Halomonas Almeriensis Sp. Nov., a Moderately Halophilic, 1 Exopolysaccharide-Producing Bacterium from Cabo De Gata

Total Page:16

File Type:pdf, Size:1020Kb

Halomonas Almeriensis Sp. Nov., a Moderately Halophilic, 1 Exopolysaccharide-Producing Bacterium from Cabo De Gata 1 Halomonas almeriensis sp. nov., a moderately halophilic, 2 exopolysaccharide-producing bacterium from Cabo de Gata (Almería, 3 south-east Spain). 4 5 Fernando Martínez-Checa, Victoria Béjar, M. José Martínez-Cánovas, 6 Inmaculada Llamas and Emilia Quesada. 7 8 Microbial Exopolysaccharide Research Group, Department of Microbiology, 9 Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja 10 s/n, 18071 Granada, Spain. 11 12 Running title: Halomonas almeriensis sp. nov. 13 14 Keywords: Halomonas; exopolysaccharides; halophilic bacteria; hypersaline 15 habitats. 16 17 Subject category: taxonomic note; new taxa; γ-Proteobacteria 18 19 Author for correspondence: 20 E. Quesada: 21 Tel: +34 958 243871 22 Fax: +34 958 246235 23 E-mail: [email protected] 24 25 26 The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene 27 sequence of strain M8T is AY858696. 28 29 30 31 32 33 34 1 Summary 2 3 Halomonas almeriensis sp. nov. is a Gram-negative non-motile rod isolated 4 from a saltern in the Cabo de Gata-Níjar wild-life reserve in Almería, south-east 5 Spain. It is moderately halophilic, capable of growing at concentrations of 5% to 6 25% w/v of sea-salt mixture, the optimum being 7.5% w/v. It is chemo- 7 organotrophic and strictly aerobic, produces catalase but not oxidase, does not 8 produce acid from any sugar and does not synthesize hydrolytic enzymes. The 9 most notable difference between this microorganism and other Halomonas 10 species is that it is very fastidious in its use of carbon source. It forms mucoid 11 colonies due to the production of an exopolysaccharide (EPS). Its G+C content 12 is 63.5 mol%. A comparison of 16S rRNA gene sequences confirms its 13 relationship to Halomonas species. The most closely related species is 14 Halomonas halmophila with 95.8% similarity value between their 16S rRNA 15 sequences. DNA-DNA hybridization with Halomonas halmophila is 10.1%. Its 16 major fatty acids are: 18:1 ω7c; 16:0, 16:1 ω7c/15:0 ISO 2OH; 12:0 30H, 12:0, 17 11 methyl 18:1 ω7c and 10:0. The proposed name for strain M8T is Halomonas 18 almeriensis (= CECT 7050T = LMG 22904T). 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 The genus Halomonas, belonging to the Halomonadaceae family within the γ- 2 Proteobacteria, contains to date 32 species of moderately halophilic bacteria, 3 most of which have been isolated from hypersaline habitats (Dobson & 4 Franzmann, 1996; Mata et al., 2002; Ventosa et al., 1998; Vreeland et al., 5 1980). Taxonomically Halomonas is a heterogeneous bacterial group. On the 6 basis of 16S and 23S rRNA gene sequences Arahal et al. (2002) have 7 established three clearly distinguishable phylogenetic groups, in addition to 8 which another three groups can also be identified by phenotypic studies, 9 according to their capacity to produce acids from glucose and their use of a 10 variety of compounds as sole source of carbon and energy (Mata et al., 2002). 11 Some of the Halomonas species, including H. eurihalina, H. maura, H. ventosae 12 and H. anticariensis, which have been isolated and characterised by our 13 research group (Quesada et al., 1990; Bouchotroch et al., 2001; Martínez- 14 Cánovas et al., 2004a; Martínez-Cánovas et al., 2004b), produce extracellular 15 polysaccharides (EPS’s) with potential biotechnological applications (Calvo et 16 al., 2002; Béjar et al., 1998; Martínez-Checa et al., 2002; Arias et al., 2003; 17 Quesada et al., 2004). 18 19 We describe here a new exopolysaccharide-producing species belonging to the 20 genus Halomonas, with the proposed name of Halomonas almeriensis. 21 22 Strain M8T was isolated from a water sample taken from a saltern in the Cabo 23 de Gata-Níjar wild-life reserve in the province of Almería in south-east Spain 24 during a wide range of samplings made by our research group in 18 hypersaline 25 habitats in Spain and Morocco (Martínez-Cánovas et al., 2004c). It was 26 routinely kept and grown at 32ºC in MY medium (Moraine & Rogovin, 1966) 27 with 7.5% w/v marine salts (Rodríguez-Valera et al., 1981). 28 29 Phenotypic characterisation, on the basis of 112 tests, was done as described 30 by Mata et al. (2002). We compared the new strain with Halomonas species 31 using the software TAXAN (Information Resources Group, Maryland 32 Biotechnology Institute, University of Maryland, College Park, USA) based on 33 numerical analysis. The dendrogram obtained by the simple-matching 34 coefficient (SSM) (Sokal & Michener, 1958) and UPGMA method (Sneath & 1 Sokal, 1973) (Supplementary Fig. A, in IJSEM Online) shows that strain M8T 2 was related to the non-acid-producing group of Halomonas species (Mata et al., 3 2002), although it shares less than 63% similarity with them. This low similarity 4 can be put down the fact that strain M8T is extremely fastidious nutritionally. The 5 main phenotypic differences between Halomonas almeriensis (M8T) and its 6 nearest philogenetically related strains of the genus Halomonas are shown in 7 Table 1. 8 9 The G+C content of the DNA of strain M8 was estimated from the midpoint 10 value (Tm) of the DNA thermal denaturation profile, as described by Marmur & 11 Doty (1962) and Ferragut & Leclerc (1976). The guanine-plus-cytosine content 12 of the DNA of the novel strain was 63.5 mol%, within the range proposed for 13 Halomonas species of 52-68 mol% (Franzmann et al., 1988). 14 15 A partial fragment of the 16S rRNA gene was amplified by PCR using the 16 protocol of Saiki et al. (1988). The forward primer, 16F27 (5´- 17 AGAGTTTGATCATGGCTCAG-3´), annealed at positions 8-27 and the reverse 18 primer, 16R1488 (5´-CGGTTACCTTGTTAGGACTTCACC-3´) (both from 19 Pharmacia), annealed at the complement of positions 1511-1488 (E. coli 20 numbering according to Brosius et al., 1978). To complete the sequence we 21 designed an internal primer, 5´-GAGGATGATCAGCCACACTG-3´, which 22 annealed at position 401-421. The PCR product was purified using the GFXTM 23 PCR DNA and Gel Band Purification Kit (Amersham Biosciences). Direct 24 sequence determinations of PCR-amplified DNAs were made with an ABI 25 PRISM dye-terminator, cycle-sequencing, ready-reaction kit (Perking-Elmer) 26 and an ABI PRISM 377 sequencer (Perking-Elmer) according to the 27 manufacturer’s instructions. The sequence obtained (1459 bp) was compared to 28 the 16S rRNA reference gene sequences found in the GenBank and EMBL 29 databases by BLAST search. Phylogenetic and molecular evolutionary analyses 30 were conducted using MEGA version 3.0 (Kumar et al., 2004) after multiple 31 alignment of the data by CLUSTALX (Thompson et al., 1997). Distances and 32 clustering were determined using the neighbour-joining and maximum- 33 parsimony algorithms, and a bootstrap analysis (1,000 replications) was made 34 to determine the stability of the clusters. The neighbour-joining tree is available 1 as supplementary material in IJSEM Online (Fig. B). A similar result (not shown) 2 was obtained using the maximum-parsimony algorithm. The taxa included in the 3 tree in Figure 1 represent only the nearest neighbours. Our analyses confirmed 4 that the new strain belongs to the genus Halomonas, is located within Group 1 5 of Halomonas species described by Arahal et al. (2002) and shares 95.8% 16S 6 rRNA sequence similarity with Halomonas halmophila (Dobson et al., 1990). 7 The 16S fragment analysed contains the 15 signature nucleotides defined for 8 Halomonadaceae family (Dobson & Franzmann, 1996). 9 10 DNA-DNA hybridization was carried out according to the method of Lind and 11 Ursing (1986) with the modifications introduced by Ziemke et al. (1998) and 12 Bouchotroch et al. (2001). The result shows the low hybridization (10.1%) with 13 Halomonas halmophila, which was chosen on the basis of our phylogenetic 14 study as being the most closely related Halomonas species. 15 16 The fatty acids were analysed at DSMZ (Deutsche Sammlung von 17 Mikroorganismen und Zellkulturen GmbH) by high-resolution GLC using a moist 18 pellet of the cells obtained from a culture in MY medium supplemented with 19 7.5% w/v sea-salt mixture. Strain M8T shows a combination of fatty acids found 20 in other species of Halomonas (Dobson & Franzmann, 1996) (see species 21 description), although it also contains a relatively high proportion of C10 22 (2.11%), 12:0 (1.22%) and 11methyl 18:1 ω7c (2.75%). 23 24 Figure C (supplementary material, in IJSEM Online) is a transmission-electron 25 micrograph showing the morphology and cell size of strain M8T and the 26 presence of an extracellular polymer that is released into the external medium. 27 The TEM method used is fully described by Bouchotroch et al. (2001). 28 29 On the basis of phylogeny, DNA-DNA hybridization, fatty-acid composition and 30 phenotypic differences between the novel and previously described species 31 within the genus Halomonas, we consider that strain M8T represents a novel 32 species, for which we propose the name Halomonas almeriensis. 33 34 1 Description of Halomonas almeriensis sp. nov. 2 3 Halomonas almeriensis (al meri en´ sis, N.L. adj. masc. = denizen of the 4 province of Almería, in south-east Spain, where the strain was isolated). 5 6 The cells are Gram-negative, non-motile rods, 2-2.5 x 0.75 µm, appearing singly 7 or in pairs. They accumulate poly-β-hydroxyalkanoates (PHB) and produce 8 exopolysaccharide. Colonies are round, convex, creamy-white and mucoid. 9 Their growth pattern is uniform in a liquid medium.
Recommended publications
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • Downloaded Halomonas Elongata: High-Afnity Betaine Transport System and Choline- from NCBI Database
    Rekadwad et al. BMC Res Notes (2021) 14:296 https://doi.org/10.1186/s13104-021-05689-3 BMC Research Notes RESEARCH NOTE Open Access The diversity of unique 1,4,5,6-Tetrahydro- 2-methyl-4-pyrimidinecarboxylic acid coding common genes and Universal stress protein in Ectoine TRAP cluster (UspA) in 32 Halomonas species Bhagwan Narayan Rekadwad1* , Wen‑Jun Li2 and P. D. Rekha1 Abstract Objectives: To decipher the diversity of unique ectoine‑coding housekeeping genes in the genus Halomonas. Results: In Halomonas, 1,4,5,6‑Tetrahydro‑2‑methyl‑4‑pyrimidinecarboxylic acid has a crucial role as a stress‑tolerant chaperone, a compatible solute, a cell membrane stabilizer, and a reduction in cell damage under stressful conditions. Apart from the current 16S rRNA biomarker, it serves as a blueprint for identifying Halomonas species. Halomonas elongata 1H9 was found to have 11 ectoine‑coding genes. The presence of a superfamily of conserved ectoine‑ coding among members of the genus Halomonas was discovered after genome annotations of 93 Halomonas spp. As a result of the inclusion of 11 single copy ectoine coding genes in 32 Halomonas spp., genome‑wide evaluations of ectoine coding genes indicate that 32 Halomonas spp. have a very strong association with H. elongata 1H9, which has been proven evidence‑based approach to elucidate phylogenetic relatedness of ectoine‑coding child taxa in the genus Halomonas. Total 32 Halomonas species have a single copy number of 11 distinct ectoine‑coding genes that help Halomonas spp., produce ectoine under stressful conditions. Furthermore, the existence of the Universal stress protein (UspA) gene suggests that Halomonas species developed directly from primitive bacteria, highlighting its role during the progression of microbial evolution.
    [Show full text]
  • Antibiotic Resistance of Symbiotic Marine Bacteria Isolated From
    phy ra and og n M Park et al., J Oceanogr Mar Res 2018, 6:2 a a r e i c n e O DOI: 10.4172/2572-3103.1000181 f R Journal of o e l s a e a n r r c ISSN:u 2572-3103 h o J Oceanography and Marine Research Research Article OpenOpen Access Access Antibiotic Resistance of Symbiotic Marine Bacteria Isolated from Marine Organisms in Jeju Island of South Korea Yun Gyeong Park1, Myeong Seok Lee1, Dae-Sung Lee1, Jeong Min Lee1, Mi-Jin Yim1, Hyeong Seok Jang2 and Grace Choi1* 1 Marine Biotechnology Research Division, Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Chungcheongnam-do, 33662, Korea 2 Fundamental Research Division, Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon-gun, Chungcheongnam-do, 33662, Korea Abstract We investigated antibiotics resistance of bacteria isolated from marine organisms in Jeju Island of South Korea. We isolated 17 strains from a marine sponge, algaes, and sea water collected from Biyangdo on Jeju Island. Seven- teen strains were analyzed by 16S rRNA gene sequencing for species identification and tested antibiotic susceptibility of strains against six antibiotics. Strain JJS3-4 isolated from S. siliquastrum showed 98% similarity to the 16S rRNA gene of Formosa spongicola A2T and was resistant to six antibiotics. Strains JJS1-1, JJS1-5, JJS2-3, identified as Pseudovibrio spp., and Stappia sp. JJS5-1, were susceptive to chloramphenicol and these four strains belonged to the order Rhodobacterales in the class Alphaproteobacteria. Halomonas anticariensis JJS2-1, JJS2-2 and JJS3-2 and Pseudomonas rhodesiae JJS4-1 and JJS4-2 showed similar resistance pattern against six antibiotics.
    [Show full text]
  • Chromohalobacter Salexigens Type Strain (1H11T) Alex Copeland1, Kathleen O’Connor2, Susan Lucas1, Alla Lapidus1, Kerrie W
    Standards in Genomic Sciences (2011) 5:379-388 DOI:10.4056/sigs.2285059 Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11T) Alex Copeland1, Kathleen O’Connor2, Susan Lucas1, Alla Lapidus1, Kerrie W. Berry1, John C. Detter1,3, Tijana Glavina Del Rio1, Nancy Hammon1, Eileen Dalin1, Hope Tice1, Sam Pit- luck1, David Bruce1,3, Lynne Goodwin1,3, Cliff Han1,3, Roxanne Tapia1,3, Elizabeth Saund- ers1,3, Jeremy Schmutz3, Thomas Brettin1,4 Frank Larimer1,4, Miriam Land1,4, Loren Hauser1,4, Carmen Vargas5, Joaquin J. Nieto5, Nikos C. Kyrpides1, Natalia Ivanova1, Markus Göker6, Hans-Peter Klenk6*, Laszlo N. Csonka2*, and Tanja Woyke1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Department of Microbiology and Parasitology, University of Seville, Spain 6 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany *Corresponding authors: [email protected], [email protected] Keywords: aerobic, chemoorganotrophic, Gram-negative, motile, moderately halophilic, halo tolerant, ectoine synthesis, Halomonadaceae, Gammaproteobacteria, DOEM 2004 Chromohalobacter salexigens is one of nine currently known species of the genus Chromoha- lobacter in the family Halomonadaceae. It is the most halotolerant of the so-called ‘mod- erately halophilic bacteria’ currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11T and Halomonas elongata are the first and the second members of the family Halomonada- ceae with a completely sequenced genome.
    [Show full text]
  • Phylogeny of the Family Halomonadaceae Based on 23S and 16S Rdna Sequence Analyses
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 241–249 Printed in Great Britain Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses 1 Lehrstuhl fu$ r David R. Arahal,1,2 Wolfgang Ludwig,1 Karl H. Schleifer1 Mikrobiologie, Technische 2 Universita$ tMu$ nchen, and Antonio Ventosa 85350 Freising, Germany 2 Departamento de Author for correspondence: Antonio Ventosa. Tel: j34 954556765. Fax: j34 954628162. Microbiologı!ay e-mail: ventosa!us.es Parasitologı!a, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain In this study, we have evaluated the phylogenetic status of the family Halomonadaceae, which consists of the genera Halomonas, Chromohalobacter and Zymobacter, by comparative 23S and 16S rDNA analyses. The genus Halomonas illustrates very well a situation that occurs often in bacterial taxonomy. The use of phylogenetic tools has permitted the grouping of several genera and species believed to be unrelated according to conventional taxonomic techniques. In addition, the number of species of the genus Halomonas has increased as a consequence of new descriptions, particularly during the last few years, but their features are too heterogeneous to justify their placement in the same genus and, therefore, a re-evaluation seems necessary. We have determined the complete sequences (about 2900 bases) of the 23S rDNA of 18 species of the genera Halomonas and Chromohalobacter and resequenced the complete 16S rDNA sequences of seven species of Halomonas. The results of our analysis show that two phylogenetic groups (respectively containing five and seven species) can be distinguished within the genus Halomonas. Six other species cannot be assigned to either of the above-mentioned groups.
    [Show full text]
  • Phylogeny of the Family Halomonadaceae Based on 23S and 16S Rdna Sequence Analyses
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 241–249 Printed in Great Britain Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses 1 Lehrstuhl fu$ r David R. Arahal,1,2 Wolfgang Ludwig,1 Karl H. Schleifer1 Mikrobiologie, Technische 2 Universita$ tMu$ nchen, and Antonio Ventosa 85350 Freising, Germany 2 Departamento de Author for correspondence: Antonio Ventosa. Tel: j34 954556765. Fax: j34 954628162. Microbiologı!ay e-mail: ventosa!us.es Parasitologı!a, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain In this study, we have evaluated the phylogenetic status of the family Halomonadaceae, which consists of the genera Halomonas, Chromohalobacter and Zymobacter, by comparative 23S and 16S rDNA analyses. The genus Halomonas illustrates very well a situation that occurs often in bacterial taxonomy. The use of phylogenetic tools has permitted the grouping of several genera and species believed to be unrelated according to conventional taxonomic techniques. In addition, the number of species of the genus Halomonas has increased as a consequence of new descriptions, particularly during the last few years, but their features are too heterogeneous to justify their placement in the same genus and, therefore, a re-evaluation seems necessary. We have determined the complete sequences (about 2900 bases) of the 23S rDNA of 18 species of the genera Halomonas and Chromohalobacter and resequenced the complete 16S rDNA sequences of seven species of Halomonas. The results of our analysis show that two phylogenetic groups (respectively containing five and seven species) can be distinguished within the genus Halomonas. Six other species cannot be assigned to either of the above-mentioned groups.
    [Show full text]
  • Heterotrophic Denitrification at Extremely High Salt and Ph By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Extremophiles (2008) 12:619–625 DOI 10.1007/s00792-008-0166-6 ORIGINAL PAPER Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes A. A. Shapovalova Æ T. V. Khijniak Æ T. P. Tourova Æ G. Muyzer Æ D. Y. Sorokin Received: 25 March 2008 / Accepted: 11 April 2008 / Published online: 2 May 2008 Ó The Author(s) 2008 Abstract In this paper we describe denitrification at Introduction extremely high salt and pH in sediments from hypersaline alkaline soda lakes and soda soils. Experiments with Denitrification is an important process of oxidation of sediment slurries demonstrated the presence of acetate- organic and inorganic compounds in natural and engi- utilizing denitrifying populations active at in situ condi- neered anoxic environments. Regarding its energy tions. Anaerobic enrichment cultures at pH 10 and 4 M efficiency, it is following aerobic respiration and, there- total Na+ with acetate as electron donor and nitrate, nitrite fore should be well represented at extreme conditions and N2O as electron acceptors resulted in the dominance of demanding the efficient energy conservation, such as Gammaproteobacteria belonging to the genus Halomonas. haloalkaline lakes, saline soils and highly saline indus- Both mixed and pure culture studies identified nitrite and trial wastewater (Oren 1999). While it is indeed well N2O reduction as rate-limiting steps in the denitrification documented for moderate haloalkaline conditions (i.e., a process at extremely haloalkaline conditions. pH around 9 and a salt concentration up to 2 M Na+), little is known on the possibility of denitrification at Keywords Denitrification Á Soda lakes Á extremely haloalkaline conditions, such as those present Haloalkaliphilic Á Halomonas Á Alkalispirillum in hypersaline alkaline soda lakes (i.e., a pH up to 11 and a salt concentration up to 4 M Na+).
    [Show full text]
  • Complete Genome Sequence of Halomonas Sp. R5-57 Adele Williamson1* , Concetta De Santi1, Bjørn Altermark1, Christian Karlsen1,2 and Erik Hjerde1
    Williamson et al. Standards in Genomic Sciences (2016) 11:62 DOI 10.1186/s40793-016-0192-4 EXTENDED GENOME REPORT Open Access Complete genome sequence of Halomonas sp. R5-57 Adele Williamson1* , Concetta De Santi1, Bjørn Altermark1, Christian Karlsen1,2 and Erik Hjerde1 Abstract The marine Arctic isolate Halomonas sp. R5-57 was sequenced as part of a bioprospecting project which aims to discover novel enzymes and organisms from low-temperature environments, with potential uses in biotechnological applications. Phenotypically, Halomonas sp. R5-57 exhibits high salt tolerance over a wide range of temperatures and has extra-cellular hydrolytic activities with several substrates, indicating it secretes enzymes which may function in high salinity conditions. Genome sequencing identified the genes involved in the biosynthesis of the osmoprotectant ectoine, which has applications in food processing and pharmacy, as well as those involved in production of polyhydroxyalkanoates, which can serve as precursors to bioplastics. The percentage identity of these biosynthetic genes from Halomonas sp. R5-57 and current production strains varies between 99 % for some to 69 % for others, thus it is plausible that R5-57 may have a different production capacity to currently used strains, or that in the case of PHAs, the properties of the final product may vary. Here we present the finished genome sequence (LN813019) of Halomonas sp. R5-57 which will facilitate exploitation of this bacterium; either as a whole-cell production host, or by recombinant expression of its individual enzymes. Keywords: Halomonas, Growth temperature, Salt tolerance, Secreted enzymes, Osmolyte, Polyhydroxyalkanoates Abbreviations: COG, Cluster of orthologous groups; PHAs, Polyhydroxyalkanoates; RDP, Ribosomal database project; SMRT, Single molecule real-time Introduction H.
    [Show full text]
  • Biodiversity of Moderately Halophilic Bacteria in Hypersaline Habitats in Egypt
    J. Gen. Appl. Microbiol., 52, 63–72 (2006) Full Paper Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt Hanan Ghozlan,* Hisham Deif, Rania Abu Kandil, and Soraya Sabry Department of Botany, Faculty of Science, University of Alexandria, Moharrem Bey, Egypt (Received January 19, 2005; Accepted November 24, 2005) Screening bacteria from different saline environments in Alexandria. Egypt, lead to the isolation of 76 Gram-negative and 14 Gram-positive moderately halophilic bacteria. The isolates were characterized taxonomically for a total of 155 features. These results were analyzed by numerical techniques using simple matching coefficient (SSM) and the clustering was achieved by the un- weighed pair-group method of association (UPGMA). At 75% similarity level the Gram-negative bacteria were clustered in 7 phena in addition to one single isolate, whereas 4 phena repre- sented the Gram-positive. Based on phenotypic characteristics, it is suggested that the Gram- negative bacteria belong to the genera Pseudoalteromonas, Flavobacterium, Chromohalobacter, Halomonas and Salegentibacter, in addition to the non-identified single isolate. The Gram-posi- tive bacteria are proposed to belong to the genera Halobacillus, Salinicoccus, Staphylococcus and Tetragenococcus. This study provides the first publication on the biodiversity of moderately halophilic bacteria in saline environments in Alexandria, Egypt. Key Words——moderate halophiles; numerical taxonomy; saline environments Introduction physiological adaptation to highly saline concentra- tions and their ecology (Martinez-Canovas et al., 2004; Moderately halophilic bacteria are microorganisms Tokunaga et al., 2004; Ventosa et al., 1998a, b). that can grow optimally in media containing between Hypersaline environments in Egypt are neglected 3% and 15% (w/v) salt (Lichfield, 2002).
    [Show full text]
  • Xi Reunión De La Red Nacional De Microorganismos Extremófilos (Redex 2013) 8-10 Mayo De 2013
    XI REUNIÓN DE LA RED NACIONAL DE MICROORGANISMOS EXTREMÓFILOS 8-10 MAYO 2013 BUSQUISTAR (GRANADA) Parque Natural de Sierra Nevada Responsable de organización: Grupo “Exopolisacáridos Microbianos” Departamento de Microbiología. Facultad de Farmacia. Universidad de Granada. Campus Universitario de Cartuja s/n. 18071 Granada http://www.ugr.es/~eps/es/index.html Comité organizador: Presidente: Victoria Béjar Luque Vicepresidente: Emilia Quesada Arroquia Secretaria: Mª Eugenia Alferez Herrero Tesorero: Fernando Martínez-Checa Barrero Vocales: Ana del Moral García Inmaculada Llamas Company Alí Tahriou Colaboradores: Marta Torres Béjar Mª Dolores Ramos Barbero Hakima Amjres David Jonathan Castro Logotipo Redex: Empar Rosselló. www.artega.net Impreso por: “Imprime”. Facultad de Farmacia (Granada) Editorial: Ediciones Sider S.C. I.S.B.N: 978-84-941343-3-3 XI REUNIÓN DE LA RED NACIONAL DE MICROORGANISMOS EXTREMÓFILOS (REDEX 2013) 8-10 MAYO DE 2013. BUSQUISTAR (GRANADA) ÍNDICE BIENVENIDA 5 AGRADECIMIENTOS 7 INFORMACIÓN GENERAL 9 PROGRAMACIÓN DIARIA 11 SESIÓN DE COMUNICACIONES ORALES I 15 SESIÓN DE COMUNICACIONES ORALES II 23 SESIÓN DE COMUNICACIONES ORALES III 33 SESIÓN DE COMUNICACIONES ORALES IV 43 SESIÓN DE COMUNICACIONES EN PANELES I 51 SESIÓN DE COMUNICACIONES EN PANELES II 65 ÍNDICE DE COMUNICACIONES Y PARTICIPANTES 79 LISTA DE PARTICIPANTES 81 NOTAS 87 3 XI REUNIÓN DE LA RED NACIONAL DE MICROORGANISMOS EXTREMÓFILOS (REDEX 2013) 8-10 MAYO DE 2013. BUSQUISTAR (GRANADA) BIENVENIDA La XI Reunión de la Red Nacional de Microorganismos Extremófilos ha sido organizada por el Grupo de Investigación “Exopolisacáridos Microbianos” del Departamento de Microbiología de la Facultad de Farmacia de la Universidad de Granada con el apoyo del Ministerio de Ciencia e Innovación (MICINN, BIO2011- 12879-E).
    [Show full text]
  • Acid Degrading Bacteria from Sulfidic, Low Salinity Salt Springs Michael G
    ISOLATION AND CHARACTERIZATION OF HALOTOLERANT 2,4- DICHLOROPHENOXYACETIC ACID DEGRADING BACTERIA FROM SULFIDIC, LOW SALINITY SALT SPRINGS MICHAEL G. WILLIS, DAVID S. TREVES* DEPARTMENT OF BIOLOGY, INDIANA UNIVERSITY SOUTHEAST, NEW ALBANY, IN MANUSCRIPT RECEIVED 30 APRIL, 2014; ACCEPTED 30 MAY, 2014 Copyright 2014, Fine Focus all rights reserved 40 • FINE FOCUS, VOL. 1 ABSTRACT The bacterial communities at two sulfdic, low salinity springs with no history of herbicide CORRESPONDING contamination were screened for their ability to AUTHOR grow on 2,4-dichlorophenoxyacetic acid (2,4-D). Nineteen isolates, closely matching the genera * David S. Treves Bacillus, Halobacillus, Halomonas, Georgenia and Department of Biology, Kocuria, showed diverse growth strategies on NaCl- Indiana University Southeast supplemented and NaCl-free 2,4-D medium. The 4201 Grant Line Road, New majority of isolates were halotolerant, growing best Albany, IN, 47150 on nutrient rich broth with 0% or 5% NaCl; none [email protected] of the isolates thrived in medium with 20% NaCl. Phone: 812-941-2129. The tfdA gene, which codes for an a – ketoglutarate dioxygenase and catalyzes the frst step in 2,4- D degradation, was detected in nine of the salt KEYWORDS spring isolates. The tfdAa gene, which shows ~60% identity to tfdA, was present in all nineteen • 2,4-D isolates. Many of the bacteria described here were • tfdA not previously associated with 2,4-D degradation • tfdAa suggesting these salt springs may contain microbial • salt springs communities of interest for bioremediation. • halotolerant bacteria INTRODUCTION Bacteria have tremendous potential to (B-Proteobacteria; formerly Ralstonia degrade organic compounds and study of eutropha) has received considerable the metabolic pathways involved is a key attention and serves as a model system for component to more effcient environmental microbial degradation (2, 3, 26).
    [Show full text]
  • Supplementary Information
    K-mer similarity, networks of microbial genomes and taxonomic rank Guillaume Bernard, Paul Greenfield, Mark A. Ragan, Cheong Xin Chan. Supplementary Figures Legends # Supplementary Figure S1: P- network of prokaryote phyla using !" with k=25, based on rRNAs. Edges represent connections between isolates of two phyla. The node size is proportional to the number of isolates in a phylum. Distance threshold = 6. Supplementary Figure S2: PCA analysis performed on the raw data of the COG categories profile for each genus. Each phylum is color-coded. Supplementary Figure S3: PCA analysis performed on the raw data of the COG categories profile for each genus. Each genus is color-coded according to the number of isolates. Supplementary Figure S4: PCA analysis performed on the normalised counts of center-scaled COG categories. Each phylum is color-coded. Supplementary Tables Legends Supplementary Table S1: List of the 2785 isolates used in this analysis. Supplementary Table S2: Network analysis of the I-network for 2705 complete genomes of bacteria and archaea. Supplementary Table S3: Network analysis of the I-network for 2616 genomes of bacteria and archaea, with rRNA genes removed. Supplementary Table S4: Network analysis of the rRNA gene sequences I-network of 2616 bacterial and archaeal isolates. Supplementary Table S5: Network analysis of the plasmid genomes I-network of 921 bacterial and plasmid genomes. Supplementary Table S6: Statistics of core k-mers for 151 genera. Supplementary Table S7: COG category profiles for 16 phyla. 1 Figure S1
    [Show full text]