Atlantic Wolffish,Anarhichas Lupus

Total Page:16

File Type:pdf, Size:1020Kb

Atlantic Wolffish,Anarhichas Lupus COSEWIC Assessment and Status Report on the Atlantic Wolffish Anarhichas lupus in Canada Photo ©Andrew Martinez SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Atlantic Wolffish Anarhichas lupus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 56 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Atlantic wolffish Anarhichas lupus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 21 pp. (www.sararegistry.gc.ca/status/status_e.cfm). O’Dea, N.R. and R.L. Haedrich. 2000. COSEWIC status report on the Atlantic wolffish Anarhichas lupus in Canada, in COSEWIC assessment and status report on the Atlantic wolffish Anarhichas lupus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-21 pp. Production note: COSEWIC would like to acknowledge Red Méthot for writing the status report on the Atlantic Wolffish, Anarhichas lupus, in Canada, prepared under contract with Environment Canada. The report was overseen and edited by John Reynolds, COSEWIC Marine Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Loup atlantique (Anarhichas lupus) au Canada. Cover illustration/photo: Atlantic Wolffish — Photo ©Andrew Martinez. Her Majesty the Queen in Right of Canada, 2013. Catalogue No. CW69-14/262-2013E-PDF ISBN 978-1-100-22144-1 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2012 Common name Atlantic Wolffish Scientific name Anarhichas lupus Status Special Concern Reason for designation This species underwent steep declines in both abundance and area of occupancy over much of its range from the 1980s until the mid-1990s, including its historical stronghold in waters east and north of Newfoundland. Since then it has been increasing in abundance and area of occupancy. While these recent increases are encouraging, the species remains at low abundance compared to the early 1980s. Population increases have probably been aided by reduced commercial fisheries, which take wolffish as bycatch. There have been continuing declines in abundance on the Scotian Shelf and in the Southern Gulf of St. Lawrence, where historically there were fewer individuals than in areas to the east and north. Occurrence Arctic Ocean, Atlantic Ocean Status history Designated Special Concern in November 2000. Status re-examined and confirmed in November 2012. iii COSEWIC Executive Summary Atlantic Wolffish Anarhichas lupus Wildlife Species Description and Significance The Atlantic Wolffish, Anarhichas lupus, is a large-bodied, bottom-dwelling fish with prominent canine-like teeth. It has dark bars on its body that distinguish it from the other wolffish species. This species is taken as bycatch in a wide range of fisheries and was of commercial interest in the 1990s. A very limited commercial fishery persists, with the largest catches reported off Nova Scotia and south of Newfoundland. Distribution The Atlantic Wolffish inhabits northern regions on both sides of the North Atlantic and in the Arctic. In Canadian waters, it is distributed from the Canadian portion of the Gulf of Maine to offshore of Baffin Island, including the Bay of Fundy, Scotian Shelf, Grand Banks off Newfoundland, Gulf of St. Lawrence, northeastern Newfoundland and the Labrador Sea. It is most abundant off northeastern Newfoundland, on the Labrador Shelf and in the southern Grand Banks off Newfoundland. Although there is evidence of genetic differentiation in parts of its range, the information available to date does not support a division of the species into separate designatable units. Habitat The eggs of Atlantic Wolffish are deposited in crevices on rocky bottoms. The larvae are planktonic before becoming established on the bottom. Juveniles and adults are found primarily in the waters of the continental shelf on rocky or sandy bottoms. The fish tolerate a broad temperature range (from -1.5oC to 13oC), although they concentrate in a narrower range and water temperature is thought to be a major factor determining habitat selection. Biology The size at which 50% of females reach sexual maturity is 51.4 cm in the northern part of the range and 68.2 cm in the south. The age at which 50% of the female population reaches sexual maturity is between 8 and 15 years. These population parameters are based on old data as no recent estimates are available. iv Wolffish have internal fertilization. Spawning is thought to occur in the fall and the eggs are guarded by the male until they hatch. Females spawn multiple times over their lifetime and egg production is low. Larvae hatch at a length of over 20 mm and remain near the bottom until the yolk sac is absorbed. Adults can reach up to 152 cm in length. Generation time is estimated to be 15 years for this species. Adults are fairly sedentary but juveniles are capable of wide dispersal. This species feeds primarily on invertebrates and, to a lesser extent, fish. Although juvenile wolffish have been found in the stomachs of seals and carnivorous fish species, larger individuals probably have few predators. Population Sizes and Trends The total number of Atlantic Wolffish in Canadian waters has been estimated at 49 million, including about 5 million mature individuals. There have been declines in both abundance and area occupied over most of its range since the 1970s or 1980s until the mid-1990s. Since then there has been a significant upward trend in abundance and distribution over much of its range, including the waters off the southern Labrador Shelf, which is the historical stronghold of this species. In contrast, adults (but not juveniles) on the Scotian Shelf have continued to decline in abundance and range size. In the Gulf of Maine outside Canadian waters, the Atlantic Wolffish is at the southern limit of its range and is generally rare and unlikely to provide a source of fish that could rescue adjacent Canadian waters. Off western Greenland, its population is estimated at several million and on the Flemish Cap, abundance was estimated at over 10 million in 2006. Threats and Limiting Factors Commercial fishing (directed and bycatch) has been a threat to this species. Recorded catches were relatively high in the 1970s, but declined considerably in the 1990s in Canadian waters due to the closure of several groundfish fisheries. Climate change and its effects on water temperatures may also affect the distribution and abundance of this species. Protection, Status and Ranks The Atlantic Wolffish was first assessed as Special Concern by COSEWIC in November 2000 and was subject to a Management Plan. The status was confirmed in 2012 by COSEWIC. It is also listed as likely to be designated threatened or vulnerable under Quebec’s Act Respecting Threatened or Vulnerable Species (Loi sur les espèces menacées ou vulnérables; R.S.Q., c E-12.01). A petition to list Atlantic Wolffish under the US Endangered Species Act was not accepted. Canada’s small marine protected areas network protects fish in a very small proportion of their range, and some areas are currently subject to a closure to bottom-trawling. v TECHNICAL SUMMARY – CANADIAN RANGE Anarhichas lupus Atlantic (Striped) Wolffish Loup atlantique Range of occurrence in Canada: Eastern Arctic Ocean and the Atlantic Ocean (including the Bay of Fundy, Scotian Shelf, Grand Banks off Newfoundland, Gulf of St. Lawrence, northeastern Newfoundland and the Labrador Sea) Demographic Information Generation time (average age of parents in the population) 15 Is there a continuing decline in the number of mature individuals? No Estimated percent of continuing decline in the total number of mature N/A individuals within 5 years or 2 generations Estimated percent change in the total number of mature individuals over Variable, overall the last 10 years, or 3 generations. declines Strong declines from the 1980s until the mid-1990s over much of the range. Numbers have been increasing in most areas since then, but they remain low compared to the start of the surveys. Projected percent change in the total number of mature individuals over the Unknown next 10 years or 3 generations. Percent reduction or increase in the total number of mature individuals over Unknown any 10 year or 3 generation period, over a time period including both the past and the future. Are the causes of the decline clearly reversible and understood and have Yes they ceased? Are there extreme fluctuations in the number of mature individuals? No Extent and occupancy information Estimated extent of occurrence within Canada’s extent of jurisdiction 1.807 million km² 2.792 million km² (excluding major land masses) Index of area of occupancy (IAO) [Using a 2 × 2 grid] 37,332 km2 Is the total population severely fragmented? No Number of locations∗ Threats include bycatch mortality in diverse fisheries Multiple, but exact over a large region. number unclear Is there a continuing decline in the extent of occurrence? No Is there a continuing decline in the index of area of occupancy? No, increases
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Northern Wolffish,Anarhichas Denticulatus
    COSEWIC Assessment and Status Report on the Northern Wolffish Anarhichas denticulatus in Canada THREATENED 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Northern Wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 41 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm) Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 21 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R., and R.L. Haedrich. 2001. COSEWIC status report on the northern wolffish Anarhichas denticulatus in Canada, in COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-21 pp. Production note: COSEWIC would like to acknowledge Red Méthot for writing the status report on the Northern Wolffish, Anarhichas denticulatus in Canada, prepared under contract with Environment Canada. The report was overseen and edited by John Reynolds, COSEWIC Marine Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Loup à tête large (Anarhichas denticulatus) au Canada.
    [Show full text]
  • (Anarhichas Lupus) and Spotted Wolffish (Anarhichas Minor) in West Greenland Waters
    NAFO SCI. Coun. Studies, 12: 13-20 Distribution, Abundance and Migration of Atlantic Wolffish (Anarhichas lupus) and Spotted Wolffish (Anarhichas minor) in West Greenland Waters Frank Riget Greenland Fisheries and Environment Research Institute Tagensvej 135, Copenhagen N, Denmark and J. Messtorff Bundesforschungsanstalt fUr Fischerei, Institut fUr Seefischerei 0-2850 Bremerhaven, Federal Republic of Germany Abstract Results from stratified-random bottom-trawl surveys off West Greenland during the autumns of 1982-86 indicated substantial decline in biomass and abundance of both Atlantic wolffish and spotted wolffish. Atlantic wolffish were the more abundant of the two species, with the catch rate generally decreasing from north to south, and occurred mainly in the 0-200 and 200-400 m depth ranges. Spotted wolffish, on the other hand, were rather uniformly distributed over the three depth ranges (to 600 m) and also over the north-south strata. Mean lengths of both species tended to increase from north to south. Reported recaptures from the taggings, during 1955-64, of 174 Atlantic wolffish and 746 spotted wolffish were 2 and 53 respectively. The two Atlantic wolffish were taken in the vicinity of the tagging site about 2 years after they were tagged. Spotted wolffish exhibited rather stationary behavior, with most recaptures generally within 20 nautical miles (nm) of the tagging sites up to 10 years after they were tagged. Only three spotted wolffish were found more than 100 nm from the tagging sites, two southward and one northward. Analysis of long line catches of spotted wolffish in the Nuuk area indicated local seasonal movements. Introduction experiments.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Section 3.9 Fish
    3.9 Fish MARIANA ISLANDS TRAINING AND TESTING FINAL EIS/OEIS MAY 2015 TABLE OF CONTENTS 3.9 FISH .................................................................................................................................. 3.9-1 3.9.1 INTRODUCTION .............................................................................................................................. 3.9-2 3.9.1.1 Endangered Species Act Species ................................................................................................ 3.9-2 3.9.1.2 Taxonomic Groups ..................................................................................................................... 3.9-3 3.9.1.3 Federally Managed Species ....................................................................................................... 3.9-5 3.9.2 AFFECTED ENVIRONMENT ................................................................................................................ 3.9-9 3.9.2.1 Hearing and Vocalization ......................................................................................................... 3.9-10 3.9.2.2 General Threats ....................................................................................................................... 3.9-12 3.9.2.3 Scalloped Hammerhead Shark (Sphyrna lewini) ...................................................................... 3.9-14 3.9.2.4 Jawless Fishes (Orders Myxiniformes and Petromyzontiformes) ............................................ 3.9-15 3.9.2.5 Sharks, Rays, and Chimaeras (Class Chondrichthyes)
    [Show full text]
  • Stomach Contents of the Atlantic Wolffish, Anarhichas Lupus, from The
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N785 NAFO SCR Doc. 84/VI/12 SCIENTIFIC COUNCIL MEETING - JUNE 1984 Stomach contents of the Atlantic wolffish, Anarhichas lupus, from the Northwest Atlantic by Wilfred Templeman Department of Fisheries and Oceans, Fisheries Research Branch Northwest Atlantic Fisheries Centre, P. 0. Box 5667 St. Johns, Newfoundland, Canada AlC 5X1 10 Abstract 1. 1 Stomach contents of Atlantic wolffish (Anarhichas lupus), collected in the 12 Northwest Atlantic from West Greenland to the Scotian Shelf, were examined by 13 volume and by occurrence. Invertebrates made up 85% of the food and fish 15%. It The most important invertebrates in order were: molluscs, especially whelks 15 and Iceland scallops; echinoderms, particularly brittle stars and sea urchins; 16 and crustacea, mainly crabs. Redfish formed the predominant fish food. 17 Molluscs increased and echinoderms usually decreased in importance from the 18 smaller to the larger wolffish. 19 Introduction 1. The food of Anarhichas lupus was studied for the Labrador-Newfoundland 2 region by Albikovskaya (1983), and off Iceland by Pálsson (1983). Notes on 3 the food of this species were recorded by Verrill (1871), Smith (1889, 1890, 4 1891, 1892), Scott (1902, 1903), Gill (1911), Bigelow and Schroeder (1953), Barsukov (1959), JOnsson (1982), and others. 6 7 Materials and Methods Stomach contents of 103 Atlantic wolffish were examined in the field for 9 volumes of various food items. Classification was limited in detail to species 10 or groups readily identified in the field without further detailed 11 investigation.
    [Show full text]
  • Spotted Wolffish (Anarhichas Minor) in the Northwest Atlantic
    COSEWIC Assessment and Status Report on the Spotted Wolffish Anarhichas minor in Canada THREATENED 2001 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2001. COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 22 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R. and R.L. Haedrich. 2001. COSEWIC status report on the spotted wolffish Anarhichas minor in Canada, in COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-22 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Rapport du COSEPAC sur la situation du loup tacheté (Anarhichas minor) au Canada Cover illustration: Spotted Wolffish — from Scott and Scott, 1988.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis Gigas) Off Santa Catalina Island, California, 2014-2015
    Bull. Southern California Acad. Sci. 115(1), 2016, pp. 1–14 E Southern California Academy of Sciences, 2016 The Return of the King of the Kelp Forest: Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis gigas) off Santa Catalina Island, California, 2014-2015 Parker H. House*, Brian L.F. Clark, and Larry G. Allen California State University, Northridge, Department of Biology, 18111 Nordhoff St., Northridge, CA, 91330 Abstract.—It is rare to find evidence of top predators recovering after being negatively affected by overfishing. However, recent findings suggest a nascent return of the critically endangered giant sea bass (Stereolepis gigas) to southern California. To provide the first population assessment of giant sea bass, surveys were conducted during the 2014/2015 summers off Santa Catalina Island, CA. Eight sites were surveyed on both the windward and leeward side of Santa Catalina Island every two weeks from June through August. Of the eight sites, three aggregations were identified at Goat Harbor, The V’s, and Little Harbor, CA. These three aggregation sites, the largest containing 24 individuals, contained a mean stock biomass of 19.6 kg/1000 m2 over both summers. Over the course of both summers the giant sea bass population was primarily made up of 1.2 - 1.3 m TL individuals with several small and newly mature fish observed in aggregations. Comparison to historical data for the island suggests giant sea bass are recovering, but have not reached pre-exploitation levels. The giant sea bass (Stereolepis gigas) is the largest teleost to inhabit nearshore rocky reefs and kelp forests in the northeastern Pacific (Hawk and Allen 2014).
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included
    [Show full text]
  • Inventory of Tidepool and Estuarine Fishes in Acadia National Park
    INVENTORY OF TIDEPOOL AND ESTUARINE FISHES IN ACADIA NATIONAL PARK Edited by Linda J. Kling and Adrian Jordaan School of Marines Sciences University of Maine Orono, Maine 04469 Report to the National Park Service Acadia National Park February 2008 EXECUTIVE SUMMARY Acadia National Park (ANP) is part of the Northeast Temperate Network (NETN) of the National Park Service’s Inventory and Monitoring Program. Inventory and monitoring activities supported by the NETN are becoming increasingly important for setting and meeting long-term management goals. Detailed inventories of fishes of estuaries and intertidal areas of ANP are very limited, necessitating the collection of information within these habitats. The objectives of this project were to inventory fish species found in (1) tidepools and (2) estuaries at locations adjacent to park lands on Mount Desert Island and the Schoodic Peninsula over different seasons. The inventories were not intended to be part of a long-term monitoring effort. Rather, the objective was to sample as many diverse habitats as possible in the intertidal and estuarine zones to maximize the resultant species list. Beyond these original objectives, we evaluated the data for spatial and temporal patterns and trends as well as relationships with other biological and physical characteristics of the tidepools and estuaries. For the tidepool survey, eighteen intertidal sections with multiple pools were inventoried. The majority of the tidepool sampling took place in 2001 but a few tidepools were revisited during the spring/summer period of 2002 and 2003. Each tidepool was visited once during late spring (Period 1: June 6 – June 26), twice during the summer (Period 2: July 3 – August 2 and Period 3: August 3 – September 18) and once during early fall (Period 4: September 29 – October 21).
    [Show full text]