CHAPTER 6 PICTORIAL SKETCHING 6-1Four Types of Projections

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 6 PICTORIAL SKETCHING 6-1Four Types of Projections CHAPTER 6 PICTORIAL SKETCHING 6-1Four Types of Projections Types of Projections 6-2 Axonometric Projection As shown in figure below, axonometric projections are classified as isometric projection (all axes equally foreshortened), dimetric projection (two axes equally shortened), and trimetric projection (all three axes foreshortened differently, requiring different scales for each axis). (cont) Figures below show the contrast between an isometric sketch (i.e., drawing) and an isometric projection. The isometric projection is about 25% larger than the isometric projection, but the pictorial value is obviously the same. When you create isometric sketches, you do not always have to make accurate measurements locating each point in the sketch exactly. Instead, keep your sketch in proportion. Isometric pictorials are great for showing piping layouts and structural designs. Step by Step 6.1. Isometric Sketching 6-4 Normal and Inclined Surfaces in Isometric View Making an isometric sketch of an object having normal surfaces is shown in figure below. Notice that all measurements are made parallel to the main edges of the enclosing box – that is, parallel to the isometric axes. (cont) Making an isometric sketch of an object that has inclined surfaces (and oblique edges) is shown below. Notice that inclined surfaces are located by offset, or coordinate measurements along the isometric lines. For example, distances E and F are used to locate the inclined surface M, and distances A and B are used to locate surface N. 6-5 Oblique Surfaces in Isometric View Oblique surfaces in isometric view may be drawn by finding the intersections of the oblique surfaces with isometric planes. For example, in figure (a) the oblique plane contains points A, B, and C. Locate the plane by extending line AB to X and Y, points that share isometric planes with C, as shown in figure (b). Sketch lines XC and YC to locate points E and F. Then draw lines AD and ED, using the rule that parallel lines on the object remain parallel in any view. Figure (c) shows the completed drawing. 6-6 Other Positions of The Isometric Axes Orient your drawing on the isometric axes in the way that shows the part most clearly, without the need for hidden lines. Figure A shows an isotropic view of a birdhouse in two different orientations. The view from below shows more of the details of its construction and therefore may be a better view. If the object is particularly long, orient it horizontally for best effect, as shown in Fig. B. Fig. A Fig. B 6-7 Offset Measurements You can locate a new point from an existing corner, as illustrated in the figures below. Box in the main block first, then sketch the offset lines CA and BA to locate the corner A of the small box or the rectangular recess. These are called offset measurements, and since they are parallel to normal edges on the object, they will be parallel to the same edges in the isometric. Fig. A Fig. B 6-8 Isometric Ellipses When objects with cylindrical or conical shapers are placed in isometric or other oblique positions, the circles are seen at an angle and appear as ellipses as shown below. When sketching isometric ellipses, the major axis of the ellipse is always at the right angles to the centerline of the cylinder, and the minor axis is at the right angle to the major axis and coincides with the centerline. 6-9 Arcs in Isometric View Figure below shows an isotropic view of an object that has rounded corners. To sketch arcs in an isotropic view, use the radius and block in the ellipse along the appropriate isometric axis lines. In this case the radius R is measured from the construction corner to locate the center of elliptical arc. Notice that the radius R does not remain a constant value when showing the arc in isometric view. 6-10 Isometric Ellipse Templates The template shown below combines the angles foreshortened isometric scales, and ellipses on the same instrument. The ellipses are provided with markings to coincide with the isometric centerlines of the holes – a convenient feature in isometric drawing. Step by Step 6.2. Sketching Isometric Ellipses Comparison of Approximate Ellipses in Iso metric Drawings Click here for simulation of construction 6-11 Sketching on Isometric Paper Follow the steps described in the following figures. 6-12,13. Hidden and Center Lines Hidden lines are omitted in pictorial sketches unless they are need to make the drawing clear. Centerlines are drawn in a pictorial if they are needed to indicate symmetry or if they are needed for dimensioning. 6.14 Nonisometric Lines Since the only lines of an object that are drawn true length in an isometric drawing are the isometric axes or lines drawn parallel to them, nonisometric lines cannot be measured directly. Thus, use box construction and offset measurements to draw nonisometric lines. 6-15 Angles in Isometric View A regular protractor cannot be used to measure angles in isometric. Angular measurements must be converted to linear measurements along isotropic lines. For example, in the multiview drawing in figure (a), none of the three 60-degree angles will be 60 degree in the isometric drawing. The following shows the drawing procedure. 6-16 Irregular Objects If the general shape of an object is not somewhat rectangular, it may be drawn using box construction. 6-17 Curves in Isometric View Draw curves in isometric sketches by using a series of offset measurements. Select any number of points, such as A, B, and C, randomly along the curve, as shown in the top view in figure below. The more points used, the greater the accuracy. 6-18 Screw Threads in Isometric Parallel partial ellipses are used to present only the crests of a screw thread in isometric view as shown below. The ellipses may be sketched freehand or with an ellipse template. 6-19 The Sphere in Isometric The isometric projection of a sphere is a circle whose diameter is the major axis of the isometric ellipse. Figure (a) shows two views of a sphere enclosed in construction cube. In fig. I the cube is drawn in, together with the isometric of a great circle (cut by a plane through the center) that is parallel to one face of the cube. In fig. II the result is an isometric sketch and its diameter is the square root of 3/2 times the actual diameter of the sphere. 6-20 Isometric Dimensioning Isometric drawing are not usually dimensioned because they do not show object features at true size. ANSI has approved two dimensioning methods --- namely, the pictorial plane, or aligned, system and the unidirectional system – both shown in figure below. Figures below show correct and incorrect isometric dimensioning. 6-24 Choosing The Angle For Receding Lines The receding lines may be drawn at any convenient angle. Some examples are in figure below. The angle that should be used depends on the shape of the object and location of its features. For example, in figure (a) below a large angle was used because it gives a better view of the rectangular recess on the top, while in figure (b) a small angle was chosen to show a similar feature on the side. 6-25 Length of Receding Lines Oblique sketches present an unnatural appearance, with more or less serious distortion, depending on the object shown. The appearance of distortion may be reduced by decreasing the length of the receding lines. In figures below, a cube with a hole through the front is shown in five oblique drawing with varying degrees of foreshortening of the receding lines. 6-26 Perspective Sketching Perspective pictorials most closely approximate the view produced by the human eye. Figure below shows a perspective view of an airport produced using CAD. Perspective pictorials are important in architecture, industrial design, and illustration. Engineers also often need to show pictorial representation of objects and should understand the basic principles of perspective (see ANSI/ASME Y14.4M-1989 (R1994)). Unlike axonometric projection, perspective causes parallel edges to converge at vanishing points. The three types of perspective are one-point, two- point. and three-point perspective, depending on the number of vanishing points 6.27 General Principles A perspective involves four main elements: (1) the observer’s eye. (2) the object being viewed, (3) the plane of projection, and (4) the projectors from all points on the object to the observer’s eye. In Figure 6.32 the observer is shown looking along a boulevard and through an imaginary plane of projection, the picture plane. The position of the observer’s eye is called the station point, and the lines from station point to the points in the scene are projectors or visual rays. Collectively the points where the visual rays pierce the picture plane are the perspective view of the object as seen by the observer, which is shown in Figure 6.33. The line representing the horizon is the edge of the horizon plane, which is parallel to the ground plane and passes through the station point. The horizon is the line of intersection of this plane with the picture plane and represents the eye level of the observer. Notice that lines that are parallel to each other not parallel to the picture plane - such as curb sidewalk lines, and lines along the tops and bottoms the lamp posts - all converge toward a single point on the horizon - the vanishing point of the lines 6.28 Three Types of Perspectives Perspective drawings are classified according to the number of vanishing points required, which in turn on the position of the object with respect to picture plane.
Recommended publications
  • Technical Drawing School of Art, Design and Architecture Sarah Adeel | Nust – Spring 2011 the Ability to ’Document Imagination’
    technical drawing school of art, design and architecture sarah adeel | nust – spring 2011 the ability to ’document imagination’. a mean to design reasoning spring 2011 perspective drawings technical drawing - perspective What is perspective drawing? Perspective originally comes from Latin word per meaning “through” and specere which means “to look.” These are combined to mean “to look through” or “to look at.” Intro to technical drawing perspective technical drawing - perspective What is perspective drawing? The “art definition” of perspective specifically describes creating the appearance of distance into our art. With time, the most typical “art definition” of perspective has evolved into “the technique of representing a three-dimensional image on a two-dimensional Intro to technical drawing surface.” perspective technical drawing - perspective What is perspective drawing? Perspective is about establishing “an eye” in art through which the audience sees. By introducing a sense of depth, space and an extension of reality into art is created, enhancing audience’s participation with it. When things appear more real, they become real to the senses. Intro to technical drawing perspective technical drawing - perspective What are the ingredients of perspective drawing? Any form consists of only three basic things: • it has size or amount • it covers distance • it extends in different directions Intro to technical drawing perspective technical drawing - perspective Everyday examples of perspective drawing Photography is an example of perspectives. In photos scenes are captured having depth, height and distance. Intro to technical drawing perspective technical drawing - perspective What is linear perspective drawing? Linear Perspective: Based on the way the human eye sees the world.
    [Show full text]
  • Orthographic and Perspective Projection—Part 1 Drawing As
    I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 •History • Geometrical Constructions 3D Viewing I • Types of Projection • Projection in Computer Graphics Andries van Dam September 15, 2005 3D Viewing I Andries van Dam September 15, 2005 3D Viewing I 1/38 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC: earliest known technical • Painting based on mythical tale as told by Pliny the drawing in existence Elder: Corinthian man traces shadow of departing lover Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) detail from The Invention of Drawing, 1830: Karl Friedrich • Roman architect Vitruvius published specifications of plan / elevation drawings, perspective. Illustrations Schinkle (Mitchell p.1) for these writings have been lost Andries van Dam September 15, 2005 3D Viewing I 2/38 Andries van Dam September 15, 2005 3D Viewing I 3/38 1 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Early Perspective Perspective • Ways of invoking three dimensional space: shading • || lines converge (in 1, 2, or 3 axes) to vanishing point suggests rounded, volumetric forms; converging lines suggest spatial depth
    [Show full text]
  • Cylindrical Anamorphic Images –A Digital Method of Generation
    ANDRZEJ ZDZIARSKI, MARCIN JONAK* CYLINDRICAL ANAMORPHIC IMAGES –A DIGITAL METHOD OF GENERATION CYFROWA METODA GENEROWANIA ANAMORFICZNYCH OBRAZÓW WALCOWYCH Abstract The aim of this paper is to present a practical construction for some cylindrical anamorphic images. The method is based on the analytic properties of reflective anamorphic image construction – topics which have been discussed in previous papers. This time, the authors deal with the analytical analysis of a transformation that is applied in order to obtain an anamorphic image, and provide an innovative digital notation of the reflective transformation discussed. The analytical model described here allows us to generate a cylindrical anamorphic image of any object that is represented in the form of a set of parametric equations. Some example anamorphic images together with their counter-images reflected in the surface of a cylindrical mirror will be presented here. The method of construction described enables the development of any design project of an anamorphic image in the urban planning environment and within the interiors of public spaces. Keywords: transformation, anamorphic image, visualization of an anamorphic image, reflective cylinder Streszczenie Niniejszy artykuł przedstawia praktyczną metodę konstruowania obrazów anamorficznych w oparciu o własności analityczne dla anamorf refleksyjnych. Praca jest kontynuacją zagadnień związanych z okre- śleniem geometrycznych zasad powstawania obrazów anamorficznych na bazie obrazu rzeczywistego, na- tomiast prezentuje ona analityczne przekształcenie oraz innowacyjny cyfrowy zapis takich obrazów. Tak więc opracowany model analityczny pozwala generować obrazy anamorficzne dowolnych projektowanych obiektów zapisanych w formie równań parametrycznych. Przykładowe anamorfy zaprezentowano wraz z ich obrazami restytuowanymi za pomocą prototypowego zwierciadła walcowego. Powyższe rozwiązania dają możliwość precyzyjnego projektowania obrazów anamorficznych w zurbanizowanej przestrzeni miej- skiej oraz architektonicznych wnętrzach przestrzeni publicznej.
    [Show full text]
  • The Three-Dimensional User Interface
    32 The Three-Dimensional User Interface Hou Wenjun Beijing University of Posts and Telecommunications China 1. Introduction This chapter introduced the three-dimensional user interface (3D UI). With the emergence of Virtual Environment (VE), augmented reality, pervasive computing, and other "desktop disengage" technology, 3D UI is constantly exploiting an important area. However, for most users, the 3D UI based on desktop is still a part that can not be ignored. This chapter interprets what is 3D UI, the importance of 3D UI and analyses some 3D UI application. At the same time, according to human-computer interaction strategy and research methods and conclusions of WIMP, it focus on desktop 3D UI, sums up some design principles of 3D UI. From the principle of spatial perception of people, spatial cognition, this chapter explained the depth clues and other theoretical knowledge, and introduced Hierarchical Semantic model of “UE”, Scenario-based User Behavior Model and Screen Layout for Information Minimization which can instruct the design and development of 3D UI. This chapter focuses on basic elements of 3D Interaction Behavior: Manipulation, Navigation, and System Control. It described in 3D UI, how to use manipulate the virtual objects effectively by using Manipulation which is the most fundamental task, how to reduce the user's cognitive load and enhance the user's space knowledge in use of exploration technology by using navigation, and how to issue an order and how to request the system for the implementation of a specific function and how to change the system status or change the interactive pattern by using System Control.
    [Show full text]
  • From 3D to 2D: Orthographic and Perspective Projection—Part 1
    INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS From 3D to 2D: Orthographic and Perspective Projection—Part 1 Drawing as Projection • A painting based on a mythical tale as told by Pliny the Elder: a Corinthian maiden traces the shadow of her departing lover. • History • Geometrical Constructions • Types of Projection • Projection in Computer Graphics detail from The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell p.1) Andries van Dam September 17, 1998 3D Viewing I 1/31 Andries van Dam September 17, 1998 3D Viewing I 2/31 INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS Early Examples of Projection Early Perspective • Plan from Mesopotamia, 2150BC is earliest • Ways of invoking three dimensional space: known technical drawing in existence. rounded, volumetric forms suggested by shading, spatial depth of room suggested by • Greek vases from late 6th century BC show converging lines. perspective(!) • Not systematic—lines do not converge to a • Vitruvius, a Roman architect published single “vanishing” point. specifications of plan and elevation drawings, and perspective. Illustrations for these writings have been lost. Giotto, Confirmation of the rule of Saint Francis, c.1325 (Kemp p.8) Carlbom Fig. 1-1 Andries van Dam September 17, 1998 3D Viewing I 3/31 Andries van Dam September 17, 1998 3D Viewing I 4/31 INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS Setting for “Invention” of Brunelleschi Perspective Projection • Invented systematic method of determining perspective projections in early 1400’s. • The Renaissance: new emphasis on Evidence that he created demonstration importance of individual point of view and panels, with specific viewing constraints for interpretation of world, power of complete accuracy of reproduction.
    [Show full text]
  • The Baroque in Games: a Case Study of Remediation
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2020 The Baroque in Games: A Case Study of Remediation Stephanie Elaine Thornton San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Thornton, Stephanie Elaine, "The Baroque in Games: A Case Study of Remediation" (2020). Master's Theses. 5113. DOI: https://doi.org/10.31979/etd.n9dx-r265 https://scholarworks.sjsu.edu/etd_theses/5113 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. THE BAROQUE IN GAMES: A CASE STUDY OF REMEDIATION A Thesis Presented to The Faculty of the Department of Art History and Visual Culture San José State University In Partial Fulfillment of the Requirements for the Degree Masters of Arts By Stephanie E. Thornton May 2020 © 2020 Stephanie E. Thornton ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled THE BAROQUE IN GAMES: A CASE STUDY OF REMEDIATION by Stephanie E. Thornton APPROVED FOR THE DEPARTMENT OF ART HISTORY AND VISUAL CULTURE SAN JOSÉ STATE UNIVERSITY May 2020 Dore Bowen, Ph.D. Department of Art History and Visual Culture Anthony Raynsford, Ph.D. Department of Art History and Visual Culture Anne Simonson, Ph.D. Emerita Professor, Department of Art History and Visual Culture Christy Junkerman, Ph. D. Emerita Professor, Department of Art History and Visual Culture ABSTRACT THE BAROQUE IN GAMES: A CASE STUDY OF REMEDIATION by Stephanie E.
    [Show full text]
  • Perpective Presentation2.Pdf
    Projections transform points in n-space to m-space, where m<n. Projection is 'formed' on the view plane (planar geometric projection) rays (projectors) projected from the center of projection pass through each point of the models and intersect projection plane. In 3-D, we map points from 3-space to the projection plane (PP) (image plane) along projectors (viewing rays) emanating from the center of projection (COP): TYPES OF PROJECTION There are two basic types of projections: Perspective – center of projection is located at a finite point in three space Parallel – center of projection is located at infinity, all the projectors are parallel Plane geometric projection Parallel Perspective Orthographic Axonometric Oblique Cavalier Cabinet Trimetric Dimetric Single-point Two-point Three-point Isometric PARALLEL PROJECTION • center of projection infinitely far from view plane • projectors will be parallel to each other • need to define the direction of projection (vector) • 3 sub-types Orthographic - direction of projection is normal to view plane Axonometric – constructed by manipulating object using rotations and translations Oblique - direction of projection not normal to view plane • better for drafting / CAD applications ORTHOGRAPHIC PROJECTIONS Orthographic projections are drawings where the projectors, the observer or station point remain parallel to each other and perpendicular to the plane of projection. Orthographic projections are further subdivided into axonom etric projections and multi-view projections. Effective in technical representation of objects AXONOMETRIC The observer is at infinity & the projectors are parallel to each other and perpendicular to the plane of projection. A key feature of axonometric projections is that the object is inclined toward the plane of projection showing all three surfaces in one view.
    [Show full text]
  • Have You Ever Used Two Picture Planes to Draw a Single Perspective View?
    G e n e r a l a r t i c l e have you ever used Two Picture Planes to Draw a Single Perspective View? T o m á S G arc í A S A l gad o Apparently, the use of two picture planes to draw a single view has be a more versatile plane that in addition to representing not been attempted before. Most perspective methods, after Alberti, the appearance of 3D objects would also serve to measure take for granted the use of a single picture plane, disregarding its likely real dimensions? Such a plane, in Modular Perspective [3], use in dual positions. What if two picture planes are necessary to ABSTRACT draw a single view—for example, given a lack of spatial references at can be called the perspective plane (PPL). On the PPL one can ground level to estimate the distance between two objects? This article measure and draw directly the three modular coordinates of demonstrates that to draw the interior of a building from which another all points of interest of any given object in space. In other building can be seen about 190 m away, where the projection of such words, the PPL is a true three-dimensional plane, despite building on the first picture plane would be imprecise, it may be wise to actually being two-dimensional. use a second picture plane. This leads to consideration of how objects In addition, the PPL can be of any size, since all points are change shape as they move away from the viewer.
    [Show full text]
  • From 3D to 2D: Orthographic and Perspective Projection—Part 1
    I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 • History • Geometrical Constructions • Types of Projection • Projection in Computer Graphics Andries van Dam September 13, 2001 3D Viewing I 1/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection • A painting based on a mythical tale as told by Pliny the Elder: a Corinthian man traces the shadow of his departing lover detail from The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell p.1) Andries van Dam September 13, 2001 3D Viewing I 2/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC is earliest known technical drawing in existence Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) • Vitruvius, a Roman architect, published specifications of plan and elevation drawings, and perspective. Illustrations for these writings have been lost Andries van Dam September 13, 2001 3D Viewing I 3/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Perspective • || lines converge (in 1, 2, or 3 axes) to a vanishing point • Objects farther away are more foreshortened (i.e., smaller) than closer ones • Example: perspective cube edges same size, with farther ones smaller parallel edges converging Andries van Dam September 13, 2001 3D Viewing I 4/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Early Perspective
    [Show full text]
  • Chapter 4 Drawing a Square and Inverse Problems
    Chapter 4 Drawing a square and inverse problems Math 4520, Fall 2017 4.1 Artistic definitions Let us return to our artist painting some object in the picture plane. There is more to the picture than incidence properties such as Desargues' Theorem. In fact, if the artist draws accurately what is seen, things such as Desargues' Theorem will take care of themselves. On the other hand, the picture is a very distorted representation of the object. How distorted can it be? What are some properties that we can measure in the picture that will give us information about the object and how it was painted? We make a few definitions that every artist uses whether he knows it or not. The artist's eye, or center of projection, is called the station point. All the points in the object plane are projected along a straight line through the station point into the picture plane. The line from the station point perpendicular to the picture plane is called the line of sight. The unique point on the line of light in the picture plane is called the center of vision. Note that the center of vision is the nearest point on the picture plane to the station point. Normally one tries to to keep the center of vision near the center of the actual physical painting. The distance between the station point and the center of vision is called the viewing distance. See Figure 4.1 It is usually desirable to keep the viewing distance within some reasonable range. For me 14 inches seems about right.
    [Show full text]
  • Engineering Drawing
    LECTURE NOTES For Environmental Health Science Students Engineering Drawing Wuttet Taffesse, Laikemariam Kassa Haramaya University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2005 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2005 by Wuttet Taffesse, Laikemariam Kassa All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE The problem faced today in the learning and teaching of engineering drawing for Environmental Health Sciences students in universities, colleges, health institutions, training of health center emanates primarily from the unavailability of text books that focus on the needs and scope of Ethiopian environmental students.
    [Show full text]
  • Summary Orthographic Projection: Projectors Orthog
    Projections Perspective projection n Projecting: mapping from 3D viewing coordinates to 2D coordinates in projection plane. In homogeneous coordinates it is a map from 4D viewing coordinates to 3D. n Projections n Parallel: orthogonal and oblique n Perspective n Canonical views: orthographic and perspective projections Projectors intersect at COP Viewing, projections Hofstra University 16 Viewing, projections Hofstra University 17 Parallel Projections Parallel projections: summary n Center of projection is at infinity. n Projectors are parallel. n Parallel lines stay parallel n There is no forshorthening n Distances and angles are transformed consistently n Used most often in engineering design, CAD systems. Used for top and side drawings from Projectors parallel. which measurements could be made. COP at infinity. Viewing, projections Hofstra University 18 Viewing, projections Hofstra University 19 Orthographic Projection: projectors orthogonal to projection plane Orthographic Projections same for all points DOP (direction of projectors) DOP is perpendicular to the view plane Viewing, projections Hofstra University 20 Viewing, projections Hofstra University 21 1 Multiview Parallel Projection Isometric Projection Projector makes equal angles with all three principal axes Faces are parallel to the projection plane All three axes are equally foreshortened Viewing, projections Hofstra University 22 Viewing, projections Hofstra University 23 Oblique Parallel Projections Mechanical Drawing n Most general parallel views n Projectors make an arbitrary angle with the projection plane n Angles in planes parallel to the projection plane are preserved isometric Viewing, projections Hofstra University 24 Viewing, projections Hofstra University 25 Oblique Projections: projectors are not Perspective Projection orthogonal to image plane n Most natural for people Cavalier n In human vision, perspective projection of the world is Angle between projectors and projection plane is 45°.
    [Show full text]