Uneven Balance of Power Between Hypothalamic Peptidergic Neurons in the Control of Feeding

Total Page:16

File Type:pdf, Size:1020Kb

Uneven Balance of Power Between Hypothalamic Peptidergic Neurons in the Control of Feeding Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding Qiang Weia, David M. Krolewskia, Shannon Moorea, Vivek Kumara, Fei Lia, Brian Martina, Raju Tomerb, Geoffrey G. Murphya, Karl Deisserothc, Stanley J. Watson Jr.a, and Huda Akila,1 aMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109; bDepartment of Biological Sciences, Columbia University, New York, NY 10027; and cDepartment of Bioengineering, Stanford University, Stanford, CA 94305 Contributed by Huda Akil, August 7, 2018 (sent for review February 6, 2018; reviewed by Olivier Civelli and Allen Stuart Levine) Two classes of peptide-producing neurons in the arcuate nucleus consumption, while anorexigenic neurons that express POMC in- (Arc) of the hypothalamus are known to exert opposing actions on hibit feeding behavior. AgRP/NPY neurons are active when the feeding: the anorexigenic neurons that express proopiomelano- energy stores are not sufficient to meet systemic demands, thereby cortin (POMC) and the orexigenic neurons that express agouti- releasing AgRP and promoting feeding (9, 10). POMC is a complex related protein (AgRP) and neuropeptide Y (NPY). These neurons polypeptide precursor cleaved into active peptides including mel- are thought to arise from a common embryonic progenitor, but anocortins and β-endorphin (11). While β-endorphin is a long- our anatomical and functional understanding of the interplay of acting opioid analgesic (12), the cosynthesized α-melanocyte stim- these two peptidergic systems that contribute to the control of ulating hormone (α-MSH) blocks appetite (13). These two sets of feeding remains incomplete. The present study uses a combination peptidergic neurons in the Arc respond to nutrient and hormonal of optogenetic stimulation with viral and transgenic approaches, signals from the periphery. Thus, leptin, a signal of positive energy coupled with neural activity mapping and brain transparency balance, stimulates POMC neurons, leading to decreased food i visualization to demonstrate the following: ( ) selective activation intake while inhibiting the release of the orexigenic peptides from of Arc POMC neurons inhibits food consumption rapidly in unsated neighboring AgRP/NPY neurons (10). Together, AgRP/NPY neu- ii animals; ( ) activation of Arc neurons arising from POMC- rons and POMC neurons work coordinately to integrate signals of expressing progenitors, including POMC and a subset of AgRP energy homeostasis and to regulate feeding behavior (8, 14). neurons, triggers robust feeding behavior, even in the face of iii Evidence suggests that these two peptidergic systems that satiety signals from POMC neurons; ( ) the opposing effects on control feeding emerge from a common cellular origin. A de- food intake are associated with distinct neuronal projection and velopmental study has demonstrated that embryonic POMC- activation patterns of adult hypothalamic POMC neurons versus expressing progenitors not only give rise to adult POMC cells, Arc neurons derived from POMC-expressing lineages; and (iv) the but also differentiate into non-POMC neurons, including NPY increased food intake following the activation of orexigenic neu- neurons (15). This means transgenic studies that target POMC rons derived from POMC-expressing progenitors engages an ex- tensive neural network that involves the endogenous opioid cells in early development can capture both adult populations, system. Together, these findings shed further light on the dynamic whereas adult delivery of viral vectors can target POMC cells balance between two peptidergic systems in the moment-to- selectively. Consequently, we used optogenetic stimulation re- moment regulation of feeding behavior. lying on both virally mediated and traditional transgenic ap- proaches to deliver blue light-activated channelrhodopsin 2 proopiomelanocortin | agouti-related protein | feeding | (ChR2) to POMC neurons in the Arc. We coupled this stimulation arcuate nucleus | satiety with behavioral assessments and anatomical analyses examining the Significance lobal epidemic obesity underscores the critical need for NEUROSCIENCE Gunderstanding how the brain regulates food intake (1). Feeding is essential for survival and relies on mechanisms that The interplay between the anorexigenic and orexigenic neurons monitor energy demands and metabolic status. But feeding be- in the arcuate nucleus that contributes to the control of feeding havior is more complex, as it has a strong rewarding component remains elusive. Using optogenetic stimulation, we show that (2) and can respond to environmental stimuli, including stress activation of POMC neurons rapidly inhibits feeding behavior in and social context (3). Therefore, it is critical to unravel the fasted animals. However, simultaneous stimulation of both mechanisms that modulate both the initiation and the cessation POMC neurons and a subset of the orexigenic neurons that ex- of feeding. press AgRP is sufficient to reverse that inhibition and trigger It is well established that the hypothalamus plays an essential intense feeding behavior. We used 3D imaging and functional role in the regulation of feeding behavior and contributes to the studies to illuminate the anatomical underpinning of both the process of energy homeostasis (4, 5). Hypothalamic nuclei en- inhibitory and excitatory events. Our work suggests that trans- gaged in this regulation include the Arc, the paraventricular lational applications that aim to control appetite need to target nucleus (PVN), the lateral hypothalamic (LH) area, the dorso- the activation rather than the inhibition mechanisms. medial nucleus, and the ventromedial nucleus. Disruption of the Author contributions: Q.W., R.T., G.G.M., K.D., S.J.W., and H.A. designed research; Q.W., ventromedial hypothalamus induces hyperphagia and obesity, D.M.K., S.M., V.K., F.L., and B.M. performed research; Q.W., D.M.K., S.M., V.K., and B.M. while disruption of the lateral hypothalamus causes hypophagia analyzed data; and Q.W. and H.A. wrote the paper. and weight loss, suggesting the existence of ventromedial “satiety” Reviewers: O.C., University of California, Irvine; and A.S.L., University of Minnesota. and lateral “feeding” centers (6). Recent work has extended these The authors declare no conflict of interest. early observations and has focused on the Arc of the hypothala- This open access article is distributed under Creative Commons Attribution-NonCommercial- mus, a nucleus particularly important for the central regulation of NoDerivatives License 4.0 (CC BY-NC-ND). appetite, energy expenditure, and body weight (7, 8). 1To whom correspondence should be addressed. Email: [email protected]. Two classes of peptide-producing neuronal populations in the This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Arc play a central and antagonistic role in the control of appetite— 1073/pnas.1802237115/-/DCSupplemental. the orexigenic neurons that express AgRP and NPY promote food Published online September 17, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1802237115 PNAS | vol. 115 | no. 40 | E9489–E9498 Downloaded by guest on September 30, 2021 extent of activation and its consequences on cFos expression DIO-ChR2(H134R)-eYFP (Fig. 1A) was microinjected into the throughout the brain. Thus, we selectively activated neurons Arc of adult POMC-Cre transgenic mice (16). Upon trans- derived from POMC-expressing progenitors in the Arc and duction, Cre-expressing POMC neurons invert the ChR2-eYFP ascertained the net impact on food intake in adult mice. We ORF in irreversible means and ChR2-eYFP proteins are expressed contrasted the effect of activating only the POMC neurons ver- under control of the elongation factor 1α promoter (referred to sus the impact of activating both POMC and AgRP/NPY neu- as viral POMC-ChR2). This approach allowed us to selectively rons simultaneously on food consumption in mice. Our findings stimulate Arc POMC neurons with blue light (473 nm). We indicate that selective activation of Arc POMC neurons inhibits validated the cell-type selectivity of this viral approach in coronal food consumption rapidly in fasted animals whereas activation of Arc sections of viral POMC-ChR2 mice. ChR2-eYFP specifically Arc neurons arising from POMC-expressing progenitors results colocalized with endogenous POMC neurons (Fig. 1B). On av- in a robust increase in food intake. We show that in the conflict erage, 80% of POMC-positive neurons were positive for ChR2- between the drive to consume food and the rapid satiety control eYFP in the virus injection sites (Fig. 1C). Of the ChR2-eYFP that inhibits feeding, the former dominates, resulting in an acute expressing cells, 93% were colocalized by POMC immunostain- increase in feeding. These opposing effects are associated with ing (Fig. 1C), demonstrating high specificity of ChR2 expression distinct projection and activation patterns. Thus, the regulation in the POMC neurons of the Arc of the viral POMC-ChR2 mice. of feeding behavior involves a dynamic balance between the two To confirm the functional impact of ChR2 activation in the viral peptidergic systems. POMC-ChR2 mice, the Arc was illuminated with blue light while the animal explored an open field chamber. Expression of the Results neuronal activity marker, immediate early gene cFos, was evalu- Characterization of Viral POMC-ChR2 Mice. To control hypothalamic ated in the Arc of the viral POMC-ChR2 mice with or without POMC neurons selectively, we used
Recommended publications
  • The Critical Importance of Basic Animal Research for Neuropsychiatric Disorders
    The critical importance of basic animal research for neuropsychiatric disorders Tracy L. Bale1, Ted Abel2, Huda Akil3, William A. Carlezon4, Bita Moghaddam5, Eric J. Nestler6, Kerry J. Ressler7 and Scott M. Thompson8 1 Center for Epigenetic Research in Child Health and Brain Development, Departments of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD, [email protected] 2 Department of Pharmacology and Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, [email protected] 3 Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, [email protected] 4 McLean Hospital, Department of Psychiatry, Harvard School of Medicine, Belmont, MA, [email protected] 5 Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, [email protected] 6 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, [email protected] 7 McLean Hospital, Department of Psychiatry, Harvard School of Medicine, Belmont, MA, [email protected] 8 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, [email protected] Contact information: Tracy L. Bale, Ph.D. Professor and Director, Center for Epigenetic Research in Child Health and Brain Development Departments of Pharmacology and Psychiatry University of Maryland School of Medicine, Baltimore, MD 21201 [email protected] ph 410-706-5816 Acknowledgements: Authors acknowledge support funding from NIMH grants: MH104184, MH108286, MH099910 (TLB); MH086828 (SMT); MH048404, MH115027 (BM), MH063266 (WAC), MH108665, MH110441, MH110925, MH117292 (KJR); MH051399, MH096890 (EJN), MH104261 (HA), MH087463, MH117964 (TA). The challenges and critical importance of keeping our thinking about neuropsychiatric disorders mechanisms and classifications up-to-date have prompted a dynamic discourse as to the value, appropriateness, and reliability of the animal models we use and the outcomes we measure.
    [Show full text]
  • Huda Akil, Ph.D
    Huda Akil, Ph.D. is the Gardner Quarton Distinguished University Professor of Neuroscience and Psychiatry and the co-Director of the Molecular & Behavioral Neuroscience Institute (MBNI) at the University of Michigan. Dr. Akil and her colleagues have made seminal contributions to the understanding of the brain biology of emotions, including pain, stress, anxiety and substance abuse. Her current research investigates the genetic and neural mechanisms underlying addiction and mood disorders. Among her contributions, Dr. Akil provided the first physiological evidence for a role of endorphins in the brain, and showed that endorphins are activated by stress and cause pain inhibition. Her laboratory has developed new genetic animal models of temperament and shown their relevance to human disorders, including addiction and depression. She is a member of the Pritzker Consortium, which is engaged in large-scale studies to discover new genes and proteins that cause vulnerability to major depression and bipolar illness. Her work has uncovered the role of the Fibroblast Growth Factor (FGF) family in depression, anxiety and established its functions in the development and control of emotions. Dr. Akil has served on several national and international organizations to promote scientific and brain health awareness nationally and globally. She is the past President of the American College of Neuropsychopharmacology (1998) and the past President of the Society for Neuroscience (2004) the largest neuroscience organization in the world. She has served two terms on the Council of the National Academy of Medicine and served on the National Research Council (NRC) review board. Dr. Akil’s contributions have been recognized with numerous honors and awards, including honorary doctorates.
    [Show full text]
  • WAVE1 in Neurons Expressing the D1 Dopamine Receptor Regulates Cellular and Behavioral Actions of Cocaine
    WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine Ilaria Cegliaa,1, Ko-Woon Leea,1, Michael E. Cahillb,1, Steven M. Gravesc, David Dietzd, Dalton J. Surmeierc, Eric J. Nestlerb, Angus C. Nairna,e, Paul Greengarda,2, and Yong Kima,2 aLaboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065; bFishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cDepartment of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; dDepartment of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214; and eDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT 06508 Contributed by Paul Greengard, December 23, 2016 (sent for review October 26, 2016; reviewed by Huda Akil and Solomon H. Snyder) Wiskott-Aldrich syndrome protein (WASP) family verprolin homolo- upon stimulation of D1 dopamine and of NMDA glutamate re- + gous protein 1 (WAVE1) regulates actin-related protein 2/3 (Arp2/3) ceptors, acting through cAMP- and Ca2 -mediated activation of complex-mediated actin polymerization. Our previous studies have protein phosphatase 2A and 2B, respectively (4, 7). These results found WAVE1 to be inhibited by Cdk5-mediated phosphorylation indicate that WAVE1 is a neuronal activity-regulated phospho- in brain and to play a role in the regulation of dendritic spine mor- protein in the striatum. phology. Here we report that mice in which WAVE1 was knocked out We previously identified a pivotal role for Cdk5/p35 in cocaine- (KO) in neurons expressing the D1 dopamine receptor (D1-KO), but induced adaptive changes in brain (8).
    [Show full text]
  • Localization of Dopamine D, Receptor Mrna and D, and D, Receptor Binding in the Rat Brain and Pituitary: an in Situ Hybridization-Receptor Autoradiographic Analysis
    The Journal of Neuroscience, August 1990, 70(8): 2587-2800 Localization of Dopamine D, Receptor mRNA and D, and D, Receptor Binding in the Rat Brain and Pituitary: An in situ Hybridization-Receptor Autoradiographic Analysis Alfred Mansour,’ James H. Meador-Woodruff,i James R. Bunzow,2 Olivier Civelli,* Huda Akil,’ and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720, and *Vellum Institute for Advanced Biomedical Research, The Oregon Health Sciences University, Portland, Oregon 97201 Several lines of evidence suggest the existence of multiple Cumulative evidence suggeststhe existence of at least 2 distinct dopamine receptor subtypes, referred to as D, and D,. The dopaminergic receptor subtypes, referred to as D, and D,. D, present study examines the distribution of these dopamine dopamine (DA) receptors are positively coupled to adenylate binding sites in the rat brain and pituitary in relation to the cyclase (Stoof and Kebabian, 1984), widely distributed in the distribution of D, receptor mRNA using a combination of in CNS (Boyson et al., 1986; Dawson et al., 1986; Dubois et al., vitro receptor autoradiographic and in situ hybridization 1986; Bouthenet et al., 1987; Wamsley et al., 1989), and abun- techniques. 3H-Raclopride and 3H-SCH23390 (in the pres- dant in the parathyroid gland (Attie et al., 1980). D, DA recep- ence of 1 ELM ketanserin) were used to label D, and D, re- tors, on the other hand, are either not coupled to adenylate ceptor binding sites, respectively, while a 495 bp cRNA probe cyclase (Memo et al., 1986) or negatively coupled (Onali et al., synthesized from the Sac I-Bglllfragment of a rat D, receptor 1985) and are densely distributed in the basal ganglia (Martres cDNA was used to visualize the D, receptor mRNA.
    [Show full text]
  • Regulation of Hypothalamic Magnocellular Neuropeptides and Their Mrnas in the Brattleboro Rat: Coordinate Responses to Further Osmotic Challenge
    The Journal of Neuroscience, October 1988, 8(10): 3785-3796 Regulation of Hypothalamic Magnocellular Neuropeptides and their mRNAs in the Brattleboro Rat: Coordinate Responses to Further Osmotic Challenge Thomas G, Sherman,’ Robert Day,’ Olivier Civelli,2 James Douglass,* Edward Herbert,’ Huda Akil,l and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, arid Wsllum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon 97281 A paradigm was developed for the chronic osmotic stimu- feedback-regulated by AVP, most likely via plasma osmo- lation of homoeygous diabetes insipidus rats of the Brattle- larity, and that oxytocin neurons are modulated by peptides boro strain, a strain that fails to synthesize vasopressln. This derived from pro-dynorphin. study examines the adaptation of 2 sets of coexisting pep- tide hormone magnocellular neurons in the hypothalamo- The hypothalamo-neurohypophyscal system (HNS) is a neu- neurohypophyseal system (HNS) of Long Evans (LE), Brat- roendocrine pathway comprised of magnocellularneurons with- tleboro heterozygote (HZ), and Brattleboro homozygote (DI) in the hypothalamic paraventricular (PVN) and supraoptic(SON) rats: (1) the arginine+asopressin (AVP)/dynorphin (DYN) nuclei, which project to the posterior pituitary, where their se- neurons, and (2) the oxytocin (OT)/cholecystokinin (CCKI) cretory products have accessto the circulatory system. Mag- neurons of the paraventricular and supraoptic nuclei, which nocellular neurons of the HNS are classically known for the project to the posterior pituitary. The regimen of chronic synthesisof the blood-borne nonapeptide hormones arginine*- intermittent salt-loading (CISL) involved the replacement of vasopressin(AVP) and oxytocin (OT), 2 of the original peptide 2% saline for normal drinking water for 18 hr/d.
    [Show full text]
  • Rhoda and Bernard Sarnat International Prize in Mental Health 2016 Honorees
    Rhoda and Bernard Sarnat International Prize in Mental Health 2016 Honorees Steven Hyman, MD Director, Stanley Center for Psychiatric Research Broad Institute of Harvard and MIT Sir Robin Murray, MD Professor, Institute of Psychiatry King’s College London The National Academy of Medicine (NAM) awarded the 2016 Rhoda and Bernard Sarnat International Prize in Mental Health to Steven Hyman and Robin Mur- ray. Hyman was awarded the prize for his leadership in furthering understand- ing and treatment of psychiatric disorders as biological diseases. Murray was awarded the prize for integrating the biological, environmental, and social aspects of schizophrenia and thereby improving the lives of patients and their families. “Through their pioneering, innovative work, Dr. Hyman and Dr. Murray have each greatly advanced our understanding of mental health disorders and helped develop effective treatments that have changed patients’ lives for the better,” said NAM President Victor J. Dzau. Hyman has been a leader in the world of mental illness research and treatment for over three decades. As a physician and scientist in the 1980s and 1990s, Hy- man was at the forefront of the movement to understand the biological bases of mental disorders. Hyman led the National Institute of Mental Health from 1996 to 2001, when he made neuroscience and genetics central to the NIMH mission and launched several large-scale clinical trials to inform practice and treatment strategies, seeking to identify more effective real-world treatments for schizo- phrenia, bipolar disorder, and childhood and adolescent depression and other disorders. Following his tenure at NIH, Hyman assumed an instrumental role in the revisions of the Diagnostic and Statistical Manual of Mental Disorders (DSM- 5) and the World Health Organization’s International Classification of Diseases, encouraging dimensional approaches to mental illnesses that take into account genetics, co-morbidities, and emerging neuroscience data.
    [Show full text]
  • 50 Years of INRC: 1969 to 2019 – 55 Years of Our Rockefeller University Research and 50 to 60 Years of Opioid Research Mary Jeanne Kreek, M.D
    50 Years of INRC: 1969 to 2019 – 55 Years of our Rockefeller University Research and 50 to 60 Years of Opioid Research Mary Jeanne Kreek, M.D. Patrick E. and Beatrice M. Haggerty Professor Head of Laboratory The Laboratory of the Biology of Addictive Diseases The Rockefeller University Senior Physician, The Rockefeller University Hospital International Narcotics Research Conference July 8, 2019 New York, NY Funded primarily by Dr. Miriam and Sheldon Adelson Medical Research Foundation, NIH-NIDA, NIH-NIAAA, NIH-CRR, Tri-Institutional Therapeutics Discovery Institute, Robertson Therapeutic Development Fund, and others International Narcotics Research Conference Founders Lecturers (First Awardee 1999) 1999 Eric J. Simon 2009 R. Alan North 2000 Brian M. Cox 2010 Masamichi Satoh 2001 Philip S. Portoghese 2011 Charles Chavkin 2002 Lars Terenius 2012 F. Ivy Carroll 2003 Bernard Roques 2013 Graeme Henderson 2004 Ji-Sheng Han 2014 Christopher Evans 2005 Mary Jeanne Kreek Brigitte Kieffer 2006 Huda Akil 2015 Gavril Pasternak (d. 2019) Stan Watson 2016 Lakshmi Devi 2007 Volker Hoellt 2017 John Traynor Horace Loh 2018 Macdonald Christie 2008 Jan van Ree 2019 Sol Snyder Kreek 2019 International Narcotics Research Conference Founders Lecturers at this 50th Anniversary Meeting 1999 Eric J. Simon 2009 R. Alan North 2000 Brian M. Cox 2010 Masamichi Satoh 2001 Philip S. Portoghese 2011 Charles Chavkin 2002 Lars Terenius 2012 F. Ivy Carroll 2003 Bernard Roques 2013 Graeme Henderson 2004 Ji-Sheng Han 2014 Christopher Evans 2005 Mary Jeanne Kreek Brigitte Kieffer 2006 Huda Akil 2015 Gavril Pasternak (d. 2019) Stan Watson 2016 Lakshmi Devi 2007 Volker Hoellt 2017 John Traynor Horace Loh 2018 Macdonald Christie 2008 Jan van Ree 2019 Sol Snyder Kreek 2019 Ji-Sheng Han cannot attend this 50th Anniversary meeting because of a family illness and sends his regards, along with this photo of him with his family.
    [Show full text]
  • Dynorphin Immunocytochemistry in the Rat Central Nervous System
    Peptides. Vol. 3. pp. 941-954, 1982. Printed in the U.S.A. Dynorphin Immunocytochemistry in the Rat Central Nervous System HENRY KHACHATURIAN, STANLEY J. WATSON, 1 MICHAEL E. LEWIS, DAVID COY,* AVRAM GOLDSTEIN,tAND HUDA AKIL Mental Health Research Institute, University of Michigan, Ann Arbor, MI 48109 *Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70195 and tAddiction Research Foundation, Stanford University, Palo Alto, CA 94394 Received 16 August 1982 KHACHATURIAN, H., S. J. WATSON, M. E. LEWIS, D. COY, A. GOLDSTEIN AND H. AKIL. Dynorphin im- munocytochemisto, in the rat central nervous system. PEPTIDES 3(6) 941-954, 1982.--The distribution ofdynorphin in the central nervous system was investigated in rats pretreated with relatively high doses (3(10--400/zg) of colchicine administered intracerebroventricularly. To circumvent the problems of antibody cross-reactivity, antisera were generated against differ- ent portions as well as the full dynorphin molecule (i.e., residues 1-13, 7-17, or 1-17). For comparison, antisera to [Leu]enkephalin (residues 1-5) were also utilized. Dynorphin was found to be widely distributed throughout the neuraxis. lmmunoreactive neuronal perikarya exist in hypothalamic magnoceUular nuclei, periaqueductal gray, scattered reticular formation sites, and other brain stem nuclei, as well as in spinal cord. Additionally, dynorphin-positive fibers or terminals occur in the cerebral cortex, olfactory bulb, nucleus accumbens, caudate-putamen, globus pallidus, hypothalamus, sub- stantia nigra, periaqueductal gray, many brain stem sties, and the spinal cord. In many areas studied, dynorphin and enkephalin appeared to form parallel but probably separate anatomical systems. The results suggest that dynorphin occurs in neuronal systems that are immunocytochemically distinct from those containing other opioid peptides.
    [Show full text]
  • January 2016
    QuarterlyBrain & Behavior Research Foundation January 2016 PRESENTING THE DISTINGUISHED INVESTIGATORS Interview with a Researcher Advice on Caring for Bipolar Disorder A RECOVERY STORY: HUDA AKIL, PH.D. with ROBERT M.A. HIRSCHFELD, M.D. From A Nightmare Childhood, A Happy Path Forward bbrfoundation.org BY THE NUMBERS SINCE 1987 Awarded to Scientists $342 MILLION Grants The breakdown of our grantees since 1987 3,888 Young Investigators 748 Independent Investigators 5,000+ 394 Distinguished Investigators Universities & Countries, Medical Centers Including the U.S. 529 34 165 Scientific Council Members The all-volunteer The group includes: Foundation Scientific Council 52 Members of the Institute of Medicine is composed of 165 leading experts 23 Chairs of Psychiatry & Neuroscience Departments across disciplines in brain & behavior research 13 Members of the National Academy of Sciences who review grant applications and 4 Recipients of the National Medal of Science recommend the 4 Former Directors of the National Institute of Mental Health most promising ideas to fund. 2 Nobel Prize Winners Board of Directors OFFICERS Contents Chairman Stephen A. Lieber Vice President Suzanne Golden Secretary President’s Letter . 3 John B. Hollister Drs . Betty and David Hamburg Receive Treasurer Arthur Radin, CPA Pardes Humanitarian Prize Honors . 4 Interview with a Researcher: Huda Akil, Ph .D . DIRECTORS Anne E. Abramson The Biology of Emotions . 6 Donald M. Boardman J. Anthony Boeckh Ask the Researcher: Nora Volkow, M .D . 9 Susan Lasker Brody Paul T. Burke Research Discoveries in the News . 10 Bonnie D. Hammerschlag John Kennedy Harrison II Highlights from the 2015 New York Mental Health Carole H.
    [Show full text]
  • Chadi Abdallah, M.D. Associate Member Baylor College of Medicine
    Chadi Abdallah, M.D. Ted Abel, Ph.D. James Abelson, M.D.,Ph.D. Associate Member Fellow Member Emeritus Baylor College of Medicine University of Iowa, Carver College of University of Michigan Health System Medicine Anissa Abi-Dargham, M.D. Megumi Adachi, Ph.D. R. Alison Adcock, M.D.,Ph.D. Fellow Associate Member Associate Member Stony Brook University Astellas Research Institute of America Duke University LLC Nii Addy, Ph.D. Nika Adham, B.Sc.,M.Sc.,Ph.D. Bryon Adinoff, M.D. Associate Member Member Fellow Emeritus Yale University School of Medicine Abbvie University of Colorado Medical School Caleb Adler, M.D. Martin Adler, Ph.D. George Aghajanian, M.D. Member Fellow Emeritus Fellow Emeritus University of Cincinnati College of Temple University School of Medicine Yale University School of Medicine Medicine Bernard Agranoff, B.S.,M.D. Susanne Ahmari, M.D.,Ph.D. Katherine Aitchison, Fellow Emeritus Member B.A.,FRCPsych,Ph.D. University of Michigan University of Pittsburgh Member University of Alberta Howard Aizenstein, M.D.,Ph.D. Olusola Ajilore, M.D.,Ph.D. Schahram Akbarian, M.D.,Ph.D. Member Member Member University of Pittsburgh University of Illinois at Chicago Icahn School of Medicine At Mount Sinai Huda Akil, Ph.D. Martin Alda, FRCPC,M.D. Robert Alexander, M.D. Fellow Member Member University of Michigan Dalhousie University Takeda George Alexopoulos, M.D. Tanya Alim, M.D. Murray Alpert, Ph.D. Fellow Emeritus Member Fellow Emeritus Weill Cornell Medical College Howard University Larry Alphs, M.D.,Ph.D. C. Anthony Altar, Ph.D. Susan Amara, Ph.D.
    [Show full text]
  • Intergenerational Neural Mediators of Early-Life Anxious Temperament
    Intergenerational neural mediators of early-life anxious temperament Andrew S. Foxa,b,c,1, Jonathan A. Olera,c, Alexander J. Shackmand, Steven E. Sheltona, Muthuswamy Raveendrane, D. Reese McKayf, Alexander K. Converseb, Andrew Alexanderb,g, Richard J. Davidsona,b,c,h, John Blangeroi, Jeffrey Rogerse, and Ned H. Kalina,b,c,h,1 aHealthEmotions Research Institute, Department of Psychiatry, University of Wisconsin–Madison, Madison, WI 53719; bWaisman Center, University of Wisconsin–Madison, Madison, WI 53705; cDepartment of Psychiatry, University of Wisconsin–Madison, Madison, WI 53719; dDepartment of Psychology, University of Maryland, College Park, MD 20742; eDepartment of Genetics, Baylor College of Medicine, Houston, TX 77030; fDepartment of Psychiatry, Yale School of Medicine, New Haven, CT 06519; gDepartment of Medical Physics, University of Wisconsin–Madison, Madison, WI 53705; hDepartment of Psychology, University of Wisconsin–Madison, Madison, WI 53706; and iDepartment of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245 Edited by Huda Akil, University of Michigan, Ann Arbor, MI, and approved June 9, 2015 (received for review May 4, 2015) Understanding the heritability of neural systems linked to psy- understanding the neural substrates of childhood AT. Our group chopathology is not sufficient to implicate them as intergener- developed and validated a paradigm for studying the neural ational neural mediators. By closely examining how individual bases of primate AT that combines [18-F] deoxyglucose positron differences in neural phenotypes and psychopathology cosegre- emission tomography (FDG-PET) imaging with behavioral and gate as they fall through the family tree, we can identify the brain neuroendocrine responses to a potentially threatening human systems that underlie the parent-to-child transmission of psychopa- intruder making no eye contact (NEC) with the monkey.
    [Show full text]
  • Autoradiographic Differentiation of Mu, Delta, and Kappa Opioid Receptors in the Rat Forebrain and Midbrain
    The Journal ~8 NQUi-OSCiQlXQ. August 1887, 7(a): 24452464 Autoradiographic Differentiation of Mu, Delta, and Kappa Opioid Receptors in the Rat Forebrain and Midbrain Alfred Mansour, Henry Khachaturian,’ Michael E, Lewis,2 Huda Akil, and Star&y J. Watson University of Michigan, Mental Health Research institute, Ann Arbor, Michigan 48109-0720; IDepartment of Anatomy and Neurobiology, University of Tennessee, Health Sciences Center, Memphis, Tennessee 38163; and 2E. I. Du Pont de Nemours & Co., Inc., Medical Products Department, Experimental Station, Wilmington, Delaware 19898 While there is an abundance of pharmacological and bio- distinct opiaid receptors with possibly separate functional chemical evidence to suggest the existence of multiple opiaid roles. receptors, their precise localization within the brain is un- clear. To help clarify this issue, the present study examined There is an abundance of evidence to suggestthe existence of the distributions of the mu, delta, and kappa opioid receptor multiple opioid receptors (Martin et al., 1976; Lord et al., 1977; subtypes in the rat forebrain and midbrain using in vitro Chang and Cuatrecasas, 1981; Wood, 1982; Pasternak et al., autoradiography. Mu and delta receptors were labeled with 1983; Robson et al., 1983; Goldstein and James, 1984; James the selective ligands 3H-DAG0 (Tyr- o-Ala-Gly-MePhe-Gly- and Goldstein, 1984; Zukin and Zukin, 1984). Despite this ap- ol), and 3H-DPDPE (o-Pen*, D-Pens-enkephalin), respectively, parent consensus,the nature and distribution of these sitesare while the kappa receptors were labeled with 3H-(-)brema- still controversial. Some investigators (Quirion et al., 1981; zocine in the presence of unlabeled DAGO and DPDPE.
    [Show full text]