Evaluation of Karun River Water Quality Scenarios Using Simulation Model Results
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sand Dune Systems in Iran - Distribution and Activity
Sand Dune Systems in Iran - Distribution and Activity. Wind Regimes, Spatial and Temporal Variations of the Aeolian Sediment Transport in Sistan Plain (East Iran) Dissertation Thesis Submitted for obtaining the degree of Doctor of Natural Science (Dr. rer. nat.) i to the Fachbereich Geographie Philipps-Universität Marburg by M.Sc. Hamidreza Abbasi Marburg, December 2019 Supervisor: Prof. Dr. Christian Opp Physical Geography Faculty of Geography Phillipps-Universität Marburg ii To my wife and my son (Hamoun) iii A picture of the rock painting in the Golpayegan Mountains, my city in Isfahan province of Iran, it is written in the Sassanid Pahlavi line about 2000 years ago: “Preserve three things; water, fire, and soil” Translated by: Prof. Dr. Rasoul Bashash, Photo: Mohammad Naserifard, winter 2004. Declaration by the Author I declared that this thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. Hamidreza Abbasi iv List of Contents Abstract ................................................................................................................................................. 1 1. General Introduction ........................................................................................................................ 7 1.1 Introduction and justification ........................................................................................................ -
Evaluation of Karun River Water Quality Scenarios Using Simulation Model Results
Available online at http://www.ijabbr.com International journal of Advanced Biological and Biomedical Research Volume 2, Issue 2, 2014: 339-358 Evaluation of Karun River Water Quality Scenarios Using Simulation Model Results Mohammad Bagherian Marzouni a*, Ali Mohammad Akhoundalib, Hadi Moazedc, Nematollah Jaafarzadehd,e, Javad Ahadianf, Houshang Hasoonizadehg a Master Science of Civil & Environmental Eng, Faculty of Water Science Eng, Shahid Chamran University Of Ahwaz b Alimohammad Akhoondali, Professor of Water Eng, Faculty of Water Science Eng, Shahid Chamran University Of Ahwaz c Professor of Civil & Environmental Eng, Faculty of Water Science Eng, Shahid Chamran University Of Ahwaz d Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran e School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. f Assistant Professor of Water Eng, Faculty of Water Science Eng, Shahid Chamran University Of Ahwaz g Vice Basic Studies and Comprehensive Plans for Water Resources. Khuzestan Water and Power Authority. *Corresponding author: [email protected] ABSTRACT Karun River is the largest and most watery river in Iran. This river is the longest river which located just inside Iran and Ahvaz Metropolis drinking water supplied from Karun River as well (fa.alalam.ir). Karun River as the main source of water treatment plants in Ahvaz, like most surface waters affected by various contaminants which caused changes in water quality of the river (www.aww.co.ir). Causes such as constructing several dams at upstream river, withdrawal of water from the upstream to the needs of other regions of Iran, exposure of various industries along the river and discharge of industrial and urban sewage into the river, seen that today this river is deteriorating rapidly, qua today is the depth of river reach to 1 m with a high concentration of pollutants (www.tasnimnews.com). -
How Farmers Perceive the Impact of Dust Phenomenon on Agricultural Production Activities: a Q-Methodology Study T
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography Journal of Arid Environments 173 (2020) 104028 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv How farmers perceive the impact of dust phenomenon on agricultural production activities: A Q-methodology study T ∗ ∗∗ Fatemeh Taheria, , Masoumeh Forouzanib, , Masoud Yazdanpanahb, Abdolazim Ajilib a Department of Agricultural Economics, Ghent University, Ghent, B-9000, Belgium b Department of Agricultural Extension and Education, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, 6341773637, Iran ARTICLE INFO ABSTRACT Keywords: Dust as one of the environmental concerns during the past decade has attracted the attention of the international Dust storms community around the world, particularly among West Asian countries. Recently, Iran has been extremely af- Farmers' perceptions fected by the serious impacts of this destructive phenomenon, especially in its agricultural sector. Management Economic and ecological impacts of dust phenomenon increasingly calls for initiatives to understand the perceptions of farmers regarding this Environmental policies phenomenon. Farmers’ views about dust phenomenon can affect their attitude and their mitigating behavior. Q method This can also make a valuable frame for decision and policy-makers to develop appropriate strategies for mi- Iran tigating dust phenomenon impacts on the agricultural sector. In line with this, a Q methodology study was undertaken to identify the perception of farmers toward dust phenomenon, in Khuzestan province, Iran. Sixty participants completed the Q sort procedure. Data analysis revealed three types of perceptions toward dust phenomenon: health adherents who seek support, government blamers who seek support, and planning ad- herents who seek information. -
Analysis of Geographical Accessibility to Rural Health Houses Using the Geospatial Information System, a Case Study: Khuzestan Province, South-West Iran
Acta Medica Mediterranea, 2015, 31: 1447 ANALYSIS OF GEOGRAPHICAL ACCESSIBILITY TO RURAL HEALTH HOUSES USING THE GEOSPATIAL INFORMATION SYSTEM, A CASE STUDY: KHUZESTAN PROVINCE, SOUTH-WEST IRAN FARAHNAZ SADOUGHI1, 2, JAVAD ZAREI1, ALI MOHAMMADI3, HOJAT HATAMINEJAD 4, SARA SAKIPOUR5 1Department of Health Information Management, School of Health Management and Information Science, Iran University of Medical Sciences, Tehran, I.R. Iran - 2Health Management and Economics Research Center, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, I.R. Iran - 3Assistant professor of Health Information Management, Department of Health Information Technology, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah I.R. Iran - 4PhD candidate, Geography and Urban Planning, University of Tehran, Tehran - 5Office of Medical Record and Statistics, Vice-Chancellor for Treatment, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R. Iran ABSTRACT Background: The use of rural health houses is one of the important approaches for delivering health services but, inappro- priate infrastructures and limited resources make it difficult to design and implement plans to enhance and improve health services in rural areas. The aim of this study was to analyze the accessibility to rural health care services in the province of Khuzestan Materials and methods: This applied research was conducted in Khuzestan Province, south-west Iran with a cross-sectional approach in 2014. The population of the study was the villages and rural health houses. All the villages and rural health houses were included in the study without sampling. Descriptive data collected with a checklist from the Statistical Centre of Iran, IT Department of the Management Deputy of the Governor’s Office and Ahvaz Jundishapur and Dezful University of Medical Sciences and spatial data obtained from the national Cartographic Center. -
Coastal Protection of Gotvand
Resilient Structures and Sustainable Construction Edited by Pellicer, E., Adam, J. M., Yepes, V., Singh, A., and Yazdani, S. Copyright © 2017 ISEC Press ISBN: 978-0-9960437-4-8 COASTAL PROTECTION OF GOTVAND RESERVOIR DAM: ELECTRICAL CONDUCTIVITY PERFECTION OF SALTY DOMES AFSHIN TURK1, BAHRAM MOMBENI2, HAMIDREZA KHODABAKHSHI3, DARIUSH BAHMAEI3, MEHDI BEHDARVANDI ASKAR4, and SHABNAM GHANAVATIZADEH5 1Dept of Dam –Developing and Utilization, Ministry of Power, KWPA, Ahwaz, Iran 2Dept of Water Supply, Ministry of Power, KWPA, Ahwaz, Iran 3Dept of Water Supply and Drainage, Ministry of Power, KWPA, Ahwaz, Iran 4Dept of Coastal Engineering, KMST University, Khorramshahr, Iran 5Dept of Science and Biology, S. Chamran University, Ahwaz, Iran The Gotvand reservoir dam is located at SW of Iran where the Karun River orients from the Zagros Mountains. The nominal volume is 5,500 million cubic meters. It is a rock-fills dam with clay core. The height of crown is about 180 m with 130 m normal water depth. Depth from bottom (0-30 m), the water layer’s electrical conductivity (EC) will be as 150,000 to 85,000 mµ/cm. Also the EC will decrease from depth (85-30 m) corresponding the water layer’s EC between 85,000 to 20,000 µm/cm. Finally, at depth (30-0.0 m) the EC is controlled with values (15,000-1,000 µm/cm). The salty domes will produce unexpected salty sediments into reservoirs. Consulting engineering said that more than 8,000,000 tons of pure salt sediments were interned into the Gotvand Lake reservoir from 2011 through 2015. If this regime of salty material continues, downstream agricultural lands will completely disturb and disuses. -
Of Khuzestan Province, Southwestern Iran
Archive of SID Persian J. Acarol., 2018, Vol. 7, No. 4, pp. 323–344. http://dx.doi.org/10.22073/pja.v7i4.38663 Journal homepage: http://www.biotaxa.org/pja Article Some mesostigmatic mites (Acari: Parasitiformes) of Khuzestan province, southwestern Iran Sara Farahi1, Parviz Shishehbor1 and Alireza Nemati2 1. Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran; E-mails: [email protected], [email protected] 2. Department of Plant Protection, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran; E-mail: [email protected] ABSTRACT Animal droppings constitute an ephemeral habitat where specialized invertebrate communities including significant abundance of mites live together. In order to study the Mesostigmata mites associated with manure, samples were taken from different manure types of domestic animals and poultry in Ahvaz and its vicinity in Khuzestan Province, southwestern of Iran, over a period of two years (2015-2017). Here we report 20 species belonging to eight families of Mesostigmata, among which 14 species are new records for the fauna of Khuzestan Province. The genus and species Leitneria pugio (Karg, 1961) is newly recorded from Iran. The genus and species were previously only recorded in Europe. Also, Uroobovella varians Hirschmann & Zirngiebl-Nicol, 1962 is recorded for the first time from Iran based on deutonymph stage. We further provide collection data for each species along with a key for known Iranian species of the genus Uroobovella. KEY WORDS: Mesostigmata; Manure-inhabiting mites; Uroobovella; Ahvaz; Iran. PAPER INFO.: Received: 9 May 2018, Accepted: 10 August 2018, Published: 15 October 2018 INTRODUCTION Animal manures possess a rich fauna of arthropods including significant abundance of mites. -
Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト
Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト ● Asia 4 Bangladesh 7 China アジア バングラデシュ 中国 1 Afghanistan 9 Khulna 6 Hangzhou アフガニスタン クルナ 杭州(ハンチォウ) 1 Herat 10 Kotwalipara 7 Wuhan ヘラート コタリパラ 武漢(ウハン) 2 Kabul 11 Meherpur 8 Cyprus カブール メヘルプール キプロス 3 Nili 12 Moulvibazar 1 Aglantzia ニリ モウロビバザール アグランツィア 2 Armenia 13 Narayanganj 2 Ammochostos (Famagusta) アルメニア ナラヤンガンジ アモコストス(ファマグスタ) 1 Yerevan 14 Narsingdi 3 Kyrenia エレバン ナールシンジ キレニア 3 Azerbaijan 15 Noapara 4 Kythrea アゼルバイジャン ノアパラ キシレア 1 Agdam 16 Patuakhali 5 Morphou アグダム(県) パトゥアカリ モルフー 2 Fuzuli 17 Rajshahi 9 Georgia フュズリ(県) ラージシャヒ ジョージア 3 Gubadli 18 Rangpur 1 Kutaisi クバドリ(県) ラングプール クタイシ 4 Jabrail Region 19 Swarupkati 2 Tbilisi ジャブライル(県) サルプカティ トビリシ 5 Kalbajar 20 Sylhet 10 India カルバジャル(県) シルヘット インド 6 Khocali 21 Tangail 1 Ahmedabad ホジャリ(県) タンガイル アーメダバード 7 Khojavend 22 Tongi 2 Bhopal ホジャヴェンド(県) トンギ ボパール 8 Lachin 5 Bhutan 3 Chandernagore ラチン(県) ブータン チャンダルナゴール 9 Shusha Region 1 Thimphu 4 Chandigarh シュシャ(県) ティンプー チャンディーガル 10 Zangilan Region 6 Cambodia 5 Chennai ザンギラン(県) カンボジア チェンナイ 4 Bangladesh 1 Ba Phnom 6 Cochin バングラデシュ バプノム コーチ(コーチン) 1 Bera 2 Phnom Penh 7 Delhi ベラ プノンペン デリー 2 Chapai Nawabganj 3 Siem Reap Province 8 Imphal チャパイ・ナワブガンジ シェムリアップ州 インパール 3 Chittagong 7 China 9 Kolkata チッタゴン 中国 コルカタ 4 Comilla 1 Beijing 10 Lucknow コミラ 北京(ペイチン) ラクノウ 5 Cox's Bazar 2 Chengdu 11 Mallappuzhassery コックスバザール 成都(チォントゥ) マラパザーサリー 6 Dhaka 3 Chongqing 12 Meerut ダッカ 重慶(チョンチン) メーラト 7 Gazipur 4 Dalian 13 Mumbai (Bombay) ガジプール 大連(タァリィェン) ムンバイ(旧ボンベイ) 8 Gopalpur 5 Fuzhou 14 Nagpur ゴパルプール 福州(フゥチォウ) ナーグプル 1/108 Pages -
Agroclimatic Zones Map of Iran Explanatory Notes
AGROCLIMATIC ZONES MAP OF IRAN EXPLANATORY NOTES E. De Pauw1, A. Ghaffari2, V. Ghasemi3 1 Agroclimatologist/ Research Project Manager, International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo Syria 2 Director-General, Drylands Agricultural Research Institute (DARI), Maragheh, Iran 3 Head of GIS/RS Department, Soil and Water Research Institute (SWRI), Tehran, Iran INTRODUCTION The agroclimatic zones map of Iran has been produced to as one of the outputs of the joint DARI-ICARDA project “Agroecological Zoning of Iran”. The objective of this project is to develop an agroecological zones framework for targeting germplasm to specific environments, formulating land use and land management recommendations, and assisting development planning. In view of the very diverse climates in this part of Iran, an agroclimatic zones map is of vital importance to achieve this objective. METHODOLOGY Spatial interpolation A database was established of point climatic data covering monthly averages of precipitation and temperature for the main stations in Iran, covering the period 1973-1998 (Appendix 1, Tables 2-3). These quality-controlled data were obtained from the Organization of Meteorology, based in Tehran. From Iran 126 stations were accepted with a precipitation record length of at least 20 years, and 590 stations with a temperature record length of at least 5 years. The database also included some precipitation and temperature data from neighboring countries, leading to a total database of 244 precipitation stations and 627 temperature stations. The ‘thin-plate smoothing spline’ method of Hutchinson (1995), as implemented in the ANUSPLIN software (Hutchinson, 2000), was used to convert this point database into ‘climate surfaces’. -
Characteristics of Direct Human Impacts on the Rivers Karun and Dez in Lowland South-West Iran and Their Interactions with Earth Surface Movements
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Characteristics of direct human impacts on the rivers Karun and Dez in lowland south-west Iran and their interactions with earth surface movements Kevin P. Woodbridge, Daniel R. Parsons, Vanessa M. A. Heyvaert, Jan Walstra, Lynne E. Frostick Abstract Two of the primary external factors influencing the variability of major river systems, over river reach scales, are human activities and tectonics. Based on the rivers Karun and Dez in south-west Iran, this paper presents an analysis of the geomorphological responses of these major rivers to ancient human modifications and tectonics. Direct human modifications can be distinguished by both modern constructions and ancient remnants of former constructions that can leave a subtle legacy in a suite of river characteristics. For example, the ruins of major dams are characterised by a legacy of channel widening to 100's up to c. 1000 m within upstream zones that can stretch to channel distances of many kilometres upstream of former dam sites, whilst the legacy of major, ancient, anthropogenic river channel straightening can also be distinguished by very low channel sinuosities over long lengths of the river course. Tectonic movements in the region are mainly associated with young and emerging folds with NW–SE and N–S trends and with a long structural lineament oriented E–W. These earth surface movements can be shown to interact with both modern and ancient human impacts over similar timescales, with the types of modification and earth surface motion being distinguishable. -
Monthly-July-2021
women.ncr-iran.org @womenncri @womenncri 1 The uprising in Khuzestan, mothers of martyrs and women of Resistance Units actively support and participate July 2021 was an eventful month for the Iranian people. The Iranian Resistance’s annual gathering, the Free Iran World Summit 2021, successfully convened from July 10-12. This international online Summit connected Ashraf 3 with more than 50,000 points in 105 countries. The three-day Summit saw the participation of 1,029 prominent figures from five continents, many of whom spoke at the summit and expressed their support for the Democratic Alternative of the National Council of Resistance of Iran and the Iranian people’s uprising. One of the most outstanding parts of the event in its 17-year history was the participation of the supporters of the Iranian Opposition People’s Mojahedin Organization of Iran (PMOI/MEK) and members of Resistance Units from inside Iran. In their direct video contacts with the Summit, the female members of the Resistance Units showed that these leading women by accepting many risks keep alive the light of hope and faith in victory for the Iranian people. Outburst of anger of thirsty people in Khuzestan A few days after the Iranian Resistance’s annual Summit, the uprising of the thirsty people of Khuzestan made news headlines around the world. The uprising in Khuzestan spread rapidly throughout the province. Then many cities joined the uprising and declared their solidarity with the thirsty people of Khuzestan. The protests in Khuzestan and their rapid expansion once again revealed the fact that Iranian society no longer wants the mullahs. -
Mapping Climate Change in Iraq and Jordan
Working Paper 27 Mapping climate change in Iraq and Jordan Eddy De Pauw, Muna Saba, and Sabah H. Ali 1 Acknowledgements Authors: Eddy De Pauw, Muna Saba, and Sabah H. Ali The authors would like to express their gratitude to those who contributed to this paper: Ministries of Agriculture in Iraq and Jordan, and to the collaborating institutions and universities in both the countries. Thanks are also extended to ICARDA management, programs and units for their support. Thanks and appreciation are due to the International Fund for Agriculture Development (IFAD) for their financial contribution and for their keen interest in achieving better understanding and finding solutions to the climate change phenomenon. Special thanks are extended to all farmers and their communities for their support and friendliness. This working paper is an output of the the project on “Improving food security and climate change adaptability of livestock producers using the rainfed barley-based system in Iraq and Jordan” (IFAD Grant 1240-ICARDA) ICARDA Working Papers document the progress of the ICARDA research program and its support to country partners in more than 40 drylands countries. Working Papers are one of ICARDA’s global pub- lic goods; they capture and share knowledge and learning from projects and research partnerships. Each paper is internally reviewed as part of the center’s publishing process. ISBN: 92-91274739 Key words: Aridity index, climate change, food security, Iraq, Jordan, map downscaling, projected climate change, rainfed systems. Feedback: ICARDA welcomes comment and feedback on this publication. [email protected] www.icarda.org The views expressed are those of the authors, and not necessarily those of ICARDA. -
Iraq and Neighbouring Countries Geographic Information and Mapping Unit Population and Geographic Data Section As of November 2003 Email : [email protected]
GIMU / PGDS Iraq and neighbouring countries Geographic Information and Mapping Unit Population and Geographic Data Section As of November 2003 Email : [email protected] Haymana )))) )))) )))) )))) )))) Goradiz ))) )))) Akpinar )))) )))) Tecer )))) Sincan )))) ))) Bank ))) Cheleken )))) )))) )))) ))) ))) )))) )))) )))) Akbenli )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) ))) )))) )))) )))) )))) Sarkisla )))) )))) Hinis ))) Neftechala )))) )))) )))) )))) ))) Karacaoren )))) )))) )))) 33° E 34° E 35° E 36° E )))) 37° E 38° E 39° E 40° E 41° E 42° E 43° E 44° E 45° E 46° E 47° E 48° E 49° E 50° E 51° E 52° E 53° E )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) Uzunlu)))) )))) )))) )))) )))) Caylar )))) )))) )))) )))) Kangal )))) )))) )))) )))) )))) )))) )))) )))) ))) )))) )))) )))) Karaoglan Nakhichevan' ))) ))) ))) )))) )))) )))) )))) ))) ))) Dzhalilabad )))) )))) )))) )))) ))) )))) )))) )))) UU ))) )))) Seker )))) Varto )))) UU ))) ))) )))) )))) UU ))) ))) )))) )))) UU ))) ))) )))) UU ))) ))) )))) UU ))) ))) )))) )))) UU ))) ))) Kirsehir )))) )))) )))) )))) )))) Kadzharan ))) )))) )))) )))) )))) )))) )))) )))) )))) ))) Prishib )))) )))) )))) )))) Hozat)))) Tunceli )))) Sancak )))) ))) )))) )))) )))) )))) )))) )))) )))) )))) ))) )))) )))) )))) )))) )))) Bulanik Paraga ))) )))) )))) )))) Horan )))) )))) )))) )))) )))) Arapkir )))) )))) )))) )))) ))) )))) )))) )))) Ercis )))) )))) ))) Masally )))) )))) )))) )))) 39° N )))) )))) )))) )))) )))) )))) ))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) )))) ))))