The Succession Pattern of Bacterial Diversity in Compost Using Pig

Total Page:16

File Type:pdf, Size:1020Kb

The Succession Pattern of Bacterial Diversity in Compost Using Pig bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The succession pattern of bacterial diversity in compost using pig 2 manure mixed with wood chips analyzed by 16S rRNA gene analysis 3 Zhengfeng Li4¶, Yan Yang1,2,3¶, Yuzhen Xia5, Tao Wu4, Jie Zhu4, Zhaobao Wang1,2,3*, Jianming 4 Yang1,2,3* 5 1 Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, 6 Qingdao Agricultural University, Qingdao, China 7 2 Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 8 Qingdao, China 9 3 College of Life Sciences, Qingdao Agricultural University, Qingdao, China 10 4 China Tobacco Yunnan Industrial Co., Ltd., Kunming, China 11 5 Hongta Tobacco (Group) Co., Ltd., Yuxi, China 12 13 14 * Corresponding authors 15 Email: [email protected] (ZW), 16 [email protected] (JY) 17 18 ¶ These authors are co-first authors on this work. 19 20 21 22 23 24 bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 The pig manure mixed with wood chips and formed compost by means of 27 fermentation. We found that the protease activity, organic matter content and 28 ammonium nitrogen concentration were higher in the early stage of composting. 29 Meanwhile, the urease activity was highest in the high temperature period. The carbon 30 to nitrogen ratio of the compost decreased continuously with fermentation. The 31 dynamic change in the composition of bacterial overtime in the compost of a 180 kg 32 piles were explored using microbial diversity analysis. The results showed that the 33 microbial species increased with the compost fermentation. At the early stage of 34 composting, the phyla of Firmicutes and Actinomycetes were dominant. The microbes 35 in the high temperature period were mainly composed of Firmicutes and 36 Proteobacteria while the proportion of Bacteroides was increased during the cooling 37 period. In the compost of maturity stage, the proportion of Chloroflexi increased, 38 becoming dominant species with other microorganisms including Firmicutes, 39 Proteobacteria, Bacteroides, Chloroflexi but not Actinomycetes. Bacteria involved in 40 lignocellulose degradation, such as those of the Thermobifida, Cellvibrio, 41 Mycobacterium, Streptomyces and Rhodococcus, were concentrated in the maturity 42 stages of composting. Through correlation analysis, the environmental factors 43 including organic matter, ammonium nitrogen and temperature were consistent with 44 the succession of microbial including Rhodocyclaceae, Anaerolineaceae, 45 Thiopseudomonas, Sinibacillus and Tepidimicrobium. The change of urease activity 46 and carbon to nitrogen ratio corresponded to microbial communities, mainly bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 47 containing Anaerolineaceae, Rhodocyclaceae, Luteimoas, Bacillaceae, 48 Corynebacterium, Bacillus, Anaerococcus, Lactobacillus, Ignatzschineria, and 49 Bacillaceae. 50 51 Introduction 52 Aerobic composting of livestock manure and agricultural waste is the most 53 economical and environmentally friendly way of obtaining a fertilizer. During this 54 process, most microbes grow under aerobic conditions. Compared with anaerobic 55 fermentation, the aerobic fermentation cycle is shorter. The resulting composts can be 56 used in farmland as biological organic fertilizers, which is of great significance for 57 promoting ecological agriculture. 58 Aerobic composting generally undergoes four stages, including the heating period, 59 high temperature period, cooling period and maturity period Although the 60 microorganism communities of compost are highly complex, the succession of 61 microbial communities during composting obeys certain rules [1]. The traditional 62 research methods analyzing the microorganisms composition in compost mainly 63 include PLFA, DGGE, PCR-RFLP and plate culture method, etc.[2] However, 64 because of the limitations of culture conditions and the low resolution of 65 electrophoresis gels, these analyses of microorganisms have not been comprehensive. 66 Currently, the 16S RNA special fragment is amplified using the bacterial and archaeal 67 primers. By comparing amplification fragment of 16S RNA with online databases of 68 bacteria sequence, the microorganism’s type and quantity in the compost are bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 69 determined [3]. 70 Traditional composting methods include composting with single raw materials 71 and mixed raw materials. The fundamental reason for using various additives in 72 composting processes is to provide the best-growing environment for microbial 73 growth and achieve rapid composting, thus reducing the harmful gas emissions under 74 controlled conditions. For example, sawdust is an additive that reduces methane 75 emissions to a certain extent [4]. However, the quality of the fertilizer ultimately 76 depends on the microbial composition of the compost, and only a clear understanding 77 of the succession pattern of the microbial communities throughout the composting 78 stages will enable us to fully control this process. This knowledge would help us find 79 the best compost additives and microbial agents, laying the foundations for screening 80 microorganisms for special functions. 81 In this study, we studied the evolution of bacterial communities in a mixed 82 compost of pig manure and sawdust under the condition of a low carbon to nitrogen 83 ratio (20-25:1). Using 515F and 806R primers, the 16S RNA specific region of 84 prokaryotic genomes was amplified, and the whole process of composting bacteria 85 was systematically investigated. By analyzing the changes in compost of the dominant 86 bacteria and the correlation between microbial community and important 87 environmental parameters, we managed to explain the effects of environmental 88 factors on the changing microbial communities in compost and provide scientific 89 advice to control the fermentation process of the compost by adjusting the 90 physicochemical parameters. bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 91 Materials and methods 92 Compost composting and sampling 93 The compost study was performed in three piles (diameter, 1.5 m; height, 1.1 m). 94 An 800 cm length, 20 cm wide, 20 cm deep trench was dug at the surface and three 95 200 cm length , 20 cm wide and 20 cm deep trenches were used to vent at the bottom 96 of the compost. The branches and wheat straw were alternately put in the cross 97 position of each groove. Then the compost with pig manure and sawdust mixed with 98 C/N ratios of 25:1 was laid on top. A stick was inserted at the top of a pile of compost 99 to increase the overall aeration, and the piles were covered with a black perforated 100 plastic sheet to avoid heat and water loss. Three thermometers were inserted in 101 different directions into the 75 cm high compost. The real-time temperature of each 102 compost stack was the average value from three different sites. Water was added 103 during the experiment to maintain a moisture content level of 60 %. The oxygen was 104 supplied during the composting process by turning the pile once every five days. 105 Through long-term composting test, the 50 days of the natural fermentation 106 process samples in different fermentation stages were studied. Firstly, we determined 107 the midpoint of the diagonal as the central sampling point. Secondly, we selected four 108 additional samples equidistant from the center point. These five sub-samples were 109 then fully mixed to form one composting sample. Three samples from three piles were 110 obtained at each fermentation stage, and 12 samples were obtained at four 111 fermentation stages including the prime stage, high-temperature period, cooling 112 period, and maturity period. Samples obtained from each composting were labeled bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 113 Z31, Z32 and Z33 for third days after composting. The compost samples taken on day 114 seven were referred to as Z71, Z72 and Z73. The samples taken at day 20 were 115 labeled Z201, Z202 and Z203. On the fiftieth day, samples obtained from the 116 composts were labeled Z501, Z502 and Z503. All samples were stored at -80 °C until 117 use. 118 Compost physical and chemical analysis 119 The temperature was measured every day in the compost by thermometer place at 120 the same height and depth. Measurements were taken from three thermometers placed 121 at different angles. The water extract with a 1:4 ratio of the compost sample contrast 122 to distilled water was used for the measurement of pH.
Recommended publications
  • Isotope Array Analysis of Rhodocyclales Uncovers Functional Redundancy and Versatility in an Activated Sludge
    The ISME Journal (2009) 3, 1349–1364 & 2009 International Society for Microbial Ecology All rights reserved 1751-7362/09 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge Martin Hesselsoe1, Stephanie Fu¨ reder2, Michael Schloter3, Levente Bodrossy4, Niels Iversen1, Peter Roslev1, Per Halkjær Nielsen1, Michael Wagner2 and Alexander Loy2 1Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark; 2Department of Microbial Ecology, University of Vienna, Wien, Austria; 3Department of Terrestrial Ecogenetics, Helmholtz Zentrum Mu¨nchen—National Research Center for Environmental Health, Neuherberg, Germany and 4Department of Bioresources/Microbiology, ARC Seibersdorf Research GmbH, Seibersdorf, Austria Extensive physiological analyses of different microbial community members in many samples are difficult because of the restricted number of target populations that can be investigated in reasonable time by standard substrate-mediated isotope-labeling techniques. The diversity and ecophysiology of Rhodocyclales in activated sludge from a full-scale wastewater treatment plant were analyzed following a holistic strategy based on the isotope array approach, which allows for a parallel functional probing of different phylogenetic groups. Initial diagnostic microarray, comparative 16S rRNA gene sequence, and quantitative fluorescence in situ hybridization surveys indicated the presence of a diverse community, consisting of an estimated number of 27 operational taxonomic units that grouped in at least seven main Rhodocyclales lineages. Substrate utilization profiles of probe-defined populations were determined by radioactive isotope array analysis and microautoradiography-fluorescence in situ hybridization of activated sludge samples that were briefly exposed to different substrates under oxic and anoxic, nitrate-reducing conditions.
    [Show full text]
  • Anaerobic Degradation of Steroid Hormones by Novel Denitrifying Bacteria
    Anaerobic degradation of steroid hormones by novel denitrifying bacteria Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Michael Fahrbach aus Bad Mergentheim (Baden-Württemberg) Berichter: Professor Dr. Juliane Hollender Professor Dr. Andreas Schäffer Tag der mündlichen Prüfung: 12. Dezember 2006 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Table of Contents 1 Introduction.....................................................................................................................1 1.1 General information on steroids ...............................................................................1 1.2 Steroid hormones in the environment.......................................................................2 1.2.1 Natural and anthropogenic sources and deposits ............................................2 1.2.2 Potential impact on the environment ................................................................3 1.2.3 Fate of steroid hormones..................................................................................4 1.3 Microbial degradation of steroid hormones and sterols............................................5 1.3.1 Aerobic degradation..........................................................................................5 1.3.2 Anaerobic degradation......................................................................................7
    [Show full text]
  • Biodegradation of Aromatic Hydrocarbons in Oxygen-Limited Groundwater
    TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Mikrobologie Biodegradation of aromatic hydrocarbons in oxygen-limited groundwater Lauren Bradford Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzende(r): Hon.-Prof. Dr. Michael Schloter Prüfer der Dissertation: 1. Prof. Dr. Tillmann Lüders 2. Prof. Dr. Wolfgang Liebl Die Dissertation wurde am 27.01.2020 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 08.06.2020 angenommen. 1 Abstract Hydrocarbon contamination of groundwater is a global problem, negatively impacting human health and ecosystem functioning. One of the main ways to mitigate this issue is bioremediation, the use of microorganisms to sequester or break down pollutants. Bacteria capable of metabolizing hydrocarbons are widespread in the environment, including groundwater. They rely on a variety of metabolic and respiratory strategies, distinguished primarily by the availability of oxygen. Oxygen can act as a terminal electron acceptor (TEA) during respiration, but also as a metabolic co-substrate during the breakdown of stable compounds like aromatic hydrocarbons. Anaerobic degradation relies on alternative TEAs and mechanisms of aromatic destabilization. Strictly aerobic and anaerobic hydrocarbon degradation have been well studied in recent decades, but hot spots of degradation occur at the fringes of contaminant plumes, where mixing of oxygen and other TEAs create dynamic, TEA- limited conditions. Microaerobes and other microbes with specialized strategies that could offer advantages in such conditions have been poorly investigated, despite their probable contribution to pollutant degradation in environmentally-relevant situations.
    [Show full text]
  • The Succession Pattern of Bacterial Diversity in Compost Using Pig
    bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The succession pattern of bacterial diversity in compost using pig 2 manure mixed with wood chips analyzed by 16S rRNA gene analysis 3 Zhengfeng Li4¶, Yan Yang1,2,3¶, Yuzhen Xia5, Tao Wu4, Jie Zhu4, Zhaobao Wang1,2,3*, Jianming 4 Yang1,2,3* 5 1 Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, 6 Qingdao Agricultural University, Qingdao, China 7 2 Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 8 Qingdao, China 9 3 College of Life Sciences, Qingdao Agricultural University, Qingdao, China 10 4 China Tobacco Yunnan Industrial Co., Ltd., Kunming, China 11 5 Hongta Tobacco (Group) Co., Ltd., Yuxi, China 12 13 14 * Corresponding authors 15 Email: [email protected] (ZW), 16 [email protected] (JY) 17 18 ¶ These authors are co-first authors on this work. 19 20 21 22 23 24 bioRxiv preprint doi: https://doi.org/10.1101/674069; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 The pig manure mixed with wood chips and formed compost by means of 27 fermentation.
    [Show full text]
  • Outline Release 7 7C
    Taxonomic Outline of Bacteria and Archaea, Release 7.7 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 4 – The Bacteria: Phylum “Proteobacteria”, Class Betaproteobacteria George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall Class Betaproteobacteria VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.16162 Order Burkholderiales VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1617 Family Burkholderiaceae VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1618 Genus Burkholderia VP Yabuuchi et al. 1993. GOLD ID: Gi01836. GCAT ID: 001596_GCAT. Sequenced strain: SRMrh-20 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 2 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1619 Burkholderia cepacia VP (Palleroni and Holmes 1981) Yabuuchi et al. 1993. <== Pseudomonas cepacia (basonym). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High-quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank). GOLD ID: Gc00309. GCAT ID: 000301_GCAT. Entrez genome id: 10695. Sequenced strain: ATCC 17760, LMG 6991, NCIMB9086 is from a non-type strain. Genome sequencing is completed. Number of genomes of this species sequenced 1 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1620 Pseudomonas cepacia VP (ex Burkholder 1950) Palleroni and Holmes 1981. ==> Burkholderia cepacia (new combination). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High- quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank).
    [Show full text]
  • Wo 2011/009849 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 27 January 2011 (27.01.2011) WO 2011/009849 A2 (51) International Patent Classification: (74) Common Representative: BASF SE; 67056 Lud C12P 7/62 (2006.01) wigshafen (DE). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP2010/060458 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) Date: International Filing CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 20 July 2010 (20.07.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 09166015.9 2 1 July 2009 (21 .07.2009) EP SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/227,797 23 July 2009 (23.07.2009) US TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants (for all designated States except US): BASF (84) Designated States (unless otherwise indicated, for every SE [DE/DE]; 67056 Ludwigshafen (DE). MAX- kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V.
    [Show full text]
  • Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota Bradford, Lauren M.; Vestergaard, Gisle; Táncsics, András; Zhu, Baoli; Schloter, Michael; Lueders, Tillmann Published in: Frontiers in Microbiology DOI: 10.3389/fmicb.2018.02696 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Bradford, L. M., Vestergaard, G., Táncsics, A., Zhu, B., Schloter, M., & Lueders, T. (2018). Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota. Frontiers in Microbiology, 9, [2696]. https://doi.org/10.3389/fmicb.2018.02696 Download date: 09. apr.. 2020 fmicb-09-02696 November 13, 2018 Time: 12:54 # 1 ORIGINAL RESEARCH published: 13 November 2018 doi: 10.3389/fmicb.2018.02696 Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota Lauren M. Bradford1, Gisle Vestergaard2,3, András Táncsics4, Baoli Zhu1, Michael Schloter4 and Tillmann Lueders1* 1 Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany, 2 Section of Microbiology, University of Copenhagen, Copenhagen, Denmark, 3 Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum Edited by: München, Neuherberg, Germany, 4 Regional University Center of Excellence in Environmental Industry, Szent István Zofia Piotrowska-Seget, University, Gödöllö, Hungary University of Silesia of Katowice, Poland Reviewed by: While most studies using RNA-stable isotope probing (SIP) to date have focused on Siavash Atashgahi, ribosomal RNA, the detection of 13C-labeled mRNA has rarely been demonstrated.
    [Show full text]
  • The Geomicrobiology of Cementitious Radioactive Waste
    The Geomicrobiology of Cementitious Radioactive Waste A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2014 Adam John Williamson School of Earth, Atmospheric and Environmental Sciences Table of Contents Table of Contents .............................................................................................................. 2 List of Figures ................................................................................................................... 8 List of Tables................................................................................................................... 13 Abbreviations .................................................................................................................. 16 Abstract ........................................................................................................................... 18 Declaration ...................................................................................................................... 19 Copyright Statement ....................................................................................................... 20 Acknowledgments .......................................................................................................... 21 The Author ..................................................................................................................... 22 1. Introduction and Thesis Content ...........................................................................
    [Show full text]
  • Rapid Startup of Simultaneous Nitrogen and Phosphorus Removal (SNPR) Process and the Bacterial Community Dynamics in a GSBR
    Pol. J. Environ. Stud. Vol. 28, No. 4 (2019), 2931-2940 DOI: 10.15244/pjoes/92705 ONLINE PUBLICATION DATE: 2019-03-05 Original Research Rapid Startup of Simultaneous Nitrogen and Phosphorus Removal (SNPR) Process and the Bacterial Community Dynamics in a GSBR Xin Xin*, Ziling Wang College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China Received: 14 March 2018 Accepted: 29 June 2018 Abstract This study inoculated aerobic granular sludge (AGS) in a sequencing batch reactor (SBR) treatment for low carbon nitrogen (COD/N) ratio wastewater, and gradually reduced the DO concentration in order to achieve the rapid startup of the simultaneous nitrogen and phosphorous removal (SNPR) process. Meanwhile, the microbial community dynamics at different DO levels were analyzed by high-throughput sequencing. The removal efficiencies of total nitrogen (TN) and phosphorus (TP) were significantly affected as different dissolved oxygen (DO) concentrations (2.0,1.2 and 0.8 mg/L) in stages I, II and III, respectively. When DO concentration was reduced to 0.8mg/L (stage III), the SNPR process was successfully implemented and the removal efficiencies of TN and TP were up to 77.30% and 85.78%, respectively. A total of 40,983 effective 16S rRNA gene sequences were generated from four samples (1-4) that widely represented microbial community diversity. The dominant phyla transformed from Candidate_division_TM7 (the relative abundance of 68.08%) and proteobacteria (25.78%) to Firmicutes (47.57%) and proteobacteria (41.49%) when DO concentration was decreased from 2.0 mg/L (stage I) to 0.8 mg/L(stage III).
    [Show full text]
  • Aalborg Universitet Single-Cell Ecophysiology of Key Microbial Taxa
    Aalborg Universitet Single-cell ecophysiology of key microbial taxa in wastewater treatment systems A trip to unveil the microbial "dark matter" Petriglieri, Francesca Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Petriglieri, F. (2020). Single-cell ecophysiology of key microbial taxa in wastewater treatment systems: A trip to unveil the microbial "dark matter". Aalborg Universitetsforlag. Ph.d.-serien for Det Ingeniør- og Naturvidenskabelige Fakultet, Aalborg Universitet General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: September 23, 2021 TAXA IN WASTEWATER TREATMENT SYSTEMS TREATMENT WASTEWATER IN TAXA MICROBIAL KEY OF ECOPHYSIOLOGY SINGLE-CELL SINGLE-CELL ECOPHYSIOLOGY OF KEY MICROBIAL TAXA IN WASTEWATER TREATMENT SYSTEMS A TRIP TO UNVEIL THE MICROBI AL “DARK MAT TER” BY FRANCESCA PETRIGLIERI DISSERTATION SUBMITTED 2020 FRANCESCA PETRIGLIERI FRANCESCA SINGLE-CELL ECOPHYSIOLOGY OF KEY MICROBIAL TAXA IN WASTEWATER TREATMENT SYSTEMS A TRIP TO UNVEIL THE MICROBIAL “DARK MATTER” By Francesca Petriglieri Dissertation submitted August 2020 .
    [Show full text]