Graph-Based Models for the Interpretation of Document Images

Total Page:16

File Type:pdf, Size:1020Kb

Graph-Based Models for the Interpretation of Document Images ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images A dissertation submitted by Pau Riba Fiérrez at Universitat Autònoma de Barcelona to fulfil the degree of Doctor of Philosophy. Bellaterra, June 20, 2020 Directors Dr. Josep Lladós Universitat Autònoma de Barcelona Dep. Ciències de la Computació & Centre de Visió per Computador Dra. Alicia Fornés Universitat Autònoma de Barcelona Dep. Ciències de la Computació & Centre de Visió per Computador Thesis Dr. Francesc Serratosa Committee Universitat Rovira i Virgili Tarragona, Catalunya Dr. Dimosthenis Karatzas Universitat Autònoma de Barcelona Dep. Ciències de la Computació & Centre de Visió per Computador Dr. Kaspar Riesen University of Applied Sciences and Arts Northwestern Switzerland Brugg, Switzerland International Dr. Andreas Fischer Evaluators Université de Fribourg Fribourg, Switzerland Dr. Muhammad Muzzamil Luqman La Rochelle Université La Rochelle, France This document was typeset by the author using LATEX 2". The research described in this book was carried out at the Computer Vision Center, Universitat Autònoma de Barcelona. This work is liscensed under Creative Commons Attribution-ShareAlike 4.0 Inter- national (CC BY-SA 4.0) cba 2020 by Pau Riba Fiérrez. You are free to copy and redistribute the material in any medium or format as long as you attribute its author. If you alter, transform or build upon this work, you may distribute the resulting work only under the same, similar or compatible liscense. ISBN ISBN “Pending” Printed by Ediciones Gráficas Rey, S.L. Hi ha un escola perduda allà al mig del Montseny on només hi estudien els nens... On només hi estudien els nens que somien en truites. – Albert Pla Yo he preferido hablar de cosas imposibles porque de lo posible se sabe demasiado. – Silvio Rodríguez Real stupidity beats artificial intelligence every time. – Terry Prachett A tots els que han sofert aquest llarg camí... Agraïments It is good to have an end to journey toward; but it is the journey that matters, in the end. – Ursula K. Le Guin Finalment, un dijous de Corpus, és a dir de Patum, em trobo escrivint aquestes línies. Potser les més difícils d’aquesta tesi per la gran quantitat de gent que he d’agrair i no vull oblidar. Realitzar una tesi no ha estat només un camí de formació en la recerca, sinó també de formació en la vida mateixa. Aquests anys m’han brindat la possibilitat de conèixer molta gent, tant d’aquí com de fora. Ara que arribo al final, i dono un cop d’ull a tot el que he deixat endarrere, m’adono de tota l’ajuda, coneixement i comprensió de les quals he gaudit. Voldria començar amb un agraïment sincer a totes les persones que s’han creuat amb mi al llarg d’aquest camí. Sou moltes, i espero que la majoria us trobeu interpel·lades en els següents paràgrafs però, si no és així, no és per mala fe, sinó que es fa difícil encabir a tothom en aquestes poques línies. A tots vosaltres, moltes gràcies! Aquesta tesi no existiria si no fos pel Josep i l’Alícia. No només per ser els directors d’aquesta, sinó per haver-me mostrat, ja fa uns quants anys, que és realment el món de la visió per computador. En aquell temps, mentre encara era estudiant de la carrera, em van donar l’oportunitat d’entrar com a becari al CVC. Crec que aquest va ser el punt d’inflexió que em va fer decidir a fer el salt per realitzar el meu doctorat. Vull agrair al Josep, que hagi sigut capaç de treure temps d’on no en tenia per poder-se reunir, corregir el que escrivia i donar-me idees noves per poder seguir endavant. A l’Alícia, vull agrair-li haver tingut sempre la porta oberta per discutir com enfocar els diferents problemes que m’anaven sorgint. En definitiva, moltes gràcies als dos, sense vosaltres aquest document no hauria vist mai la llum. Així doncs, aquesta tesi, també és vostra. I take the chance to sincerely acknowledge Andreas Fischer, Joan Bruna and Daniele Panozzo for welcome me at their respective research groups in the Uni- versité de Fribourg and the New York University. You made me feel at home at both Fribourg (Switzerland) and New York (USA). I would like to extend my i more sincere appreciation to all the friends, collegues and people I shared some time in these places. Specially, Michele Alberti, Vinaychandran Pondenkandath, Teseo Schneider, Francis Williams, Francisca Gil, Davi Colli, Zachary Ferguson and Bolun Wang. In addition I would like to thanks the colleagues from omni:us who shared a boundless number of videocalls during these years. Specially to Lutz Goldmann. M’agradaria fer una menció especial a tots els membres del CVC. A les diferents persones de l’administració i servei d’informàtica, especialment a la Claire, l’Ana María, l’Alexandra, la Txell, la Montse, al Marc i al Joan. Als companys de dinars del divendres, en Jordi Font i la Katerine Diaz. En especial al Marçal Rossinyol i al Juan Ignacio Toledo que, a més a més, també han estat companys de grup. A la resta de companys de grup, especialment, al Dimosthenis Karatzas, a l’Ernest Valveny, l’Oriol Ramos i Joan Mas. I, finalment, a tots els amics i companys del CVC: Pau Rodríguez, Arnau Baró, Edgar Riba, Albert Berenguel, Lei Kang, Sounak Dey, Pep Gonfaus, Anjan Dutta, Asma Bensalah, Xavier Soria, Manuel Carbonell i Sanket Biswas, entre molts d’altres. Amb tots vosaltres he compartit gran part d’aquest camí, entre xerrades, cafès i cervesetes. Heu estat font de suport i inspiració durant tota aquesta recerca! No voldria acabar sense tenir un record pels amics. En especial al Pep, el Víctor i el Joan per haver-hi estat i ser-hi, sempre. També a l’Imma, que em va obrir la porta al món dels grafs. A l’Anna vull agrair-li haver aparegut a la meva vida amb un gran somriure i en el moment adequat. En aquests darrers mesos, sempre has sabut donar-me forces en els moments que més ho necessitava. Sense tu, això no hauria estat possible. T’estimo. A la meva família, als meus avis, l’Alfonso, la María de los Ángeles, l’Albert i l’Elvira. També als meus tiets i cosins. A la Pilar, que ha estat al meu costat durant tot aquest temps. I, per últim, als meus pares, l’Àngels i el Joan. Heu estat el meu suport incondicional i la meva font d’inspiració per arribar fins aquí. Gràcies per animar- me a seguir endavant i a animar-me a fer el que em feia feliç. Berga, 20 de juny de 2020 ii Abstract From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance on leveraging the structural information when un- derstanding images. Usually, graphs have been selected as the adequate framework to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition application, there is the need to compare two objects. This operation, which is trivial when considering feature vectors defined in Rn, is not properly defined for graphs. Along this dissertation the main application domain has been on the topic of Document Image Analysis and Recognition. It is a subfield of Computer Vision aiming at understanding images of documents. In this context, the structure and in particular graph representations, provides a complementary dimension to the raw image contents. In computer vision, the first challenge we face is how to build a meaningful graph representation that is able to encode the relevant characteristics of a given image. This representation should find a trade off between the simplicity of the representation and its flexibility to represent the deformations appearing on each application domain. We applied our proposal to the word spotting application where strokes are divided into graphemes which are the smaller units of a hand- written alphabet. We have investigated different approaches to speed-up the graph comparison in order that word spotting, or more generally, a retrieval application is able to han- dle large collections of documents. On the one hand, a graph indexing framework combined with a votation scheme at node level is able to quickly prune unlikely results. On the other hand, making use of graph hierarchical representations, we are able to perform a coarse-to-fine matching scheme which performs most of the comparisons in a reduced graph representation. Besides, the hierarchical graph iii representation demonstrated to be drivers of a more robust scheme than the origi- nal graph. This new information is able to deal with noise and deformations in an elegant fashion. Therefore, we propose to exploit this information in a hierarchical graph embedding which allows the use of classical statistical techniques.
Recommended publications
  • STIX 394372 1 En Bookfront
    Quantum Systems in Physics, Chemistry, and Biology Progress in Theoretical Chemistry and Physics VOLUME 30 Honorary Editors Rudolph A. Marcus (California Institute of Technology, Pasadena, CA, USA) Roy McWeeny (Università di Pisa, Pisa, Italy) Editors-in-Chief J. Maruani (formerly Laboratoire de Chimie Physique, Paris, France) S. Wilson (formerly Rutherford Appleton Laboratory, Oxfordshire, UK) Editorial Board E. Brändas (University of Uppsala, Uppsala, Sweden) L. Cederbaum (Physikalisch-Chemisches Institut, Heidelberg, Germany) G. Delgado-Barrio (Instituto de Matemáticas y Física Fundamental, Madrid, Spain) E.K.U. Gross (Freie Universität, Berlin, Germany) K. Hirao (University of Tokyo, Tokyo, Japan) Chao-Ping Hsu (Institute of Chemistry, Academia Sinica, Taipei, Taiwan) R. Lefebvre (Université Pierre-et-Marie-Curie, Paris, France) R. Levine (Hebrew University of Jerusalem, Jerusalem, Israel) K. Lindenberg (University of California at San Diego, San Diego, CA, USA) A. Lund (University of Linköping, Linköping, Sweden) M.A.C. Nascimento (Instituto de Química, Rio de Janeiro, Brazil) P. Piecuch (Michigan State University, East Lansing, MI, USA) M. Quack (ETH Zürich, Zürich, Switzerland) S.D. Schwartz (Yeshiva University, Bronx, NY, USA) O. Vasyutinskii (Russian Academy of Sciences, St Petersburg, Russia) Y.A. Wang (University of British Columbia, Vancouver, BC, Canada) Former Editors and Editorial Board Members I. Prigogine (†) W.F. van Gunsteren (*) J. Rychlewski (†) H. Hubač (*) Y.G. Smeyers (†) E. Kryachko (*) R. Daudel (†) M.P. Levy (*) M. Mateev (†) G.L. Malli (*) W.N. Lipscomb (†) P.G. Mezey (*) Y. Chauvin (†) N. Rahman (*) H.W. Kroto (†) S. Suhai (*) H. Ågren (*) O. Tapia (*) V. Aquilanti (*) P.R. Taylor (*) D. Avnir (*) R.G. Woolley (*) J. Cioslowski (*) †: deceased; *: end of term More information about this series at http://www.springer.com/series/6464 Alia Tadjer ⋅ Rossen Pavlov (†) Jean Maruani ⋅ Erkki J.
    [Show full text]
  • Los Premios Nobel De Química
    Los premios Nobel de Química MATERIAL RECOPILADO POR: DULCE MARÍA DE ANDRÉS CABRERIZO Los premios Nobel de Química El campo de la Química que más premios ha recibido es el de la Quí- mica Orgánica. Frederick Sanger es el único laurea- do que ganó el premio en dos oca- siones, en 1958 y 1980. Otros dos también ganaron premios Nobel en otros campos: Marie Curie (física en El Premio Nobel de Química es entregado anual- 1903, química en 1911) y Linus Carl mente por la Academia Sueca a científicos que so- bresalen por sus contribuciones en el campo de la Pauling (química en 1954, paz en Física. 1962). Seis mujeres han ganado el Es uno de los cinco premios Nobel establecidos en premio: Marie Curie, Irène Joliot- el testamento de Alfred Nobel, en 1895, y que son dados a todos aquellos individuos que realizan Curie (1935), Dorothy Crowfoot Ho- contribuciones notables en la Química, la Física, la dgkin (1964), Ada Yonath (2009) y Literatura, la Paz y la Fisiología o Medicina. Emmanuelle Charpentier y Jennifer Según el testamento de Nobel, este reconocimien- to es administrado directamente por la Fundación Doudna (2020) Nobel y concedido por un comité conformado por Ha habido ocho años en los que no cinco miembros que son elegidos por la Real Aca- demia Sueca de las Ciencias. se entregó el premio Nobel de Quí- El primer Premio Nobel de Química fue otorgado mica, en algunas ocasiones por de- en 1901 al holandés Jacobus Henricus van't Hoff. clararse desierto y en otras por la Cada destinatario recibe una medalla, un diploma y situación de guerra mundial y el exi- un premio económico que ha variado a lo largo de los años.
    [Show full text]
  • Basic Research Needs for Catalysis Science
    Basic Research Needs for Catalysis Science Report of the Basic Energy Sciences Workshop on Basic Research Needs for Catalysis Science to Transform Energy Technologies May 8–10, 2017 Image courtesy of Argonne National Laboratory. DISCLAIMER This report was prepared as an account of a workshop sponsored by the U.S. Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Copyrights to portions of this report (including graphics) are reserved by original copyright holders or their assignees, and are used by the Government’s license and by permission. Requests to use any images must be made to the provider identified in the image credits. This report is available in pdf format at https://science.energy.gov/bes/community-resources/reports/ REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP FOR CATALYSIS SCIENCE Basic Research Needs for Catalysis Science TO TRANSFORM ENERGY TECHNOLOGIES Report from the U.S. Department of Energy, Office of Basic Energy Sciences Workshop May 8–10, 2017, in Gaithersburg, Maryland CHAIR: ASSOCIATE CHAIRS: Carl A.
    [Show full text]
  • Metathesis: a "Change-Your-Partners" Dance Chemistry Nobel Prize - 2005
    GENERAL I ARTICLE Metathesis: A "Change-Your-Partners" Dance Chemistry Nobel Prize - 2005 K Sivapriya and S Chandrasekaran On 5th October 2005, The Royal Swedish Academy of Sciences decided to award the Nobel Prize in Chemistry for 2005 jointly to Yves Chauvin, Institute ofFrench Petroleum, France, Robert H Grubbs, California Institute of Technol­ ogy, USA and Richard R Schrock, Massachusetts Institute K Sivapriya is interested in of Technology, USA for the development of the metathesis the design and development method in organic synthesis. This increasingly important of new and potent carbohy- organic process allows researchers to synthesize certain drate based glycosidase kinds of complex molecules that were previously difficult inhibitors, the study of and inefficient to make. Their research has opened the door enzyme mechanisms based on carbohydrate-protein to faster and more efficient methods for developing new interactions and to develop drugs and polymers. Imagination will soon be the only limit novel carbohydrate based to what molecules can be built in the laboratory! drugs. She also studies sulfur and selenium derived Introduction organic molecules in biological systems. Organic chemistry, the chemistry of carbon compounds, is a S Chandrasekaran's fascinating subject. The element carbon has a fantastic ability to research interests are form strong bonds with other carbon atoms to generate long development of new chains and rings. It can also bind to other elements like hydro­ synthetic methodologies, gen, oxygen, nitrogen, and sulfur, to form complex organic organometallic chemistry, synthesis of natural molecules. The versatility of carbon is critical in the formation products, catalysis and of many such molecules that are important for sustaining life on organic materials.
    [Show full text]
  • Yves Chauvin (1930–2015) Nobel-Prizewinning Chemist Who Rearranged Carbon–Carbon Bonds
    OBITUARY COMMENT Yves Chauvin (1930–2015) Nobel-prizewinning chemist who rearranged carbon–carbon bonds. he impact of Yves Chauvin’s experiment, he reacted two types work across the chemi- of olefin (cyclic and non-cyclic) cal industries is mind- to show that the resulting prod- Tboggling. By dissecting how ucts combined fragments of both. carbon–carbon bonds shift in reac- He deduced that the molecular tions of petroleum compounds, swaps were not symmetrical, as Chauvin revealed the steps in one was commonly assumed, but were ALAIN JOCARD/AFP/GETTY of organic chemistry’s most impor- orchestrated by the formation of a tant reactions: metathesis. This temporary hydrocarbon ring con- Nobel-prizewinning work laid taining the metal catalyst. Other the path for chemical processes chemists, notably Robert Grubbs that are now used to make every- and Richard Schrock, with whom thing from pesticides to drugs. His Chauvin shared the 2005 Nobel proudest achievement, however, Prize in Chemistry, used this was developing crucial processes in insight to improve and develop the oil and plastics industries, now industrial reactions that under- used to produce millions of tonnes pin much of ‘green’ chemistry — of compounds each year. efficient industrial processes that Chauvin, who died on produce little waste. 27 January, was born in 1930 in When Chauvin retired from the Belgium, close to the border with IFP in 1995, he came to work in France. His French parents sent my surface organometallic chem- him across the border daily to istry laboratory at the University primary school; when his family of Lyon. He would regularly catch returned to France, Chauvin fin- the 5 a.m.
    [Show full text]
  • Study Guide Sample Questions Molecules That Changed the World
    Study Guide Sample Questions Molecules That Changed the World K. C. Nicolaou and Tamsyn Montagnon Wiley-VCH, 2008 Chapter 1: Introduction: Atoms, Molecules & Synthesis 1. Give a brief description (25 words or less) of the following terms: a) The Big Bang Theory b) The Atomic Theory of Matter c) The Periodic Table d) Deoxyribo nucleic acid e) Ribo nucleic acid f) Protein g) Secondary metabolite h) Chemical synthesis 2. Identify the scientific contributions of the following philosophers–scientists (10 words or less): a) Demokritos b) Dmitri Ivanovich Mendeleev c) John Dalton d) Aristotle 3. Give the names and symbols of four elements and four molecular structures essential for life on Earth (including stereochemistry when appropriate): 4. Give the names of 8 natural products and name the three main categories of living systems from which such natural products are isolated. 5. Name the milestone event in 1828 that symbolizes the birth of organic synthesis. 6. The impact of chemical synthesis on modern society has greatly enhanced the lives of people. Give five examples of such contributions: 7. Name three methods used today in the structural elucidation of organic molecules. Chapter 2: Urea & Acetic Acid 1. Describe the following terms (50 words or less): a) Vitalism b) Synthetic organic chemistry (or chemical synthesis, or organic synthesis) 2. Draw the structures of urea and acetic acid. In addition, name the chemists who first synthesized them in the laboratory and articulate the significance of each accomplishment. (10 words or less) 3. Name the countries in which the following eminent chemists worked and made their most important contributions in chemistry.
    [Show full text]
  • Professor Richard Schrock
    1/9/13 Richard R. Schrock - Autobiography The Nobel Prize in Chemistry 2005 Yves Chauvin, Robert H. Grubbs, Richard R. Schrock Richard R. Schrock Born: 4 January 1945, Berne, IN, USA Affiliation at the time of the award: Massachusetts Institute of Technology (MIT), Cambridge, MA, USA Prize motivation: "for the development of the metathesis method in organic synthesis" Field: Organic chemistry Photo: L.B. Hetherington Autobiography I was born in Berne, a northeast Indiana farming community proud of its Swiss heritage. Life was not easy for my parents, Noah J. Schrock, the second of six children, and Martha A. Habegger, the second of ten children. They married in 1933 during the Depression. My oldest brother, Luther, was born in 1934, Theodore in 1939. A few months after I appeared in 1945, the family moved to Decatur, about 13 miles north of Berne, where we lived until the summer after my fifth birthday. My most lasting memory of our first home is its proximity to the city swimming pool where I spent many happy summer days. We moved into an old house on the west side of South 13th Street in 1950. The house required a good deal of work, but my father, who had been a carpenter for fifteen years, accomplished the renovation over a period of several years. The house was located on what seemed to me to be an enormous plot of land (one acre); the backyard took forever to mow on a steamy summer day and the vegetable garden produced quantities of corn, strawberries, melons, tomatoes, and raspberries.
    [Show full text]
  • Organometallic Chemistry and Applications
    Chemistry 462 Fall 2017 MYD Organometallic Chemistry and Applications Note: Organometallic Compounds and Complexes Contain a M-C Bond. Organometallic chemistry timeline 1760 Louis Claude Cadet de Gassicourt investigates inks based on cobalt salts and isolates Cacodyl from cobalt mineral containing arsenic 1827 William Christopher Zeise produces Zeise's salt; the first platinum / olefin complex 1848 Edward Frankland discovers diethylzinc 1863 Charles Friedel and James Crafts prepare organochlorosilanes 1890 Ludwig Mond discovers nickel carbonyl 1899 Introduction of Grignard reaction 1899 John Ulric Nef discovers alkylation using sodium acetylides. 1900 Paul Sabatier works on hydrogenation of organic compounds with metal catalysts. Hydrogenation of fats kicks off advances in food industry; see margarine! 1909 Paul Ehrlich introduces Salvarsan for the treatment of syphilis, an early arsenic based organometallic compound 1912 Nobel Prize Victor Grignard and Paul Sabatier 1930 Henry Gilman works on lithium cuprates, see Gilman reagent 1951 Walter Hieber was awarded the Alfred Stock prize for his work with metal carbonyl chemistry—(but not the Nobel Prize). 1951 Ferrocene is discovered 1963 Nobel prize for Karl Ziegler and Giulio Natta on Ziegler-Natta catalyst: Polymerization of olefins 1965 Discovery of cyclobutadieneiron tricarbonyl 1968 Heck reaction 1973 Nobel prize Geoffrey Wilkinson and Ernst Otto Fischer on sandwich compounds 1981 Nobel prize Roald Hoffmann and Kenichi Fukui for expression of the Woodward-Hoffman Rules 2001 Nobel prize W. S. Knowles, R. Noyori and Karl Barry Sharpless for asymmetric hydrogenation 2005 Nobel prize Yves Chauvin, Robert Grubbs, and Richard Schrock on metal-catalyzed alkene metathesis 2010 Nobel prize Richard F. Heck, Ei-ichi Negishi, Akira Suzuki for palladium catalyzed cross coupling reactions The following slides are meant merely as examples of the catalytic processes we will explore later this semester.
    [Show full text]
  • Annual Report 2017
    67th Lindau Nobel Laureate Meeting 6th Lindau Meeting on Economic Sciences Annual Report 2017 The Lindau Nobel Laureate Meetings Contents »67 th Lindau Nobel Laureate Meeting (Chemistry) »6th Lindau Meeting on Economic Sciences Over the last 67 years, more than 450 Nobel Laureates have come 67th Lindau Nobel Laureate Meeting (Chemistry) Science as an Insurance Policy Against the Risks of Climate Change 10 The Interdependence of Research and Policymaking 82 to Lindau to meet the next generation of leading scientists. 25–30 June 2017 Keynote by Nobel Laureate Steven Chu Keynote by ECB President Mario Draghi The laureates shape the scientific programme with their topical #LiNo17 preferences. In various session types, they teach and discuss Opening Ceremony 14 Opening Ceremony 86 scientific and societal issues and provide invaluable feedback Scientific Chairpersons to the participating young scientists. – Astrid Gräslund, Professor of Biophysics, Department of New Friends Across Borders 16 An Inspiring Hothouse of Intergenerational 88 Biochemistry and Biophysics, Stockholm University, Sweden By Scientific Chairpersons Astrid Gräslund and Wolfgang Lubitz and Cross-Cultural Exchange Outstanding scientists and economists up to the age of 35 are – Wolfgang Lubitz, Director, Max Planck Institute By Scientific Chairpersons Torsten Persson and Klaus Schmidt invited to take part in the Lindau Meetings. The participants for Chemical Energy Conversion, Germany Nobel Laureates 18 include undergraduates, PhD students as well as post-doctoral Laureates 90 researchers. In order to participate in a meeting, they have to Nominating Institutions 22 pass a multi-step application and selection process. 6th Lindau Meeting on Economic Sciences Nominating Institutions 93 22–26 August 2017 Young Scientists 23 #LiNoEcon Young Economists 103 Scientific Chairpersons SCIENTIFIC PROGRAMME – Martin F.
    [Show full text]
  • List of Nobel Laureates 1
    List of Nobel laureates 1 List of Nobel laureates The Nobel Prizes (Swedish: Nobelpriset, Norwegian: Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institute, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in the fields of chemistry, physics, literature, peace, and physiology or medicine.[1] They were established by the 1895 will of Alfred Nobel, which dictates that the awards should be administered by the Nobel Foundation. Another prize, the Nobel Memorial Prize in Economic Sciences, was established in 1968 by the Sveriges Riksbank, the central bank of Sweden, for contributors to the field of economics.[2] Each prize is awarded by a separate committee; the Royal Swedish Academy of Sciences awards the Prizes in Physics, Chemistry, and Economics, the Karolinska Institute awards the Prize in Physiology or Medicine, and the Norwegian Nobel Committee awards the Prize in Peace.[3] Each recipient receives a medal, a diploma and a monetary award that has varied throughout the years.[2] In 1901, the recipients of the first Nobel Prizes were given 150,782 SEK, which is equal to 7,731,004 SEK in December 2007. In 2008, the winners were awarded a prize amount of 10,000,000 SEK.[4] The awards are presented in Stockholm in an annual ceremony on December 10, the anniversary of Nobel's death.[5] As of 2011, 826 individuals and 20 organizations have been awarded a Nobel Prize, including 69 winners of the Nobel Memorial Prize in Economic Sciences.[6] Four Nobel laureates were not permitted by their governments to accept the Nobel Prize.
    [Show full text]
  • The Impact of Nobel Prize in Chemistry on Fine Chemicals
    MILESTONESFROM THE SCIENTIFIC IN CHEMISTRY ADVISORY BOARD Ian C. Lennon The impact of Nobel Prize in Chemistry on fine chemicals IAN C. LENNON Member of Chimica Oggi/Chemistry Today’s Scientific advisory board s this is the “2011: International Year of Chemistry” it is opportune to reflect on the impact that the Nobel Prize in Chemistry has had on the pharmaceuti- Acal and contract manufacturing industries. Between 1901 and 2010 the Nobel Prize in Chemistry has been awarded 102 times to 160 Nobel Laureates for achieve- ments in a diverse range of chemistry, from polymers to biological chemistry, struc- tural and surface Chemistry, to quantum mechanics. This editorial will focus on those Nobel Prizes that have had the biggest impact in the manufacture of pharmaceuti- cals and fine chemicals. By the start of the 20th Century chemical manufacturing was well establi- shed in Europe and many new reactions and techniques were being developed. The 1902 No- bel Prize in Chemistry awarded to Emil Fischer for his work on purine and sugar synthesis was hi- ghly significant. Fischer has >8 reactions named after him, including the Fischer Indole synthesis and the Fischer reduction. The 1912 prize was shared between Victor Grignard and Paul Sabatier. 2 We can all appreciate the impact of the Grignard reaction to enable the synthesis of alcohols and for- ming new carbon-carbon bonds, but Sabatier’s work on developing methods of hydrogenating organic compounds in the presence of finely disintegrated metals, was an equally important milestone in organic chemistry. A few industrial chemists would dispute the fundamental importance of Fritz Haber’s work on the synthesis of ammonia, which led to the 1918 prize, though awarded in 1919 as no candidate met the criteria to receive the award in 1918, so it was deferred for one year.
    [Show full text]
  • Kurzpräsentation Französistik
    Das Studium in Französistik Un diaporama de quelques minutes pour découvrir le MA d’Études françaises à l’Université de Bâle… Im ersten Teil (I bis III) wird das MA-Studienfach detailliert vorgestellt (auf Französisch). Im zweiten Teil folgen weitere allgemeine Informationen zur Universität Basel, auf Deutsch (IV bis V). Dans une première partie (I à III), vous trouverez une présentation détaillée du MA (en français), suivie par un ensemble d’informations générales sur l’Université de Bâle, en allemand (IV à V). Universität Basel 2 Avant de commencer… À Bâle, trois cursus distincts de Master peuvent répondre à votre désir de travailler en linguistique et littérature françaises. Vous souhaitez : Privilégier les études françaises, sous différents angles ? Optez pour le MA d’ÉTUDES FRANÇAISES, présenté ici. Privilégier les différentes littératures, dont la littérature française ? Découvrez aussi le MSG ÉTUDES LITTÉRAIRES (MSG Literaturwissenschaft) Privilégier la linguistique, dont la linguistique française ? Découvrez aussi le MSG LANGUE ET COMMUNICATION (MSG Sprache und Kommunikation) I: Le MA d’Études françaises Pourquoi s’engager dans des études avancées en langue, littérature et linguistique françaises ? 1. Le français dans le monde Parlée sur cinq continents, la langue française fédère une vaste communauté, unie par des liens linguistiques, historiques et culturels. Langue maternelle Langue de culture Langue administrative Minorités francophones On estime que 220 millions de personnes savent aujourd’hui lire et écrire le français, et qu’environ 800 millions le comprennent. Le français est la seconde langue la plus parlée en Suisse, après l’allemand. Il joue évidemment un rôle majeur dans la région de Bâle, voisine de l’Alsace et où près de 30 % de la population est d’origine étrangère.
    [Show full text]