AASEN-DISSERTATION.Pdf (4.833Mb)

Total Page:16

File Type:pdf, Size:1020Kb

AASEN-DISSERTATION.Pdf (4.833Mb) Discovery of an extracellular stress sensory protein in Beauveria bassiana and identification of photolyase encoding phr-1 sequences in five entomopathogenic fungi A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Applied Microbiology in the Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon By Kelly R. Aasen © Copyright Kelly R. Aasen, April 2013. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 Canada i GENERAL ABSTRACT Entomopathogenic fungi (EPF) are being developed as an alternative to chemical insecticides and several, including Beauveria bassiana are currently important tools in integrated pest management. However, their ability to bring about effective control of pest insects can be compromised by environmental stresses and conditions, including short-wave ultraviolet radiation (UVR) and high temperatures. The work described in this thesis: 1) identified a region of a candidate photolyase gene (phr-1) in five different genera of EPF, which encoded a portion of a putative cyclobutane pyrimidine dimer photolyase (CPD-PHR; named after the type of DNA damage they repair and the encoding gene, respectively), 2) established that in B. bassiana, tolerance to UVR or heat can be induced in conidiospores (CS) or blastospores (BS), respec- tively, by cell-free filtrate (CFF) suspected to contain an extracellular sensory component like factor (ELF), 3) identified key steps required for tolerance induction and 4) characterized a gene candidate to encode ELF (elf) and its encoded product using a combination of molecular biological and microbiological techniques, which provided evidence to suggest that the candidate gene encodes a functional ELF and propose some cellular components which may be involved in its potential interaction with the cell. Note that ELF is named after the extracellular sensory component (ESC) from Escherichia coli, but not due to known or suspected similarities in their sequence, structure or specific function, but rather because of their predicted ability, once activated by heat (in this particular case), to increase environmental tolerance in treated cells. Furthermore, this response was termed ELF/ESC induced tolerance (EIT), which is similar to the definition used by the late Dr. Rowbury and his colleagues. Currently, EIT is characterized only by an increase in ii environmental tolerance, measured as viability, following treatment with activated ESC or ELF. However, if more specific functions or roles for ESC, ELF or EIT were discovered than these definitions would require revision to accommodate such findings. In addition to the determinants of infection controlled by the fungus and host, including their molecular biology, physiology and biochemistry, the environment where they subsist is of great importance. Environmental conditions, including available moisture, wind, temperature, solar UVR and type of insect pest, all influence the ability of EPF to establish pathogenesis. High heat stress and UVR are of most importance when EPF are applied to crops during daylight hours since prolonged solar exposure can cause inactivation of fungal spores leading to decreased insect mortality. Both of these stresses and their impacts on fungi were studied during this thesis research. Sunlight is the main source of UVR in nature and its short to medium wavelengths (< 315 nm) were of most importance in this study. These wavelengths can damage DNA through the creation of cyclobutane pyrimidine dimers (CPDs) which can be lethal to cells due to their ability to halt DNA replication and gene expression. This type of damage is most efficiently repaired by CPD-PHR dependent photoreactivation, which can repair ~ 90% of CPDs but is dependent on the availability of light at 380-410 nm. The phr-1 gene has been shown to encode CPD-PHR in other fungi and was studied here in five genera of EPF. A region of a putative phr-1 that had sequence conservation with known phr-1 from other filamentous fungi was found in EPF from the genera Beauveria, Isaria, Lecanicillium, Metarhizium and Tolypocladium. This region encoded several conserved characteristics known to be functionally important for the of CPD- PHR in DNA repair. Furthermore, homology modeling was used to predict the structure/ function of the products encoded by this region of putative phr-1 and provided evidence that they iii contained structural homology with those that had CPD-PHR repair activity (E.C. 4.1.99.3). In addition, homology modeling was able to differentiate the products encoded by the putative phr- 1s in the studied EPF and a model CPD-PHR from the two other protein types belonging to the photolyase (PHR)/cryptochrome (CRY) family that are also found in fungi. The predicted molecular phylogeny of the putative CPD-PHRs was consistent with the established phylogenetic relationships of these fungi, with the exception of Lecanicillium. These results are the first for a putative phr-1 in EPF from the genera Isaria, Lecanicillium and Tolypocladium. Another phenomenon was also studied in this thesis. It had been shown in bacterial and yeast cultures that extracellular factors (for example ESCs and ELFs) are present and appear to be involved in cellular sensing of environmental stress conditions, such as high temperature and can induce tolerance to various environmental stresses, including heat and UVR. However, this phenomenon has not been studied in any filamentous fungi. This investigation was conducted to determine if CS or BS from B. bassiana were responsive to preheated CFF and possessed a phenomenon which resembles EIT to heat and/or UVR, which is characterized by an increase in the survival rates of challenged cells. The results showed that tolerances of CS and BS to UVR (under non-photoreactivating conditions) or heat (55 °C), respectively, were increased following treatment with preheated CFF. Several novel bioassays were also developed to screen for and characterize ELF candidate (EC) proteins produced by B. bassiana. These included a poly- acrylamide-based, in situ bioassay and a whole cell, pull-down assay that were employed to identify several ECs and one such candidate, EC1 (~ 28 kDa), potentially interacted with BS. Furthermore, bioassays with purified EC1 and EC2 showed that only the glycosylated EC1 possessed the ability to increase heat tolerance in BS and appeared to be an ELF based on this result, which was consistent with the current understanding of the effects of EIT. iv Analysis of EC1 and EC2 by electrospray ionization with tandem mass spectrometry (ESI-MS/MS) revealed that they were the same protein and differed by EC1 being glycosylated. An expressed sequence tag (EST) encoding peptide sequences, representing six of the eleven parent ions found in EC1/EC2 by ESI-MS/MS, was identified in the public data base of ESTs from B. bassiana. As a result, this EST was considered to be a candidate to partially encode for ELF in B. bassiana and was used to design oligonucleotide primers to amplify the remaining coding regions of the gene using polymerase chain reaction (PCR) based methods. This led to the identification of a potential 741 bp open reading frame (ORF) that encoded a total of eight out of a possible eleven parent ions derived from EC1 and EC2. In silico analysis revealed that the ORF encoded a protein with other features that were also consistent with those observed in the likely ELF, such as its nascent derived size (25.9 kDa), candidate glycosylation sites and predicted secretion signal peptide. The candidate elf was inserted into an expression cassette and introduced into the methylotrophic yeast Pichia pastoris where expression of elf could be controlled by the presence of methanol. This strategy was successful in yielding a cell line able to produce transgenic-ELF (TG-ELF) that was able to confer elevated tolerance to heat in BS to a level that was similar to ELF produced by B. bassiana. This provided additional evidence that elf encoded a functional ELF. The molecular function(s) of ELF currently remain unknown, as no sequence homo- logues of ELF with defined functions have been established. Furthermore, structural models could not confidently predict functions for the likely ELF studied here. Nonetheless, it was apparent that the ELF involved in establishing heat tolerance in BS was a small secreted cysteine rich protein (SSCP) because of its size [< 300 amino acid residues (aa)], abundance of cysteine (5.2%) and is secreted, which are characteristics consistent with other SSCPs. The ELF also v contains three, 63 aa internal repeats, which have been thought to be involved in rapid protein evolution in other organisms. Furthermore, correlative clues were found that suggested the apparent interaction between ELF and BS is of low affinity, which is consistent with other agonist-receptor interactions that are involved in signal transduction.
Recommended publications
  • Relazione Oncoexome
    EXOME Revolution Oncology Diagnostics Relazione Tecnica M M EXOME Revolution Oncology Diagnostics ONCOEXOME Con il termine “cancro” o tumore” ci si riferisce ad un insieme molto eterogeneo di malattie caratteriz- zate da una crescita cellulare svincolata dai normali meccanismi di controllo dell’organismo. Le cellule tumorali infatti invece di morire vivono più a lungo di quanto sarebbe previsto dal codice genetico, con- tinuano a generare ulteriori cellule anomale e possono inoltre invadere (metastatizzando) i tessuti adia- centi. È noto ormai, che il cancro origina da un accumulo di mutazioni nel DNA, cioè di alterazioni in geni che regolano la proliferazione, la sopravvivenza delle cellule, la loro adesione e la loro mobilità. Le mutazioni possono svilupparsi in tempi molto differenti, anche sotto l'influenza di stimoli esterni. Tanto maggiori saranno le anomalie genetiche accumulate, tanto più la cellula neoplastica si discosterà dall’originaria e la neoplasia maligna sarà indifferenziata e priva di controllo divenendo invasiva a scapito dei tessuti dell’organismo. Il tumore benigno può essere considerato la prima tappa di queste alterazioni, tuttavia, molto di frequente, questa tappa viene saltata e si arriva alla malignità senza evidenti segni precursori. Ad oggi, il tumore è la seconda causa di morte in Italia dopo le malattie cardiovascolari e rappresenta il 30% di causa di tutti i decessi. Secondo statistiche americane, quasi la metà di tutti gli uomini e un po’ più di un terzo di tutte le donne svilupperanno un cancro nel corso della loro esistenza. Per tale motivo, diventa sempre più necessario sviluppare nuovi metodi di prevenzione primaria per ridurre il rischio di ammalarsi ed ottenere cosi approcci terapeutici personalizzati.
    [Show full text]
  • The Role of Inhibitors of Differentiation Proteins ID1 and ID3 in Breast Cancer Metastasis
    The role of Inhibitors of Differentiation proteins ID1 and ID3 in breast cancer metastasis Wee Siang Teo A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy St Vincent’s Clinical School, Faculty of Medicine The University of New South Wales Cancer Research Program The Garvan Institute of Medical Research Sydney, Australia March, 2014 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Teo First name: Wee Siang Abbreviation for degree as given in the University calendar: PhD (Medicine) School: St Vincent’s Clinical School Faculty: Faculty of Medicine Title: The role of Inhibitors of Differentiation proteins ID1 and ID3 in breast cancer metastasis Abstract 350 words maximum: (PLEASE TYPE) Breast cancer is a leading cause of cancer death in women. While locally-confined breast cancer is generally curable, the survival of patients with metastatic breast cancer is very poor. Treatment for metastatic breast cancer is palliative not curative due to the lack of targeted therapies. Metastasis is a complex process that still remains poorly understood, thus a detailed understanding of the biological complexity that underlies breast cancer metastasis is essential in reducing the lethality of this disease. The Inhibitor of Differentiation proteins 1 and 3 (ID1/3) are transcriptional regulators that control many cell fate and developmental processes and are often deregulated in cancer. ID1/3 are required and sufficient for the metastasis of breast cancer in experimental models. However, the mechanisms by which ID1/3 mediate metastasis in breast cancer remain to be determined. Little is known about pathways regulated by ID1/3 in breast cancer as well as their functional role in the multiple steps of metastatic progression.
    [Show full text]
  • Mouse DNA Repair Primer Library II
    Mouse DNA Repair Primer Library II Catalog No: MDRL-2 Supplier: RealTimePrimers Lot No: XXXXX Supplied as: solid Stability: store at -20°C Description Contains 88 primer sets directed against DNA repair genes and 8 housekeeping genes. Provided in a 96-well microplate (20 ul - 10 uM). Perform up to 100 PCR arrays (based on 20 ul assay volume per reaction). Just add cDNA template and SYBR green master mix. Gene List: • POLB Polymerase (Dna Directed), Beta • CHAF1A Chromatin Assembly Factor 1, Subunit • POLG Polymerase (Dna Directed), Gamma A (P150) • POLD1 Polymerase (Dna Directed), Delta 1, • BLM Bloom Syndrome, Recq Helicase-Like Catalytic Subunit 125Kda • WRN Werner Syndrome, Recq Helicase-Like • POLE Polymerase (Dna Directed), Epsilon • RECQL4 Recq Protein-Like 4 • PCNA Proliferating Cell Nuclear Antigen • ATM Ataxia Telangiectasia Mutated • REV3L Rev3-Like, Catalytic Subunit Of Dna • FANCA Fanconi Anemia, Complementation Polymerase Zeta (Yeast) Group A • MAD2L1 Mad2 Mitotic Arrest Deficient-Like 1 • FANCB Fanconi Anemia, Complementation (Yeast) Group B • MAD2L2 Mad2 Mitotic Arrest Deficient-Like 2 • FANCC Fanconi Anemia, Complementation (Yeast) Group C • REV1 REV1 homolog • FANCD2 Fanconi Anemia, Complementation • POLH Polymerase (Dna Directed), Eta Group D2 • POLI Polymerase (Dna Directed) Iota • FANCE Fanconi Anemia, Complementation • POLQ Polymerase (Dna Directed), Theta Group E • POLK Polymerase (Dna Directed) Kappa • FANCF Fanconi Anemia, Complementation • POLL Polymerase (Dna Directed), Lambda Group F • POLM Polymerase (Dna Directed), Mu • FANCG Fanconi Anemia, Complementation • POLN Polymerase (Dna Directed) Nu Group G • FEN1 Flap Structure-Specific Endonuclease 1 • FANCL Fanconi Anemia, Complementation • TREX1 Three Prime Repair Exonuclease 1 Group L • TREX2 Three Prime Repair Exonuclease 2 • DCLRE1A Dna Cross-Link Repair 1A • EXO1 Exonuclease 1 • DCLRE1B Dna Cross-Link Repair 1B • SPO11 Spo11 Meiotic Protein Covalently Bound • RPA4 Replication Protein A4, 30Kda To Dsb Homolog (S.
    [Show full text]
  • RNA DNA Damage Repair Human Vjune2017
    Gene Symbol Accession Alias/Prev Symbol Official Full Name ABL1 NM_005157.3 ABL, JTK7, c-ABL, p150 c-abl oncogene 1, non-receptor tyrosine kinase AKT3 NM_005465.4 v-akt murine thymoma viral oncogene homolog 3 ALKBH2 NM_001001655.2 alkB, alkylation repair homolog 2 (E. coli) ALKBH3 NM_139178.3 alkB, alkylation repair homolog 3 (E. coli) APC NM_000038.3 adenomatous polyposis coli APEX1 NM_001641.2 APEX, APE, REF1, HAP1, APX, APEN, REF-1,APEX APE-1nuclease (multifunctional DNA repair enzyme) 1 APEX2 NM_014481.2 APEX nuclease (apurinic/apyrimidinic endonuclease) 2 ATM NM_138292.3 ATA, ATDC, ATC, ATD, TEL1, TELO1 ataxia telangiectasia mutated ATR NM_001184.2 ataxia telangiectasia and Rad3 related ATRIP NM_130384.1 ATR interacting protein AURKA NM_003600.2 STK15, STK6, BTAK, AurA, STK7, ARK1,aurora PPP1R47, kinase AIK A BCL2 NM_000657.2 B-cell CLL/lymphoma 2 BCL2L1 NM_138578.1 BCL2-like 1 BLM NM_000057.2 Bloom syndrome, RecQ helicase-like BRCA1 NM_007305.2 breast cancer 1, early onset BRCA2 NM_000059.3 FANCD1, FACD, FANCD, FAD, FAD1, BRCC2breast cancer 2, early onset BRIP1 NM_032043.1 BRCA1 interacting protein C-terminal helicase 1 BUB1B NM_001211.4 BUB1 mitotic checkpoint serine/threonine kinase B CASP8 NM_001228.4 caspase 8, apoptosis-related cysteine peptidase CCND1 NM_053056.2 BCL1, D11S287E, PRAD1, U21B31 cyclin D1 CCND2 NM_001759.2 cyclin D2 CCND3 NM_001760.2 cyclin D3 CCNO NM_021147.3 CCNU, UDG2, FLJ22422, UNG2 cyclin O CDK7 NM_001799.2 cyclin-dependent kinase 7 CDKN1A NM_000389.2 CDKN1, P21, CIP1, WAF1, SDI1, CAP20,cyclin-dependent p21CIP1,
    [Show full text]
  • Telomere Binding of Checkpoint Sensor and DNA Repair Proteins Contributes to Maintenance of Functional Fission Yeast Telomeres
    Copyright 2002 by the Genetics Society of America Telomere Binding of Checkpoint Sensor and DNA Repair Proteins Contributes to Maintenance of Functional Fission Yeast Telomeres Toru M. Nakamura,1,2 Bettina A. Moser1 and Paul Russell Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037 Manuscript received March 6, 2002 Accepted for publication May 22, 2002 ABSTRACT Telomeres, the ends of linear chromosomes, are DNA double-strand ends that do not trigger a cell cycle arrest and yet require checkpoint and DNA repair proteins for maintenance. Genetic and biochemical studies in the fission yeast Schizosaccharomyces pombe were undertaken to understand how checkpoint and DNA repair proteins contribute to telomere maintenance. On the basis of telomere lengths of mutant combinations of various checkpoint-related proteins (Rad1, Rad3, Rad9, Rad17, Rad26, Hus1, Crb2, Chk1, Cds1), Tel1, a telomere-binding protein (Taz1), and DNA repair proteins (Ku70, Rad32), we conclude that Rad3/Rad26 and Tel1/Rad32 represent two pathways required to maintain telomeres and prevent chromosome circularization. Rad1/Rad9/Hus1/Rad17 and Ku70 are two additional epistasis groups, which act in the Rad3/Rad26 pathway. However, Rad3/Rad26 must have additional target(s), as cells lacking Tel1/Rad32, Rad1/Rad9/Hus1/Rad17, and Ku70 groups did not circularize chromosomes. Cells lacking Rad3/Rad26 and Tel1/Rad32 senesced faster than a telomerase trt1⌬ mutant, suggesting that these pathways may contribute to telomere protection. Deletion of taz1 did not suppress chromosome circulariza- tion in cells lacking Rad3/Rad26 and Tel1/Rad32, also suggesting that two pathways protect telomeres. Chromatin immunoprecipitation analyses found that Rad3, Rad1, Rad9, Hus1, Rad17, Rad32, and Ku70 associate with telomeres.
    [Show full text]
  • 3A1j Lichtarge Lab 2006
    Pages 1–17 3a1j Evolutionary trace report by report maker June 8, 2009 4 Chain 3a1jB 11 4.1 O60921 overview 11 4.2 Multiple sequence alignment for 3a1jB 11 4.3 Residue ranking in 3a1jB 11 4.4 Top ranking residues in 3a1jB and their position on the structure 11 4.4.1 Clustering of residues at 25% coverage. 11 4.4.2 Overlap with known functional surfaces at 25% coverage. 12 4.4.3 Possible novel functional surfaces at 25% coverage. 13 5 Notes on using trace results 15 5.1 Coverage 15 5.2 Known substitutions 15 5.3 Surface 15 5.4 Number of contacts 15 5.5 Annotation 15 5.6 Mutation suggestions 15 6 Appendix 15 6.1 File formats 15 CONTENTS 6.2 Color schemes used 16 6.3 Credits 16 1 Introduction 1 6.3.1 Alistat 16 6.3.2 CE 16 2 Chain 3a1jA 1 6.3.3 DSSP 16 2.1 Q99638 overview 1 6.3.4 HSSP 16 2.2 Multiple sequence alignment for 3a1jA 1 6.3.5 LaTex 16 2.3 Residue ranking in 3a1jA 1 6.3.6 Muscle 16 2.4 Top ranking residues in 3a1jA and their position on 6.3.7 Pymol 16 the structure 1 6.4 Note about ET Viewer 16 2.4.1 Clustering of residues at 25% coverage. 2 6.5 Citing this work 16 2.4.2 Overlap with known functional surfaces at 6.6 About report maker 17 25% coverage. 2 6.7 Attachments 17 2.4.3 Possible novel functional surfaces at 25% coverage.
    [Show full text]
  • Functional Compartmentalization of Rad9 and Hus1 Reveals Diverse Assembly of the 9-1-1 Complex Components During the DNA Damage Response in Leishmania
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Molecular Microbiology (2016) 101(6), 1054–1068 ᭿ doi:10.1111/mmi.13441 First published online 19 July 2016 Functional compartmentalization of Rad9 and Hus1 reveals diverse assembly of the 9-1-1 complex components during the DNA damage response in Leishmania Jeziel D. Damasceno,1 Ricardo Obonaga,1 that the diverse assembly of the Leishmania 9-1-1 Elaine V. Santos,1 Alan Scott,2 subunits mediates functional compartmentalization, Richard McCulloch2 and Luiz R. O. Tosi1* which has a direct impact on the response to geno- 1Department of Cell and Molecular Biology, Ribeirao~ toxic stress. Preto Medical School, University of Sao~ Paulo, Ribeirao~ Preto, SP, 14049-900, Brazil. 2The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow; 120 University Introduction Place, Glasgow, G128TA, UK. Preservation and transmission of the eukaryotic genome rely on the cell’s ability to detect and repair DNA dam- age. Thus, an extensive network of pathways coordi- Summary nates DNA damage sensing, cell cycle progression and The Rad9-Rad1-Hus1 (9-1-1) complex is a key compo- DNA repair processes. The Rad9-Rad1-Hus1 (9-1-1) nent in the coordination of DNA damage sensing, cell heterotrimeric complex is a central player in the DNA cycle progression and DNA repair pathways in Damage Response (DDR) of eukaryotic cells. The ring- eukaryotic cells. This PCNA-related trimer is loaded shaped 9-1-1 complex is structurally related to the onto RPA-coated single stranded DNA and interacts PCNA clamp that acts in DNA replication and is loaded with ATR kinase to mediate effective checkpoint sig- onto DNA during the early steps of the DDR (Bermudez naling to halt the cell cycle and to promote DNA et al., 2003).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,749,700 B2 Baird Et Al
    USOO774.9700B2 (12) United States Patent (10) Patent No.: US 7,749,700 B2 Baird et al. (45) Date of Patent: Jul. 6, 2010 (54) DIFFERENTIAL EXPRESSION OF "Affimetrix GeneChip Human Genome U133 Array Set MOLECULES ASSOCATED WITH ACUTE HG-U133A.” GEO, Mar. 11, 2002, XP002254749. STROKE Lynch et al., “Novel Diagnostic Test for AcuteStroke.” Stroke 35:57 (75) Inventors: Alison E. Baird, Brooklyn, NY (US); 63 (2004). David F. Moore, Rockville, MD (US); Miklos et al., “Microarray Reality Checks in the Context of a Com Ehud Goldin, Rockville, MD (US) plex Disease.” Nature Biotechnol. 22:615-621 (2004). Baird, "Blood Genomics in Human Stroke.” Stroke 38:694-698, (73) Assignee: The United States of America as 2007. represented by the Department of Sharp et al., “Genomic Profiles of Stroke in Blood.” Stroke 38:691 Health and Human Services, 693, 2007. Washington, DC (US) Tang et al., “Gene Expression in Blood Changes Rapidly in Neutrophils and Monocytes after Ischemic Stroke in Humans: a (*) Notice: Subject to any disclaimer, the term of this Microarray Study,” J. Cereb. Blood Flow Metab. 26:1089-1102, patent is extended or adjusted under 35 2006. U.S.C. 154(b) by 500 days. Kim et al., “DNA Array Reveals Altered Gene Expression in Response to Focal Cerebral Ischemia.” Brain Res. Bull. 58:491-498 (21) Appl. No.: 11/155.835 (2002). (22) Filed: Jun. 17, 2005 Kostulas et al., “Ischemic Stroke is Associated with a Systemic Increase of Blood Mononuclear Cells Expressing Interleukin-8 (65) Prior Publication Data mRNA.” Stroke 29:462-466 (1998). US 2006/OO46259 A1 Mar.
    [Show full text]
  • The Exonuclease Homolog Osrad1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining1[OPEN]
    The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining1[OPEN] Qing Hu2,DingTang2, Hongjun Wang2, Yi Shen, Xiaojun Chen, Jianhui Ji, Guijie Du, Yafei Li, and Zhukuan Cheng* State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Downloaded from https://academic.oup.com/plphys/article/172/2/1105/6115821 by guest on 30 September 2021 Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China ORCID IDs: 0000-0002-3349-0056 (Q.H.); 0000-0002-9702-3000 (H.W.). During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic functions of these proteins in higher eukaryotes. Here, we characterized a RAD1 homolog in rice (Oryza sativa) and obtained evidence that O. sativa RAD1 (OsRAD1) is important for meiotic DSB repair. Loss of OsRAD1 led to abnormal chromosome association and fragmentation upon completion of homologous pairing and synapsis. These aberrant chromosome associations were independent of OsDMC1. We found that classical nonhomologous end-joining mediated by Ku70 accounted for most of the ectopic associations in Osrad1. In addition, OsRAD1 interacts directly with OsHUS1 and OsRAD9, suggesting that these proteins act as a complex to promote DSB repair during rice meiosis. Together, these findings suggest that the 9-1-1 complex facilitates accurate meiotic recombination by suppressing nonhomologous end-joining during meiosis in rice.
    [Show full text]
  • Genetic Analysis of Subsequent Second Primary Malignant Neoplasms in Long-Term Pancreatic Cancer Survivors Suggests New Potential Hereditary Genetic Alterations
    Journal name: Cancer Management and Research Article Designation: Original Research Year: 2019 Volume: 11 Cancer Management and Research Dovepress Running head verso: Lovecek et al Running head recto: Second neoplasms after pancreatic cancer open access to scientific and medical research DOI: http://dx.doi.org/10.2147/CMAR.S185352 Open Access Full Text Article ORIGINAL RESEARCH Genetic analysis of subsequent second primary malignant neoplasms in long-term pancreatic cancer survivors suggests new potential hereditary genetic alterations Martin Lovecek,1,* Marketa Background: The principal aim of this report was to study second primary malignant neoplasms Janatova,2,* Pavel Skalicky,1 (SMNs) in long-term survivors of pancreatic ductal adenocarcinoma (PDAC) with regard to Tomas Zemanek,3 Roman the germline genetic background. Havlik,1 Jiri Ehrmann,4 Patients and methods: A total of 118 PDAC patients after a curative-intent surgery who Ondrej Strouhal,3 Petra were treated between 2006 and 2011 were analyzed. Of the 22 patients surviving for >5 years, Zemankova,2 Klara Lhotova,2 six went on to develop SMNs. A genetic analysis of 219 hereditary cancer-predisposition and Marianna Borecka,2 candidate genes was performed by targeted next-generation sequencing in germline DNA from Jana Soukupova,2 Hana 20 of these patients. Svebisova,3 Pavel Soucek,5 Results: Of all the radically resected PDAC patients, six patients went on to subsequently Viktor Hlavac,5 Zdenek develop SMNs, which accounted for 27% of the long-term survivors. The median time to diag- Kleibl,2 Cestmir Neoral,1 nosis of SMNs, which included two cases of rectal cancer, and one case each of prostate cancer, Bohuslav Melichar,3 Beatrice malignant melanoma, breast cancer, and urinary bladder cancer, was 52.5 months.
    [Show full text]
  • RAD1 Monoclonal Antibody (M01), Clone 1G2 CEL-005810-M01
    RAD1 monoclonal antibody (M01), clone 1G2 CEL-005810-M01 Specification Product Mouse monoclonal antibody raised against a partial recombinant RAD1. Description: Immunogen: RAD1 (AAH06837, 1 a.a. ~ 90 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Immunogen MPLLTQQIQDEDDQYSLVASLDNVRNLSTILKAIHFREHATCFATKNGIK Sequence VTVENAKCVQANAFIQAGIFQEFKVQEESVTFRINLTVLL (without GST): Cross Human Reactivity: Isotype: IgG3 Kappa Storage In 1x PBS, pH 7.2 Buffer: Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: Quality Antibody Reactive Against Recombinant Protein. Control Testing: Western Blot detection against Immunogen (35.9 KDa) . Applications Western Blot (Transfected lysate) Western Blot analysis of RAD1 expression in transfected 293T cell line by RAD1 monoclonal antibody (M01), clone 1G2. Lane 1: RAD1 transfected lysate(32.43 KDa). Lane 2: Non-transfected lysate. Western Blot (Recombinant protein) Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) Immunoperoxidase of monoclonal antibody to RAD1 on formalin-fixed paraffin-embedded human lateral ventricle wall. [antibody concentration 3 ug/ml] Sandwich ELISA (Recombinant protein) Detection limit for recombinant GST tagged RAD1 is approximately 0.3ng/ml as a capture antibody. ELISA RNAi Knockdown (Antibody validated) Western blot analysis of RAD1 over-expressed 293 cell line, cotransfected with RAD1 Validated Chimera RNAi ( Cat # H00005810-R01V ) (Lane 2) or non-transfected control (Lane 1). Blot probed
    [Show full text]
  • Polyclonal Antibody to RAD1 (Center) - Aff - Purified
    OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AP53557PU-N Polyclonal Antibody to RAD1 (Center) - Aff - Purified Alternate names: Cell cycle checkpoint protein RAD1, DNA repair exonuclease rad1 homolog, REC1, Rad1-like DNA damage checkpoint protein Quantity: 0.4 ml Concentration: lot specific Background: This gene encodes a component of a heterotrimeric cell cycle checkpoint complex, known as the 9-1-1 complex, that is activated to stop cell cycle progression in response to DNA damage or incomplete DNA replication. The 9-1-1 complex is recruited by RAD17 to affected sites where it may attract specialized DNA polymerases and other DNA repair effectors. Alternatively spliced transcript variants of this gene have been described. [provided by RefSeq]. Uniprot ID: O60671 NCBI: NP_002844 GeneID: 5810 Host / Isotype: Rabbit / Ig Immunogen: KLH conjugated synthetic peptide between 118-146 amino acids from the Central region of Human RAD1. Genename: RAD1 Format: State: Liquid purified Ig fraction Purification: Affinity Chromatography on Protein A Buffer System: PBS Preservatives: 0.09% Sodium Azide Applications: ELISA: 1/1000. Western Blot: 1/1000. Other applications not tested. Optimal dilutions are dependent on conditions and should be determined by the user. Specificity: This antibody recognizes Human RAD1 (Center). Add. Information: Molecular Weight: 31827 Da Storage: Store undiluted at 2-8°C for one month or (in aliquots) at -20°C for longer.
    [Show full text]