18BZO14A-U5 Bentham and Hooker's System of Classification the Most

Total Page:16

File Type:pdf, Size:1020Kb

18BZO14A-U5 Bentham and Hooker's System of Classification the Most 18BZO14A-U5 Bentham and Hooker’s System of Classification The most important and the last of the natural systems of classification of seed plants was proposed by two British taxonomists George Bentham (1800-1884), a self trained botanist, and Joseph Dalton Hooker (1817-1911), the first director of the Royal Botanical Garden, Kew (England).They recorded precise description of most of the plants known at that time. Their monumental work which took about quarter of a century for completion was described in three volumes of Genera Plantarum, published in Latin during July 1862 and April 1883. Bentham and Hooker’s system of classification is still used and followed in several herbaria of the world. It is supposed to be the best system for the students to identify plants in the laboratory. Salient Features of Bentham and Hooker’s system: 1. It is a classification of only the “seed plants” or phanerogams. 2. They described 97,205 species of seed plants belonging to 7,569 genera of202 families starting from Ranunculaceae up to Gramineae. 3. They classified all the seed plants into 3 groups or classes i.e. Dicotyledons (165 families), gymnosperms (3 families) and monocotyledons (34 families). 4. They included disputed orders among Ordines Anomali which they could not place satisfactorily. 5. Monocotyledons were described after the dicotyledones. 6. The dicotyledons were divided into 3 Divisions (Polypetalae, Gamopetalae and Monochlamydeae) and 14 series. Each series again divided into cohorts (modern orders) and cohorts into orders (modern families). 7. The authors did not mention anything about the origin of the angiosperms. 8. Creation of the Disciflorae, a taxon not described by the earlier taxonomists. 9. Among the Monochlamydeae, major taxa, like the series, were divided on the basis of terrestrial and aquatic habits. 10. Polypetalae carries 82 families, 2610 genera & 31,874 species. Gamopetalae carries 45 families 2619 genera & 34,556 species. Monochlamydae includes 36 families, 801 genera & 11,784 species. Similarly Monocotyledons consist 34 families, 1495 genera and 18,576 species. Merits of Bentham and Hooker’s System: 1. Each plant has been described either from the actual specimen or preserved herbarium sheets so that the descriptions are detailed as well as quite accurate. 2. The system is highly practical and is useful to students of systematic botany for easy identification of species. 3. The flora describes geographical distribution of species and genera. 4. The generic descriptions are complete, accurate and based on direct observations. 5. Larger genera have been divided into sub genera, each with specific number of species. 6. Dicots begin with the order Ranales which are now universally considered as to be the most primitive angiosperms. 7. Placing of monocots after the dicot is again a natural one and according to evolutionary trends. 8. The placing of series disciflorae in between thalami florae and calyciflorae is quite natural. 9. The placing of gamopetalae after polypetalae is justified since union of petalsis considered to be an advanced feature over the free condition. Demerits of Bentham and Hooker’s System: 1. Keeping gymnosperms in between dicots and monocots is anomalous. 2. Subclass monochlamydeae is quite artificial. 3. Placing of monochlamydeae after gamopetalae does not seem to be natural. 4. Some of the closely related species are placed distantly while distant species are placed close to each other. 5. Certain families of monochlamydeae are closely related to families in polypetalae, e.g. Chenopodiaceae and Caryophyllaceae. 6. Advanced families, such as Orchiadaceae have been considered primitive in this system by placing them in the beginning. Placing of Orchidaceae in the beginning of monocotyledons is unnatural as it is one of the most advanced families of monocots. Similarly, Compositae (Asteraceae) has been placed near the beginning of gamopetalae which is quite unnatural. 7. Liliaceae and Amaryllidaceae were kept apart merely on the basis of characters of ovary though they are very closely related. 8. There were no phylogenetic considerations 1. Characters of Annonaceae 2. Distribution of Annonaceae 3. Economic Importance Characters of Annonaceae: Wood aromatic, leaves exstipulate, floral parts usually numerous, free spirally arranged; stamens with distinctive enlarged and flat connective; gynoecium multipistilate, apocarpous. A. Vegetative characters: Habit and habitat: Trees, shrubs or lianas. Artabotrys climbs by means of hooks. Oil ducts present in the bark, leaves and perianth leaves. Terrestrial and perennial. Evergreen, deciduous, cultivated as well as wild. Root: Tap, deep and extensively branched. Stem: Erect, branched, solid, woody, sometimes woody climbers. Leaves – Simple, entire, alternate, exstipulate, distichous, gland dotted. B. Floral characters: Inflorescence: Often solitary, axillary, sometimes cauliflourous in groups. Flower: Actinomorphic but zygomorphic in Monodora due to difference in size of petals, hermaphrodite, unisexual in Stelechocarpus, complete, trimerous, hypogynous, perigynous (Eupomatia) spirocyclic, often aromatic. Calyx: Sepals 3, sepaloid, polysepalous, connate at the base, valvate.: Corolla: Petals 6 in two whorls of 3 each, valvate or slightly imbricate. Sometimes no distinction into sepals and petals so perianth in 3 or more whorls of 3 each. Androecium: Stamens numerous spirally arranged on the axis which forms a large convex receptacle, filament short and thick, anthers long, extrorse, truncate connective, bithecous. Gynoecium: Carpels numerous or a few, usually free, spirally arranged on the raised receptacle, apocarpous, superior, unicarpellary, unilocular; ovules one to many, anatropous; style short or none, stigma small, Monodora (Africa) with syncarpous ovary and parietal placentation. Fruit: An aggregate of berries, united to form a single compound fruit (Annona squamosa). Seed: Large, numerous, often embedded in a copious, white fleshy pulp, endospermic. Pollination: Entomophilous, due to gaudy and scented flowers. Floral formula: Distribution of Annonaceae: The family Annonaceae is commonly called Custard-apple family. Rendle included 62 genera and 820 species in this family. Lawrence recognised 80 genera and 850 species. Takhtajan (1966) included 120 genera and 2,100 species in this family. The family is widely distributed in the tropical regions of the world. Some genera are also found in the temperate climates. In India it is represented by 129 species. Economic Importance of Annonaceae: 1. Food: The fleshy fruits of various Annona specifics are juicy and edible, and also used in preparation of soft drinks and jellies. Recent analysis shows that they contain about 18 per cent sugar. Edible fruits are also obtained from various species of Annona and Asimina. 2. Timber: Bocagea virgata, B. laurifolia, Cyathocalyx zeylanicus, Duguetia quitarensis, Oxandra lanceolata and Eupomatia laurina yield useful timber. 3. Oil: The flowers of Desmos chinensis furnish ‘Macassar oil’ a perfume. The perfume is also obtained from Mkilua fragrans and specially liked by Arab women. 4. Fibre: The bark of Goniothalamus wightii produces strong fibres. 5. Ornamental: Artabotrys odoratissimus and Annona discolor are grown in garden for their scented flowers. Desmes chinensis is an ornamental tree. Common plants of the family: 1. Annona squamosa L. – (H. Sarifa or sitafal) custard apple or sugar apple – well known fruit tree. 2. Annona reticulata L. – Bastard apple or Bullock’s heart – a fruit tree. 3. Artabotrys uncinatas – A small climbing shrub with hooked peduncles – and glabarous leaves. 4. Cyathocalyx zeylanicus (H. Hari Champa) – A tall tree with deflexed or horizontal branches. 5. Polyalthia longifolia – The. “Ashok” An ornamental tree. 6. Uvaria cordata (Dunal) – Alston is a climber noted for its cordate leaves and red flowers. Important Types of Annonaceae: 1. Annona squamosa (H. sarifa or Sitafal, Fig. 26.1): Habit: A small tree. Root: Tap, branched. Stem: Aerial, woody, branched. Leaf: Simple, alternate, exstipulate, entire, oblanceolate, obtuse. Inflorescence: Axillary, two or more flowers arise in the axil of each leaf. Flower: Bracteate, hermaphrodite, complete, actinomorphic, spirocyclic, hypogynous. Calyx: Sepals three, polysepalous, united at the base, valvate. Corolla: Petals three, polypetalous, fleshy, pale-yellow, valvate. Androecium: Stamens numerous, spirally arranged on a conical receptacle, filaments short, anthets oblong, adnated, and appendaged. Gynoecium: Multicarpellary, apocarpous, spirally arranged, superior, each unilocular, ovule one, basal placentation, style short, stigma long, tapering, papillose. Fruit: An etario of berries. Floral formula: Cucurbitaceae: General characters, Distribution, Important plants, Economic importance and Floral diagram General Information Common name: Cucumber/Pumpkin family Number of genera: This family includes 110 genera and about 640 species Propagation type: Fruit or seed Distribution: The species of this family are distributed throughout the world. In India this family is represented by about 37 genera and 97 species distributed throughout the country. The chief centre of distribution of these members is Eastern Himalayas. Vegetative characters Habitat: Members of this family are mostly mesophytes and some xerophytes are also known to exist in this family. Habit: The plants are mostly succulent, trailing, decumbent annual or perennial herbs. These plants climb by means of laterally spirally
Recommended publications
  • Acta Botanica Brasilica Doi: 10.1590/0102-33062020Abb0051
    Acta Botanica Brasilica doi: 10.1590/0102-33062020abb0051 Toward a phylogenetic reclassification of the subfamily Ambavioideae (Annonaceae): establishment of a new subfamily and a new tribe Tanawat Chaowasku1 Received: February 14, 2020 Accepted: June 12, 2020 . ABSTRACT A molecular phylogeny of the subfamily Ambavioideae (Annonaceae) was reconstructed using up to eight plastid DNA regions (matK, ndhF, and rbcL exons; trnL intron; atpB-rbcL, psbA-trnH, trnL-trnF, and trnS-trnG intergenic spacers). The results indicate that the subfamily is not monophyletic, with the monotypic genus Meiocarpidium resolved as the second diverging lineage of Annonaceae after Anaxagorea (the only genus of Anaxagoreoideae) and as the sister group of a large clade consisting of the rest of Annonaceae. Consequently, a new subfamily, Meiocarpidioideae, is established to accommodate the enigmatic African genus Meiocarpidium. In addition, the subfamily Ambavioideae is redefined to contain two major clades formally recognized as two tribes. The tribe Tetramerantheae consisting of only Tetrameranthus is enlarged to include Ambavia, Cleistopholis, and Mezzettia; and Canangeae, a new tribe comprising Cananga, Cyathocalyx, Drepananthus, and Lettowianthus, are erected. The two tribes are principally distinguishable from each other by differences in monoploid chromosome number, branching architecture, and average pollen size (monads). New relationships were retrieved within Tetramerantheae, with Mezzettia as the sister group of a clade containing Ambavia and Cleistopholis. Keywords: Annonaceae, Ambavioideae, Meiocarpidium, molecular phylogeny, systematics, taxonomy et al. 2019). Every subfamily received unequivocally Introduction and consistently strong molecular support except the subfamily Ambavioideae, which is composed of nine Annonaceae, a pantropical family of flowering plants genera: Ambavia, Cananga, Cleistopholis, Cyathocalyx, prominent in lowland rainforests, consist of 110 genera Drepananthus, Lettowianthus, Meiocarpidium, Mezzettia, (Guo et al.
    [Show full text]
  • Annonaceae in the Western Pacific: Geographic Patterns and Four New
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb.
    [Show full text]
  • Essential Oils and Health
    YALE JOURNAL OF BIOLOGY AND MEDICINE 93 (2020), pp.291-305. Review Essential Oils and Health J. Tyler Ramseya,*, B. Carrie Shropshirea, Tibor R. Nagya, Kevin D. Chambersa, Yin Lib, and Kenneth S. Korachb,* aCampbell University School of Osteopathic Medicine, Lillington, NC; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC Essential oils (EOs) have risen in popularity over the past decade. These oils function in society as holistic integrative modalities to traditional medicinal treatments, where many Americans substitute EOs in place of other prescribed medications. EOs are found in a multitude of products including food flavoring, soaps, lotions, shampoos, hair styling products, cologne, laundry detergents, and even insect repellents. EOs are complex substances comprised of hundreds of components that can vary greatly in their composition depending upon the extraction process by the producer or the origin of the plant. Thus, making it difficult to determine which pathways in the body are affected. Here, we review the published research that shows the health benefits of EOs as well as some of their adverse effects. In doing so, we show that EOs, as well as some of their individual components, possess antimicrobial, antiviral, antibiotic, anti-inflammatory, and antioxidant properties as well as purported psychogenic effects such as relieving stress, treating depression, and aiding with insomnia. Not only do we show the health benefits of using EOs, but we also indicate risks associated with their use such as their endocrine disrupting properties leading to the induction of premature breast growth in young adolescents.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea Yvonne CF Su* and Richard MK Saunders* Address: Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China Email: Yvonne CF Su* - [email protected]; Richard MK Saunders* - [email protected] * Corresponding authors Published: 2 July 2009 Received: 3 March 2009 Accepted: 2 July 2009 BMC Evolutionary Biology 2009, 9:153 doi:10.1186/1471-2148-9-153 This article is available from: http://www.biomedcentral.com/1471-2148/9/153 © 2009 Su and Saunders; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Phylogenetic analyses of the Annonaceae consistently identify four clades: a basal clade consisting of Anaxagorea, and a small 'ambavioid' clade that is sister to two main clades, the 'long branch clade' (LBC) and 'short branch clade' (SBC). Divergence times in the family have previously been estimated using non-parametric rate smoothing (NPRS) and penalized likelihood (PL). Here we use an uncorrelated lognormal (UCLD) relaxed molecular clock in BEAST to estimate diversification times of the main clades within the family with a focus on the Asian genus Pseuduvaria within the SBC. Two fossil calibration points are applied, including the first use of the recently discovered Annonaceae fossil Futabanthus.
    [Show full text]
  • Giacomo FEDELE
    NNT° : 2017IAVF0021 THESE DE DOCTORAT préparée à l’Institut des sciences et industries du vivant et de l’environnement (AgroParisTech) pour obtenir le grade de Docteur de l’Institut agronomique vétérinaire et forestier de France Spécialité : Science de l’environnement École doctorale n°581 Agriculture, alimentation, biologie, environnement et santé (ABIES) par Giacomo FEDELE Landscape management strategies in response to climate risks in Indonesia Directeur de thèse : Dr. Bruno LOCATELLI Co-directeur de la thèse : Dr. Houria DJOUDI Thèse présentée et soutenue à Paris, le 18.12.2017 : Composition du jury : M. Harold LEVREL, Professeur, AgroParisTech et CIRED Paris Président M. Philip ROCHE, Directeur de recherche, IRSTEA Aix-en-Provence Rapporteur M. Davide GENELETTI, Professeur, University of Trento, Italie Rapporteur Mme Sandra LAVOREL, Directeur de recherche, CNRS et Université Grenoble-Alpes Grenoble Examinatrice M. Yves LAUMONIER, Chercheur, CIRAD et CIFOR Indonésie Examinateur Mme Cécile BARNAUD, Chercheuse, INRA Toulouse Examinatrice M. Bruno LOCATELLI, Chercheur, CIRAD et CIFOR Pérou Directeur de thèse Mme Houria DJOUDI, Chercheur, CIFOR Indonésie Codirectrice de thèse CIRAD UPR 105 – Forets et Sociétés Campus international de Baillarguet 34398 Montpellier cedex 5 LANDSCAPE MANAGEMENT STRATEGIES IN RESPONSE TO CLIMATE RISKS IN INDONESIA . Giacomo Fedele A thesis presented for the degree of Doctor at AgroParisTech . 1 Content Chapter 1 ......................................................................................................................................
    [Show full text]
  • Character Evolution in Anaxagorea (Annonaceae)
    QUT Digital Repository: http://eprints.qut.edu.au/ Scharaschkin, Tanya and Doyle, James A. (2006) Character evolution in Anaxagorea (Annonaceae). American Journal of Botany 93(1):pp. 36-54. © Copyright 2006 Botanical Society of America American Journal of Botany 93(1): 36±54. 2006. CHARACTER EVOLUTION IN ANAXAGOREA (ANNONACEAE)1 TANYA SCHARASCHKIN2,3 AND JAMES A. DOYLE2 2Section of Evolution and Ecology, University of California, Davis, California 95616 USA Anaxagorea is a critical genus for understanding morphological evolution in Annonaceae because it shares a variety of features with other Magnoliales that have been interpreted as primitive relative to other Annonaceae. We present a detailed discussion of morphological characters used in a combined morphological and molecular phylogenetic analysis of Anaxagorea, along with impli- cations of the analysis for character evolution in the genus. In spite of a high level of homoplasy in stamen and leaf venation characters, their removal results in loss of resolution in the trees obtained. The distributions of characters on trees con®rm assumptions that several distinctive similarities between Anaxagorea and other Magnoliales are primitive retentions (e.g., the presence of an adaxial plate of xylem in the midrib, nonpeltate stamen connectives, inner staminodes, and several leaf architectural characters). However, lateral extensions of the ``laminar'' stamens, though possibly ancestral in Anaxagorea, are convergent with those in other Magnoliales. A number of morphological synapomorphies have been identi®ed for a clade containing most Central American species and another comprising all Asian species (e.g., conical bud shape and reduced inner petals for the Central American clade, and adaxial cuticular striations and capitate stigma shape for the Asian clade).
    [Show full text]
  • With Two New Species of Shrub from the Forests of the Udzungwas, Tanzania & Kaya
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444227; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lukea gen. nov. (Monodoreae-Annonaceae) with two new species of shrub from the forests of the Udzungwas, Tanzania & Kaya Ribe, Kenya. Martin Cheek1, W.R. Quentin Luke2 & George Gosline1. 1Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK 2East African Herbarium, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya. Summary. A new genus, Lukea Gosline & Cheek (Annonaceae), is erected for two new species to science, Lukea quentinii Cheek & Gosline from Kaya Ribe, S.E. Kenya, and Lukea triciae Cheek & Gosline from the Udzungwa Mts, Tanzania. Lukea is characterised by a flattened circular bowl-shaped receptacle-calyx with a corolla of three petals that give the buds and flowers a unique appearance in African Annonaceae. Both species are extremely rare shrubs of small surviving areas of lowland evergreen forest under threat of habitat degradation and destruction and are provisionally assessed as Critically Endangered and Endangered respectively using the IUCN 2012 standard. Both species are illustrated and mapped. Material of the two species had formerly been considered to be possibly Uvariopsis Engl. & Diels, and the genus Lukea is placed in the Uvariopsis clade of the Monodoreae (consisting of the African genera Uvariodendron (Engl. & Diels) R.E.Fries, Uvariopsis, Mischogyne Exell, Dennettia Bak.f., and Monocyclanthus Keay).
    [Show full text]
  • I MARCELA CHRISTOFOLI ÓLEOS ESSENCIAIS DE Citrus Sinensis E
    i MARCELA CHRISTOFOLI ÓLEOS ESSENCIAIS DE Citrus sinensis E Xylopia aromatica E SUA ADIÇÃO EM DIETAS DE FRANGOS DE CORTE Rio Verde Goiás-Brasil 2020 ii UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE PATOLOGIA TROPICAL E SAÚDE PÚBLICA TERMO DE CIÊNCIA E DE AUTORIZAÇÃO (TECA) PARA DISPONIBILIZAR VERSÕES ELETRÔNICAS DE TESES E DISSERTAÇÕES NA BIBLIOTECA DIGITAL DA UFG Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG), regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo com a Lei 9.610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. O conteúdo das Teses e Dissertações disponibilizado na BDTD/UFG é de responsabilidade exclusiva do autor. Ao encaminhar o produto final, o autor(a) e o(a) orientador(a) firmam o compromisso de que o trabalho não contém nenhuma violação de quaisquer direitos autorais ou outro direito de terceiros. 1. Identificação do material bibliográfico [ ] Dissertação [ X ] Tese 2. Nome completo do autor Marcela Christofoli 3. Título do trabalho ÓLEOS ESSENCIAIS DE Citrus sinensis E Xylopia aromatica E SUA ADIÇÃO EM DIETAS DE FRANGOS DE CORTE 4. Informações de acesso ao documento (este campo deve ser preenchido pelo orientador) Concorda com a liberação total do documento [ X ] SIM [ ] NÃO¹ [1] Neste caso o documento será embargado por até um ano a partir da data de defesa. Após esse período, a possível disponibilização ocorrerá apenas mediante: a) consulta ao(à) autor(a) e ao(à) orientador(a); iii b) novo Termo de Ciência e de Autorização (TECA) assinado e inserido no arquivo da tese ou dissertação.
    [Show full text]
  • Fossil Calibration of Magnoliidae, an Ancient Lineage of Angiosperms
    Palaeontologia Electronica palaeo-electronica.org Fossil calibration of Magnoliidae, an ancient lineage of angiosperms Julien Massoni, James Doyle, and Hervé Sauquet ABSTRACT In order to investigate the diversification of angiosperms, an accurate temporal framework is needed. Molecular dating methods thoroughly calibrated with the fossil record can provide estimates of this evolutionary time scale. Because of their position in the phylogenetic tree of angiosperms, Magnoliidae (10,000 species) are of primary importance for the investigation of the evolutionary history of flowering plants. The rich fossil record of the group, beginning in the Cretaceous, has a global distribution. Among the hundred extinct species of Magnoliidae described, several have been included in phylogenetic analyses alongside extant species, providing reliable calibra- tion points for molecular dating studies. Until now, few fossils have been used as cali- bration points of Magnoliidae, and detailed justifications of their phylogenetic position and absolute age have been lacking. Here, we review the position and ages for 10 fos- sils of Magnoliidae, selected because of their previous inclusion in phylogenetic analy- ses of extant and fossil taxa. This study allows us to propose an updated calibration scheme for dating the evolutionary history of Magnoliidae. Julien Massoni. Laboratoire Ecologie, Systématique, Evolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France. [email protected] James Doyle. Department of Evolution and Ecology, University of California, Davis, CA 95616, USA. [email protected] Hervé Sauquet. Laboratoire Ecologie, Systématique, Evolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France. [email protected] Keywords: fossil calibration; Canellales; Laurales; Magnoliales; Magnoliidae; Piperales PE Article Number: 18.1.2FC Copyright: Palaeontological Association February 2015 Submission: 10 October 2013.
    [Show full text]
  • Phylogeny and Geographic History of Annonaceae Phylogénie Et Histoire Géographique Des Annonaceae Phylogenie Und Geographische Geschichte Der Annonaceae James A
    Document generated on 09/30/2021 2:57 p.m. Géographie physique et Quaternaire Phylogeny and Geographic History of Annonaceae Phylogénie et histoire géographique des Annonaceae Phylogenie und geographische Geschichte der Annonaceae James A. Doyle and Annick Le Thomas Volume 51, Number 3, 1997 Article abstract Whereas Takhtajan and Smith situated the origin of angiosperms between URI: https://id.erudit.org/iderudit/033135ar Southeast Asia and Australia, Walker and Le Thomas emphasized the DOI: https://doi.org/10.7202/033135ar concentration of primitive pollen types of Annonaceae in South America and Africa, suggesting instead a Northern Gondwanan origin for this family of See table of contents primitive angiosperms. A cladistic analysis of Annonaceae shows a basal split of the family into Anaxagorea, the only genus with an Asian and Neotropical distribution, and a basically African and Neotropical line that includes the rest Publisher(s) of the family. Several advanced lines occur in both Africa and Asia, one of which reaches Australia. This pattern may reflect the following history: (a) Les Presses de l'Université de Montréal disjunction of Laurasian (Anaxagorea) and Northern Gondwanan lines in the Early Cretaceous, when interchanges across the Tethys were still easy and the ISSN major lines of Magnoliidae are documented by paleobotany; (b) radiation of the Northern Gondwanan line during the Late Cretaceous, while oceanic 0705-7199 (print) barriers were widening; (c) dispersal of African lines into Laurasia due to 1492-143X (digital) northward movement of Africa and India in the Early Tertiary, attested by the presence of fossil seeds of Annonaceae in Europe, and interchanges between Explore this journal North and South America at the end of the Tertiary.
    [Show full text]
  • NVEO 2020, Volume 7, Issue 4
    Volume 7, Issue 4, 2020 e-ISSN: 2148-9637 NATURAL VOLATILES & ESSENTIAL OILS A Quarterly Open Access Scientific Journal NVEO Publisher: BADEBIO Ltd. NATURAL VOLATILES & ESSENTIAL OILS Volume 7, Issue 4, 2020 RESEARCH ARTICLES Pages 1-7 Essential oil composition and antioxidant activity of Reinwardtiodendron cinereum (Hiern) Mabb. (Meliaceae); Wan Mohd Nuzul Hakimi Wan Salleh, Shamsul Khamis and Muhammad Helmi Nadri, 8-13 Chemical composition and acetylcholinesterase inhibition of the essential oil of Cyathocalyx pruniferus (Maingay ex Hook.f. & Thomson) J. Sinclair; Wan Mohd Nuzul Hakimi Wan Salleh, Shamsul Khamis and Muhammad Helmi Nadri 14-25 Bioactivity evaluation of the native Amazonian species of Ecuador: Piper lineatum Ruiz & Pav. essential oil; Eduardo Valarezo, Gabriela Merino, Claudia Cruz- Erazo and Luis Cartuche 26-33 Extraction process optimization and characterization of the Pomelo (Citrus grandis L.) peel essential oils grown in Tien Giang Province, Vietnam; Dao Tan Phat, Kha Chan Tuyen, Xuan Phong Huynh, Tran Thanh Truc 34-40 Characterization of Dysphania ambrosioides (L.) Mosyakin & Clemants essential oil from Vietnam; Tran Thi Kim Ngan, Pham Minh Quan and Tran Quoc Toan BADEBIO LTD. Nat. Volatiles & Essent. Oils, 2020; 7(4): 1-7 Salleh et al. DOI: 10.37929/nveo.770245 RESEARCH ARTICLE Essential oil composition and antioxidant activity of Reinwardtiodendron cinereum (Hiern) Mabb. (Meliaceae) Wan Mohd Nuzul Hakimi Wan Salleh1,*, Shamsul Khamis2, Muhammad Helmi Nadri3, Hakimi Kassim4 and Alene Tawang4 1Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, MALAYSIA 2School of Environmental and Natural Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MALAYSIA 3Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, 84600 Pagoh, Muar, Johor, MALAYSIA 4Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, MALAYSIA *Corresponding author.
    [Show full text]
  • Annonaceae in the Western Pacific
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb.
    [Show full text]