christian d. -
Historic Naturalis Classica, Viii Historic Naturalis Classica
HISTORIC NATURALIS CLASSICA, VIII HISTORIC NATURALIS CLASSICA EDIDERUNT J. CRAMER ET H.K.SWANN TOMUS vm BIBUOGRAPHY OF THE LARVAE OF DECAPOD CRUSTACEA AND LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY WITH 122 FIGURES IN THE TEXT REPRINTED 1960 BY H. R. ENGELMANN (J. CRAMER) AND WHELDON & WESLEY, LTD. WEINHEIM/BERGSTR. CODICOTE/HERTS. BIBLIOGRAPHY OF THE LARVAE OF DECAPOD CRUSTACEA AND LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY WITH 122 FIGURES IN THE TEXT REPRINTED 1960 BY H. R. ENGELMANN (J. CRAMER) AND WHELDON & WESLEY, LTD. WEINHEIM/BERGSTR. CODICOTE/HERTS. COPYRIGHT 1939 & 1942 BY THfi RAY SOCIETY IN LONDON AUTHORIZED REPRINT COPYRIGHT OF THE SERIES BY J. CRAMER PUBLISHER IN WEINHEIM PRINTED IN GERMANY I9«0 i X\ T • THE RAY SOCIETY INSTITUTED MDCCCXLIV This volume (No. 125 of the Series) is issued to the Svhscribers to the RAY SOCIETY JOT the Year 1937. LONDON MCMXXXIX BIBLIOGKAPHY OF THE LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY, M.A., D.Sc, F.L.S. LONDON PRINTED FOR THE RAT SOCIETY SOLD BT BERNARD QUARITCH, LTD. U, GBAFTOK STBKET, NBW BOND STEBBT, LONDON, "W. 1 1939 PRINTED BY ADLABD AND SON, LIMITED 2 1 BLOOJlSBUBY WAY, LONDON, W.C. I Madt and printed in Great Britain. CONTENTS PAOE PBBFACE . " V BiBUOGRAPHY CLASSIFIED LIST . 64 Macrura Natantia 64 Penaeidea 64 Caridea 70 Macrura Reptantia 84 Nephropsidea 84 Eryonidea 88 Scyllaridea 88 Stenopidea 91 Thalassinidea 92 Anomura ; 95 Galatheidea . 95 Paguridea 97 Hippidea 100 Dromiacea 101 Brachyura 103 Gymnopleura 103 Brachygnatha 103 Oxyrhyncha 113 Oxystomata . 116 INDEX TO GENERA 120 PREFACE IT has been my intention to publish a monograph of Decapod larvae which should contain a bibliography, a part dealing with a number of general questions relating to the post-embryonic development of Decapoda and Euphausiacea, and a series of sections describing the larvae of all the groups, so far as they are known. -
Pagurus Bernhardus)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hermit crab (Pagurus bernhardus) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Emily Wilson 2007-07-03 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1169]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Wilson, E. 2007. Pagurus bernhardus Hermit crab. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1169.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-07-03 Hermit crab (Pagurus bernhardus) - Marine Life Information Network See online review for distribution map Pagurus bernhardus on shell gravel. Distribution data supplied by the Ocean Photographer: Paul Naylor Biogeographic Information System (OBIS). -
Discovery of Sabellaria Spinulosa Reefs in an Intensively fished Area of the Dutch Continental Shelf, North Sea T ⁎ Karin J
Journal of Sea Research 144 (2019) 85–94 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Discovery of Sabellaria spinulosa reefs in an intensively fished area of the Dutch Continental Shelf, North Sea T ⁎ Karin J. van der Reijdena, , Leo Koopb, Sarah O'Flynnc, Silvia Garciad, Oscar Bose, Christiaan van Sluisf, David J. Maaholmd, Peter M.J. Hermang,h, Dick G. Simonsb, Han Olffa, Tom Ysebaertc,e, Mirjam Snellenb, Laura L. Goversa,i, Adriaan D. Rijnsdorpe,j, Ricardo Aguilard a Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands b Acoustics Group, Delft University of Technology, 2629 HS Delft, the Netherlands c NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine & Delta Systems, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands d OCEANA Europe, Gran Via 59, 28013 Madrid, Spain e Wageningen Marine Research, P.O. Box 68, 1970 AB IJmuiden, the Netherlands f The North Sea Foundation, P.O. Box 1578, 3500 BN Utrecht, the Netherlands g DELTARES, P.O. Box 177, 2600 MH Delft, the Netherlands h Delft University of Technology, Hydraulic Engineering, 2629 HS Delft, the Netherlands i NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, the Netherlands j Aquaculture and Fisheries Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, the Netherlands ARTICLE INFO ABSTRACT Keywords: The tube-building polychaete Sabellaria spinulosa (Ross worm) can form conspicuous biogenic reefs that stabilize Biogenic Reef the seabed and increase biodiversity by providing a habitat for a multitude of other species. -
Antarctic Reptant Decapods: More Than a Myth?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Polar Biol (2004) 27: 195–201 DOI 10.1007/s00300-003-0583-z REVIEW Sven Thatje Æ Wolf E. Arntz Antarctic reptant decapods: more than a myth? Received: 21 August 2003 / Accepted: 28 November 2003 / Published online: 10 February 2004 Ó Springer-Verlag 2004 Abstract The impoverished Antarctic decapod fauna is dition of the German Polar Commission to South one of the most conspicuous biodiversity phenomena in Georgia in 1882–1883 (Pfeffer 1887). polar science. Although physiological and ecological Since then, a few new species and records of decapods approaches have tried to explain the reason for the low have been reported from the Southern Ocean (Yaldwyn decapod biodiversity pattern in the Southern Ocean, the 1965; Kirkwood 1984; Tiefenbacher 1990; Thatje 2003). complexity of this problem is still not completely However, known Antarctic decapod diversity remains understood. The scant records of crabs south of poor, represented by approximately only a dozen ben- the Polar Front were always considered as exceptional, thic natant (caridean shrimp) species. Some of those and have mostly been ignored by marine biologists species are known to occur in high abundances on the world-wide, creating one of the most dogmatic para- high-Antarctic Weddell Sea shelf (Arntz and Gorny digms in polar science. We herein review the record of 1991; Arntz et al. 1992; Gorny 1999). both adults and larvae of reptants from the Southern Low temperature is the main physiological impact Ocean. At present, several species of only lithodid crabs on life in polar areas, and results in low metabolic rates maintain considerable adult populations in circum- in polar ectotherms (Clarke 1983; Peck 2001). -
Humane Slaughter of Edible Decapod Crustaceans
animals Review Humane Slaughter of Edible Decapod Crustaceans Francesca Conte 1 , Eva Voslarova 2,* , Vladimir Vecerek 2, Robert William Elwood 3 , Paolo Coluccio 4, Michela Pugliese 1 and Annamaria Passantino 1 1 Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 981 68 Messina, Italy; [email protected] (F.C.); [email protected] (M.P.); [email protected] (A.P.) 2 Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; [email protected] 3 School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; [email protected] 4 Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence-Viale Pieraccini, 6-50139 Firenze, Italy; paolo.coluccio@unifi.it * Correspondence: [email protected] Simple Summary: Decapods respond to noxious stimuli in ways that are consistent with the experi- ence of pain; thus, we accept the need to provide a legal framework for their protection when they are used for human food. We review the main methods used to slaughter the major decapod crustaceans, highlighting problems posed by each method for animal welfare. The aim is to identify methods that are the least likely to cause suffering. These methods can then be recommended, whereas other methods that are more likely to cause suffering may be banned. We thus request changes in the legal status of this group of animals, to protect them from slaughter techniques that are not viewed as being acceptable. Abstract: Vast numbers of crustaceans are produced by aquaculture and caught in fisheries to Citation: Conte, F.; Voslarova, E.; meet the increasing demand for seafood and freshwater crustaceans. -
Hermit Crab Is a Small Hermit Crabs in the Families Paguridae and Diogenidae Are All Crustacean Found in Ocean Aquatic Marine Crabs
4 These crabs inhabit the local shoreline Pagurus bernhardus year Pagurus prideaux round. Class: Malacotraca Order: Decapoda Family: Paguridae Genus: Pagurus Pagurus bernhardus Distribution The hermit crab is a small Hermit crabs in the families Paguridae and Diogenidae are all crustacean found in ocean aquatic marine crabs. The family Paguridae on its own contains waters worldwide. Many several hundred different species. This species P. bernhardus is species are known from known to occur from Spitsbergen, Iceland and the Murman Sea only one or a few localities, throughout the boreal North American and European coasts and many are known world and in the Mediterranean Sea. It is common in Nova Scotian wide. New species are coastal waters. This is one of two known species occurring occurring. locally at Burntcoat Head. The other species is P. prideaux. It is similar in appearance and has somewhat the same distribution. Habitat They live along coasts in Although hermit crabs do venture into deeper waters, they are most types of sea beds, more commonly found in coastal waters where there is more including rocky and shell food and places to hide. Smaller individuals live in shallower bottoms, in sea grass beds, waters than larger individuals. A few species are land based. and sandy or silty Female terrestrial hermit crabs must return to the sea to breed. sediments, but excluding Larvae live mainly in pools and may be found under objects muddy bottoms. such as rocks and seaweed. Food It consumes microscopic bivalves, scraps of dead animals, The hermit crab is an microbes, and detritus. They are also able to filter organic omnivorous scavenger, particles from the water and will even graze on periphyton (a feeding on a wide variety of type of algae).