Antarctic Reptant Decapods: More Than a Myth?

Total Page:16

File Type:pdf, Size:1020Kb

Antarctic Reptant Decapods: More Than a Myth? View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Polar Biol (2004) 27: 195–201 DOI 10.1007/s00300-003-0583-z REVIEW Sven Thatje Æ Wolf E. Arntz Antarctic reptant decapods: more than a myth? Received: 21 August 2003 / Accepted: 28 November 2003 / Published online: 10 February 2004 Ó Springer-Verlag 2004 Abstract The impoverished Antarctic decapod fauna is dition of the German Polar Commission to South one of the most conspicuous biodiversity phenomena in Georgia in 1882–1883 (Pfeffer 1887). polar science. Although physiological and ecological Since then, a few new species and records of decapods approaches have tried to explain the reason for the low have been reported from the Southern Ocean (Yaldwyn decapod biodiversity pattern in the Southern Ocean, the 1965; Kirkwood 1984; Tiefenbacher 1990; Thatje 2003). complexity of this problem is still not completely However, known Antarctic decapod diversity remains understood. The scant records of crabs south of poor, represented by approximately only a dozen ben- the Polar Front were always considered as exceptional, thic natant (caridean shrimp) species. Some of those and have mostly been ignored by marine biologists species are known to occur in high abundances on the world-wide, creating one of the most dogmatic para- high-Antarctic Weddell Sea shelf (Arntz and Gorny digms in polar science. We herein review the record of 1991; Arntz et al. 1992; Gorny 1999). both adults and larvae of reptants from the Southern Low temperature is the main physiological impact Ocean. At present, several species of only lithodid crabs on life in polar areas, and results in low metabolic rates maintain considerable adult populations in circum- in polar ectotherms (Clarke 1983; Peck 2001). Low Antarctic waters, although they remain absent from the temperatures in general have been hypothesised to re- high-Antarctic shelves. duce decapod activity, especially in combination with high [Mg2+] levels in the haemolymph, as [Mg2+] has a relaxant effect (Frederich 1999; Frederich et al. 2001). 2+ Since Reptantia regulate [Mg ]HL only slightly below Introduction the [Mg2+] of seawater, their activity should be ham- pered. In contrast, Natantia are known to regulate 2+ ‘‘Everybody who has worked in Antarctic waters has [Mg ]HL to very low levels (Tentori and Lockwood been struck by the peculiar absence of crabs, lobsters, 1990; Frederich et al. 2001). The combined effect of low 2+ shrimps.....in shallow waters’’ (H. Broch 1961). temperatures and high [Mg ]HL might explain the The impoverished Antarctic decapod fauna, com- limits of cold tolerance in decapods and might be the pared with the high diversity of decapod crustaceans principal reason for the absence of reptant decapods recorded in the Subantarctic (Gorny 1999), constitutes from the high polar regions (Frederich et al. 2001). one of the most enigmatic phenomena in present-day At present only lithodids may tolerate environmental marine biodiversity research. Although Broch (1961) and physiological constraints imposed by the low tem- described the decapod diversity pattern in the Southern peratures and short periods of food availability at high- Ocean particularly in shallow waters, his statement was Antarctic latitudes (Clarke 1983), a pattern that appears not strictly correct, since the first Antarctic caridean to be very similar in the Arctic (>70°N, Woll and shrimp species (Chorismus antarcticus, Notocrangon Burmeister 2002; Zaklan 2002). This may be due to their antarcticus) had already been discovered by the Expe- prolonged brooding, as well as food independent and completely endotrophic and abbreviated larval devel- opment. These life-history features, among others, may allow lithodids to sustain the mismatch of prolonged developmental times at low temperatures and in short S. Thatje (&) Æ W. E. Arntz Alfred Wegener Institute for Polar and Marine Research, periods of food availability (see Clarke 1983; for review, P.O. Box 120 161, 27515 Bremerhaven, Germany see Anger et al. 2003, 2004; Kattner et al. 2003; Thatje E-mail: [email protected] et al. 2003a; Thatje 2004). 196 Fig. 1 Lithodid records from the Southern Ocean (southernmost America and Antarctic Peninsula; Antarctic without indication of ice shelves; 500-m isobath has been marked). Information obtained from the literature: Arana and Retamal (1999); Ba´ez et al. (1986); Birstein and Vinogradov (1972); Boschi et al. (1992); Collins et al. (1992); Garcı´a- Raso et al. (2004); Gorny (1999); Klages et al. (1995); Lo´pez and Balguerı´as (1994); Macpherson (1988a); Retamal (1981, 1992); Takeda and Hatanaka (1984); Zaklan (2002) Systematics to the division into Reptantia and Natantia (Boas 1880; Borradaile 1907) to facilitate discussion of low reptant Boas (1880) and Borradaile (1907) introduced a sys- decapod diversity in high-Antarctic latitudes. tematic division of the Decapoda into the suborders This review includes Antarctic (south of the Antarctic Reptantia and Natantia. Recently, Ka¨stner (1993) di- Convergence) and southernmost South American re- vided the taxon into the suborders Dendrobranchiata cords of larval and adult reptant crabs (Fig. 1, Table 1), (infraorder Penaeidae) and Pleocyemata (infraorders including also the local South American literature. It Stenopodidea, Caridea, Astacidea, Thalassinidea, Pal- also includes a brief outline of the relevant fossil record inura, Anomura and Brachyura), thus dissolving the of those regions. suborders Reptantia and Natantia. Ka¨stner’s classifica- tion (1993) considers the Natantia to be paraphyletic (Abele 1991; Scholtz and Richter 1995), but does not The fossil record in an Antarctic context consider the Reptantia as a true monophyletic group (Scholtz and Richter 1995). As the systematics of the Antarctic marine biodiversity is strongly influenced by Decapoda are still unresolved (Abele 1991; Ka¨stner the geological and glaciological history of the Antarctic 1993; Scholtz and Richter 1995), the present work refers continent. The origin of distinct benthic marine inver- Table 1 Records of reptant crabs (adults and larvae) from Antarctic waters Suborder Family Species Antarctic record Bathymetric Life-history Remarks Reference distribution stage Brachyura Pinnotheridae Pinnotheres sp. King George Island Larvae (early and Superficial plankton Thatje and (62°14.33S, 58°43.81W) advanced zoeae) samples (10–0 m) Fuentes (2003) Palinura Polychelidae Stereomastis suhmi Drake Passage Larvae Plankton samples Tiefenbacher (1994) (57°08.5¢S, 55°06.0¢W) (Eryoneicus stage) from 400 to 800 m Anomura Hippidae Emerita sp. King George Island Larvae (early zoeae) Superficial plankton Thatje and Fuentes (62°14.33¢S, 58°43.81¢W) samples (10–0 m) (2003) Anomura Lithodidae Lithodes murrayi Peter I Island, Bellingshausen 183–257 m Adult specimens, 4 males trawled, Klages et al. (1995) Sea (68°52.0¢S, 90°51.2¢W; carapace length 5 specimens 68°51.4¢S, 90°52.6¢W) from 36 to 100 mm video observed; water temperature +1.8°C salinity 34.7 Anomura Lithodidae Lithodes turkayi Apparently at Peter I Island 622–1,696 m Adult specimens Associated with capture Arana and Retamal (compare Arana and Retamal of Paralomis birsteini (1999) 1999 with Klages et al. 1995) Anomura Lithodidae Neolithodes Peter I Island, Bellingshausen 1,129 m 1 adult specimen Associated with capture Arana and Retamal diomedeae Sea (68°42.1¢S, 90°54.9¢W) of Paralomis birsteini (1999) Anomura Lithodidae Paralomis birsteini Peter I Island, Bellingshausen Sea 660–1,876 m A total of 88 adult For further station data Arana and Retamal (68°42.1¢S, 90°54.9¢W), specimens (77 males in the vicinity of (1999) Gerlache sea mount and 11 females indicated stations (65°25.6¢S, 90°38.96¢W), of which 10 see Arana and Scotia Sea (59°24.39¢S, 44°24.02¢W) were ovigerous) Retamal (1999) Anomura Lithodidae Paralomis birsteini Antarctic Ocean off Ross Sea, 500–1,080 m Adult specimens, Macpherson (1988b) Scott Island (67°29¢S, 179°55¢W) 1 female, 4 males, carapace length from 55 to 68 mm Anomura Lithodidae Paralomis spectabilis Antarctic Ocean off Ross Sea, 1,470–2,075 m Adult specimens Macpherson (1988a); Scott Island (67°23¢S, 179°53¢W) Zaklan (2002) Anomura Lithodidae Paralomis spectabilis Scotia Sea (59°58.6¢S, 32°24.6¢W) 563–605 m 1 adult male Birstein and Vinogradov (1972) Anomura Lithodidae Paralomis formosa Scotia Sea (59°53.1¢S, 32°19.5¢W; 523–671 m, 1 male, 2 males Macpherson (1988a) 59°58.6¢S, 32°24.6¢W) 536–605, respectively Anomura Lithodidae Lithodes sp. Peter I Island, (68°83.5¢S, 90°82.2¢W; 218 m, 375 m 2 specimens, 1 female From trap Garcı´a-Raso et al. 68°70.2¢S, 90°68.9¢W) and Agassiz trawl (2004) Anomura Lithodidae Paralomis sp. Bellingshausen Sea, 68°95.2¢S, 1,408–1,947 m 1 male, 1 female From Agassiz trawl Garcı´a-Raso et al. 78°23.3¢W (2004) 197 198 tebrate faunas in both Antarctic and Subantarctic wa- Bay, South Orkney Islands (Fig. 1). This material was ters can be traced back as far as the Early Cretaceous, probably collected during the Scottish National Ant- about 130 million years ago when the break-up of the arctic Expedition in 1903, and Stebbing’s record was Gondwana continent first became evident, and eastern based on museum material only. Yaldwyn (1965) was Gondwana became isolated in the high southern lati- the first to doubt that the occurrence of H. planatus at tudes (Lawver et al. 1992; Crame 1999). At the Late the South Orkney Islands was possible. Although this Cretaceous-Early Cenozoic boundary, the Austral species is very common in intertidal to shallow subtidal Province showed temperate aspects in its marine inver- waters in the Magellan region, including the Falkland tebrate fauna, as evidenced by the rich decapod fossil Islands, and the genus has a circum-polar Subantarctic record (Feldmann et al.
Recommended publications
  • Development of Species-Specific Edna-Based Test Systems For
    REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe).
    [Show full text]
  • Podding of Paralomis Granulosa
    Nauplius ORIGINAL ARTICLE Podding of Paralomis granulosa (Lithodidae) juveniles inhabiting kelp forests of the Cape Horn e-ISSN 2358-2936 www.scielo.br/nau Archipelago (Chile) www.crustacea.org.br Ivan Cañete1 orcid.org/0000-0002-1293-886X Alan M. Friedlander2,3 orcid.org/0000-0003-4858-006X Enric Sala2 orcid.org/0000-0003-4730-3570 Tania Figueroa1 orcid.org/0000-0003-4928-4924 1 Department of Sciences and Natural Resources, Faculty of Sciences, University of Magallanes. Punta Arenas, Chile. IC E-mail: [email protected] TF E-mail: [email protected] 2 Pristine Seas, National Geographic Society. Washington DC, United States of America ES E-mail: [email protected] 3 Hawaii Institute of Marine Biology, University of Hawaii. Kaneohe, Hawaii. United States of America. AMF E-mail: [email protected] ZOOBANK: http://zoobank.org/urn:lsid:zoobank.org:pub:A40E315A-4C8E-4FB7- A6CB-8AF9973CFBDF ABSTRACT Subtidal observations along the Cape Horn Archipelago, Chile (CHA) in February 2017 revealed an unusually large aggregation (or pod) of juvenile false king crabs, Paralomis granulosa (Hombron and Jacquinot, 1846), in association with kelp forests (Macrocystis pyrifera and Lessonia spp.). This is the first study to report a dense aggregation of juveniles of this crab, which was observed at Wollaston Island (WI) (~ 10 m). Paralomis granulosa was present on half the transects at WI (N=10), with a density of 3.1 ± 9.9 ind. m-2. Photographs from the podding event showed densities of P. granulosa ranging from 63 to 367 ind. plant-1 (190 ± 133 ind. plant-1).
    [Show full text]
  • Challenging the Cold: Crabs Reconquer the Antarctic
    Ecology, 86(3), 2005, pp. 619±625 q 2005 by the Ecological Society of America CHALLENGING THE COLD: CRABS RECONQUER THE ANTARCTIC SVEN THATJE,1,5 KLAUS ANGER,2 JAVIER A. CALCAGNO,3 GUSTAVO A. LOVRICH,4 HANS-OTTO POÈ RTNER,1 AND WOLF E. ARNTZ1 1Alfred Wegener Institute for Polar and Marine Research, Columbusstr. D-27568 Bremerhaven, Germany 2Biologische Anstalt Helgoland, Foundation Alfred Wegener Institute, Helgoland, Germany 3Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente GuÈiraldes 2160, C1428EHA, Buenos Aires, Argentina 4Consejo Nacional de Investigaciones Cientõ®cas y TeÂcnicas, Centro Austral de Investigaciones Cientõ®cas, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina Abstract. Recent records of lithodid crabs in deeper waters off the Antarctic continental slope raised the question of the return of crabs to Antarctic waters, following their extinction in the lower Miocene ;15 million years ago. Antarctic cooling may be responsible for the impoverishment of the marine high Antarctic decapod fauna, presently comprising only ®ve benthic shrimp species. Effects of polar conditions on marine life, including lowered metabolic rates and short seasonal food availability, are discussed as main evolutionary driving forces shaping Antarctic diversity. In particular, planktotrophic larval stages should be vulnerable to the mismatch of prolonged development and short periods of food avail- ability, selecting against complex life cycles. We hypothesize that larval lecithotrophy and cold tolerance, as recently observed in Subantarctic lithodids, represent, together with other adaptations in the adults, key features among the life-history adaptations of lithodids, potentially enabling them to conquer polar ecosystems. The return of benthic top predators to high Antarctic waters under conditions of climate change would considerably alter the benthic communities.
    [Show full text]
  • Changes in Biomass and Chemical Composition During Lecithotrophic Larval Development of the Southern Stone Crab Paralomis Granulosa
    MARINE ECOLOGY PROGRESS SERIES Vol. 257: 189–196, 2003 Published August 7 Mar Ecol Prog Ser Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa Javier A. Calcagno1,*, Sven Thatje2, Klaus Anger3, Gustavo A. Lovrich4, Antje Kaffenberger3 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Lab 64, 4to Piso, Pab II, Cdad Universitaria C1428EHA, Buenos Aires, Argentina 2Alfred Wegener Institute for Polar and Marine Research, PO Box 120 161, 27515 Bremerhaven, Germany 3Biologische Anstalt Helgoland, Stiftung Alfred Wegener Institute for Polar and Marine Research, 27498 Helgoland, Germany 4Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Austral de Investigaciones Científicas, CADIC, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina ABSTRACT: Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hy- drogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic mega- lopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after meta- morphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source.
    [Show full text]
  • The Zoology of East Greenland
    /V ^^^tAx^^T^' MEDDELELSER OM GR0NLAND UDGIVNE AF ^ KOMMISSIONEN FOR VIDENSKABELIGE UNDERS0GELSERIGR0NLAND BD. 126 • NR. 6 THE ZOOLOGY OF EAST GREENLAND Edited by M. Degerbel, Ad. S. Jensen, R. Sparck and G. Thorson, Dr. phil. Professor, Dr. phil. Professor, Dr. phil. Dr. phil. in Cooperation with the Editorial Committee of »MeddeleIser om GronIand«. DECAPOD CRUSTACEANS BY P. E. HEEGAARD WITH 27 FIGURES IN THE TEXT 't! % K0BENHAVN C. A. REITZELS FORLAG BIANCO LUNOS BOGTRYKKKRI A/S 1941 Pris: Kr. 3.50. MEDDELELSER OM GR0NLAND UDGIVNE AF KOMMISSIONEN FOR VIDENSKABELIGE UNDERS0GELSER I GR0NLAND BD. 121 • NR. 6 THE ZOOLOGY OF EAST GREENLAND DECAPOD CRUSTACEANS BY P. E. HEEGAARD WITH 27 FIGURES IN THE TEXT K0BENHAVN C. A. REITZELS FORLAG BIANCO LUNOS BOGTRYKKERI A/S 1941 CONTENTS Pa Re Introduction 5 Brachyura Hyas coaretains Anornura Lithode.s- maja — grimaldii Paralomis spectabilis — bouvicri '5 Eupagurus pubescens !*"> Munida lenuimana. Galacanta roslrata Munidopsis eurriroslra 1 — si His Macrura 20 Polycheles nanus Sclerocra.ngon jero.t: 20 — borcas 24 Neetocrangon lar 28 Sabinea, hystri.r sepleincannala 31 Pont o phi I us norvegieus 34 Glyphocrangon sculptus Spirontocaris gainiardu — spin us 39 — lilijeborgii 42 — turgida 42 — polar is 45 groenlandiea 47 Bythocaris payeri 50 — leucopis °2 — simplicirostris 53 Pandalus boreahs 54 — propinquus 5(> Pasiphae tarda. 57 Hymenodora glacial is 58 Amalopeneus elegans 59 Sergestes arclicus "0 General remarks Literature INTRODUCTION The present paper comprises an account of the Crustacean Decapods so far found off the coast of East Greenland. Tt is primarily based on collections made by Danish Expeditions during the last few years, amongst which can be mentioned: ,,Treaarsexpeditionen til Christian d.
    [Show full text]
  • (Isopoda: Bopyridae) on Juveniles of Lithodes Santolla (Magellan Region, Chile): a Spatial Mesoscale Analysis
    Lat. Am. J. Aquat. Res., 45(1): 79-93,Infestation 2017 of Pseudione tuberculata on juveniles of Lithodes santolla 79 DOI: 10.3856/vol45-issue1-fulltext-8 Research Article Infestation of Pseudione tuberculata (Isopoda: Bopyridae) on juveniles of Lithodes santolla (Magellan region, Chile): a spatial mesoscale analysis Juan I. Cañete1, Javier A. Díaz-Ochoa1, Tania Figueroa1 & Alvaro Medina1 1Departamento Ciencias y Recursos Naturales, Facultad de Ciencias Universidad de Magallanes, Punta Arenas, Chile Corresponding author: Javier Díaz ([email protected]) ABSTRACT. We document latitudinal patterns of infestation of the bopyrid parasite isopod Pseudione tuberculata on southern king crab Lithodes santolla juveniles (20-77 mm carapace length) recruited to fishing grounds in the southern Chilean fjord system. Seven hundred and fifty individuals were collected by semi- autonomous diving in 11 of 21 sampling locations in the study area, along the western margin of the Magellan region between August and October 2013.The prevalence of P. tuberculata varied between 0 and ~22%, and displayed a spatial pattern associated with three areas: i) northern Beagle Channel (10 to ~22%; lengths between 37 and 47 mm), ii) northwestern Navarino Island without infestations (0%; 26-55 mm), and iii) Piazzi Island- Capitán Aracena Island (0-12%; 50-77 mm). Infestations were independent of host sex, while parasite prevalence decreased with host length. No parasites were observed on crabs longer than 60 mm. A comparison of slopes between linearized length-weight regressions suggests that parasitized individuals had lower weight growth than uninfested individuals. Both southern king crab juvenile density and P. tuberculata prevalence were higher in fishing areas towards Beagle Channel where previous research reported lower average surface water temperatures (<6.5°C) and higher surface water salinity (>30).
    [Show full text]
  • Crustáceos Decápodos (Arthropoda: Crustacea: Decapoda) De Aguas Profundas Del Pacífico Mexicano: Lista De Especies Y Material Recolectado Durante El Proyecto TALUD
    Crustáceos decápodos (Arthropoda: Crustacea: Decapoda) de aguas profundas del Pacífico mexicano: lista de especies y material recolectado durante el proyecto TALUD Michel E. Hendrickx1 INTRODUCCIÓN Los crustáceos decápodos son organismos omnipresentes en los mares y océanos de la Tierra y han sido encontrados desde la zona intermareal hasta las profundida- des abisales. Contienen los muy conocidos cangrejos, los camarones, los langosti- nos y las langostas. Algunas especies son particularmente llamativas por su forma y sus colores. El grupo de los crustáceos decápodos corresponde a una orden dentro del filo de los Arthropoda (Subfilo Crustacea: Orden Decapoda). Se caracteriza por tener un caparazón generalmente bien calcificado y (salvo algunas excepciones) 10 pares de “patas” (o pereiópodos) que sirven como apéndices prensiles o para desplazarse. Contiene unas 18000 especies y está formado por dos subórdenes y 10 infraordenes. El primer suborden, los Dendrobranchiata, corresponde, entre otras especies, a los camarones clásicos (e.g., los Penaeidae que se pescan en las costas de México). Los Pleocyemata, el segundo suborden de decápodos, contiene todas las demás especies de camarones, langostinos, langostas y cangrejos reparti- das entre 10 infraordenes (Stenopodidea, Caridea, Astacidea, Glypheidea, Axiidea, 1 Laboratorio de Invertebrados Bentónicos, Instituto de Ciencias del Mar y Limnología, Uni- dad Académica Mazatlán, Universidad Nacional Autónoma de México, Joel Montes Cama- rena s/n, Mazatlán 82040, Sinaloa, México. Correo-e: [email protected]. 283 Gebiidea, Achelata, Polychelida, Anomura y Brachyura) (De Grave et al. 2009). De estos, ocho tienen representantes en aguas profundas (Martin y Davis 2001, Brusca y Brusca 2002). Los Glypheidae, con solamente dos especies vivas, no tienen representantes en aguas profundas.
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific (Equator to Aleutians, Intertidal to Abyss): IX. Photoidea
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): IX. Photoidea - a review Donald B. Cadien, LACSD 22 July 2004 (revised 21 May 2015) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Introduction to the Photoidea Over more than a century the position of the photids has been in dispute. Their separation was recommended by Boeck (1871), a position maintained by Stebbing (1906). Others have relegated the photids to the synonymy of the isaeids, and taxa considered here as photids have been listed as members of the Family Isaeidae in most west coast literature (i.e. J. L. Barnard 1969a, Conlan 1983). J. L. Barnard further combined both families, along with the Aoridae, into an expanded Corophiidae. The cladistic examination of the corophioid amphipods by Myers and Lowry (2003) offered support to the separation of the photids from the isaeids, although the composition of the photids was not the same as viewed by Stebbing or other earlier authors. The cladistic analysis indicated the Isaeidae were a very small clade separated at superfamily level from the photids, the neomegamphopids, and the caprellids within the infraorder Caprellida.
    [Show full text]
  • Crab Cryptofauna (Brachyura and Anomura)
    £2 Sif 19° ' ^ TRANSACTIONS OF THE SAN DIEGO SOCIETY OF NATURAL HISTORY VOLUME 21, 1985-1989 CONTENTS 1. Motility and calcareous parts in extant and fossil Acrothoracica (Crustacea: Cirripedia), based primarily upon new species burrowing in the deep-sea scleractinian coral Enallopsammia. By Mark J. Grygier and William A. Newman, 29 October 1985 2. The Sangamon interglacial vertebrate fauna from Rancho la Brisca, Sonora, Mexico. By Thomas R. Van Devender, Amadeo M. Rea, and Michael L. Smith, 29 October 1985 3. Floral morphology, nectar production, and breeding systems in Dudleya subgenus Dudleya (Crassulaceae). By Geoffrey A. Levin and Thomas W. Mulroy, 29 October 1985 4. Fishes living in deepsea thermal vents in the tropical eastern Pacific, with descriptions of a new genus and two new species of eelpouts (Zoarcidae). By Richard H. Rosenblatt and Daniel M. Cohen, 24 February 1986 5. A lectotype for Dinapate wrightii Horn, the giant palm-borer, and description of a new species of Dinapate from eastern Mexico (Coleoptera: Bostrichidae). By Kenneth W. Cooper, 24 February 1986 6. Holocene terrestrial gastropod faunas from Isla Santa Cruz and Isla Floreana, Galapagos: evidence for late Holocene declines. By Steven M. Chambers and David W. Steadman, 5 December 1986 7. Callorhinus gilmorei n. sp., (Carnivora: Otariidae) from the San Diego Formation (Blancan) and its implications for otariid phylogeny. By Annalisa Berta and Thomas A. Demere, 5 December 1986 8. Fossil Tanaidacea. By Frederick R. Schram, Jiirgen Sieg, and Eric Malzahn, 5 December 1986 9. Another new forest-dwelling frog (Leptodactylidae: Eleutherodactylus) from the Cockpit Country of Jamaica. By Richard I.
    [Show full text]
  • About Seafood Watch®
    Southern king crab Lithodes santolla ©Monterey Bay Aquarium Argentine waters Traps January 2, 2013 Kelsey James, Consulting Researcher Disclaimer Seafood Watch® strives to ensure all our Seafood Reports and the recommendations contained therein are accurate and reflect the most up-to-date evidence available at time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation. 2 Final Seafood Recommendation Southern king crab (Lithodes santolla) from trap fisheries within Argentine waters is assessed as a Good Alternative. Stock Fishery Impacts Impacts on Manage- Habitat Overall on the other Species ment and Recommendation Stock Ecosystem Rank (Lowest scoring Rank Rank (Score) (Score) species (Score) (Score) Rank*, Subscore, Score) Southern king Trap No other main GOOD crab Yellow Red Yellow species caught ALTERNATIVE (2.64) (2) (3.12) Green, (5,4.5) (2.93) Scoring note – scores range from zero to five where zero indicates very poor performance and five indicates the fishing operations have no significant impact.
    [Show full text]
  • Abyssal Food-Web Model Indicates Faunal Carbon Flow Recovery and Impaired Microbial Loop 26 Years After a Sediment Disturbance Experiment
    Progress in Oceanography 189 (2020) 102446 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment Dani¨elle S.W. de Jonge a,b,1,2, Tanja Stratmann b,c,d,*,1, Lidia Lins e, Ann Vanreusel e, Autun Purser f, Yann Marcon g, Clara F. Rodrigues h, Ascensao~ Ravara h, Patricia Esquete h, Marina R. Cunha h, Erik Simon-Lledo´ i, Peter van Breugel b, Andrew K. Sweetman j, Karline Soetaert b, Dick van Oevelen b a Faculty of Mathematics and Natural Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands b NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, and Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands c Department of Earth Sciences, Utrecht University, Vening Meineszgebouw A, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands d HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany e Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium f HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany g MARUM – Center for Marine Environmental Sciences, General Geology – Marine Geology, University of Bremen, 28359 Bremen, Germany h Departamento de Biologia &
    [Show full text]
  • Redalyc.Lithodidae Registrados Frente a San Antonio, Chile Central
    Investigaciones Marinas ISSN: 0716-1069 [email protected] Pontificia Universidad Católica de Valparaíso Chile Brito, José L. Lithodidae registrados frente a San Antonio, Chile central (Crustacea, Anomura) Investigaciones Marinas, vol. 30, núm. 1, 2002, pp. 57-62 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=45630104 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Invest. Mar., Valparaíso, 30(1):Lithodidae 57-62, registrados 2002 frente a San Antonio, Chile central (Crustacea, Anomura) 57 Nota Científica Lithodidae registrados frente a San Antonio, Chile central (Crustacea, Anomura) José Luis Brito M. Museo Municipal de Ciencias Naturales y Arqueología de San Antonio Sanfuentes 2365, Barrancas, San Antonio, Chile E-mail: [email protected] Recibido: 21 septiembre 2001; versión corregida: 14 enero 2002; aceptado: 2 abril 2002 RESUMEN. Se entregan nuevos antecedentes sobre cinco especies de crustáceos lithodidos registrados en el talud continental de Chile central, que son Lithodes panamensis Faxon, 1893, Neolithodes diomedae (Benedict, 1894), Paralomis longipes Faxon, 1893, P. otsuae Wilson, 1990 y Glyptolithodes cristatipes (Faxon, 1893). Palabras claves: crustáceos lithodidos, San Antonio, Chile central. Lithodidae off San Antonio, central Chile (Crustacea, Anomura) ABSTRACT. New data about five species of crustaceans Lithodidae, recorded from Central Chile continental slope are given, Lithodes panamensis Faxon, 1893, Neolithodes diomedeae (Benedict, 1894), Paralomis longipes Faxon, 1893, P. otsuae Wilson, 1990 and Glyptolithodes cristatipes (Faxon, 1893).
    [Show full text]