Quick viewing(Text Mode)

BANYAN. XII. NEW MEMBERS of NEARBY YOUNG ASSOCIATIONS from GAIA–TYCHO DATA Jonathan Gagne´,1, 2 Olivier Roy-Loubier,3 Jacqueline K

BANYAN. XII. NEW MEMBERS of NEARBY YOUNG ASSOCIATIONS from GAIA–TYCHO DATA Jonathan Gagne´,1, 2 Olivier Roy-Loubier,3 Jacqueline K

Draft version April 10, 2018 Typeset using LATEX twocolumn style in AASTeX62

BANYAN. XII. NEW MEMBERS OF NEARBY YOUNG ASSOCIATIONS FROM GAIA–TYCHO DATA Jonathan Gagne´,1, 2 Olivier Roy-Loubier,3 Jacqueline K. Faherty,4 Rene´ Doyon,3 and Lison Malo5

1Carnegie Institution of Washington DTM, 5241 Broad Branch Road NW, Washington, DC 20015, USA 2NASA Sagan Fellow 3Institute for Research on , Universit´ede Montr´eal,D´epartement de Physique, C.P. 6128 Succ. Centre-ville, Montr´eal,QC H3C 3J7, Canada 4Department of Astrophysics, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA 5Observatoire du Mont-M´eganticand Institute for Research on Exoplanets, Universit´ede Montr´eal,D´epartement de Physique, C.P. 6128 Succ. Centre-ville, Montr´eal,QC H3C 3J7, Canada

Submitted to ApJ

ABSTRACT We present a search for stellar members of young associations within 150 pc of the based on TGAS and an updated version of the BANYAN Σ software to determine Bayesian membership prob- abilities that includes Gaia–2MASS color-magnitude diagrams. We identify 32 new F0–M3-type bona fide members of the 10–200 Myr-old Sco-Cen, Carina, Tucana-Horologium, and Octans as- sociations and the AB Doradus, β Pictoris and Carina-Near moving groups. These new bona fide members have measurements of their full kinematics and literature data consistent with a young age. We also confirm the membership of 66 previously known candidate members using their Gaia–Tycho trigonometric distances or new literature radial velocities, and identify 219 additional new candidate members, most of which do not yet have a measurement. This work is the first step towards a completeness-corrected survey of young association members based on Gaia–DR2 in the near future.

Keywords: methods: data analysis — : kinematics and dynamics — proper motions

1. INTRODUCTION kinematics, consisting of the XYZ Galactic coordinates Young associations and moving groups in the Solar and UVW space velocities. These require measuring the neighborhood are valuable laboratories to study the trigonometric parallax and heliocentric radial velocities properties of age-calibrated stars in detail (Zuckerman of stars, which is challenging to perform on all stars in & Song 2004; Torres et al. 2008). Their proximity a large area of the sky. makes it possible to gather high-quality data more easily, Until recently, the discovery and kinematic character- perform high-angular resolution imaging of exoplanets ization of most young associations and moving groups and bring this characterization to the lowest-mass and in the Solar neighborhood relied on parallaxes obtained faintest substellar objects with a calibrated age (e.g., see by the Hipparcos mission (Perryman et al. 1997), allow- ing us to discover only the most massive and brightest arXiv:1804.03093v1 [astro-ph.SR] 9 Apr 2018 Marois et al. 2008; Liu et al. 2013; Delorme et al. 2013; Naud et al. 2014; Macintosh et al. 2015; Gagn´eet al. members of these young associations, in general within 2015b; Faherty et al. 2016; Gagn´eet al. 2017b). How- ∼ 100 pc. The stars bright enough to have a Hipparcos ever, the main difficulty in studying such associations parallax measurement only represent ∼ 10% of the total is also a consequence of their proximity: their members stellar population within 30 pc, and 2% within 100 pc are distributed over large areas of the sky (e.g., see Fig- (Perryman et al. 1997; Pecaut & Mamajek 2013), which ure 1 of Gagn´eet al. 2018a), making it difficult to iden- is a consequence of the initial mass function peaking at tify members without measuring their full 6-dimensional mass of ∼ 0.25 M (Bochanski et al. 2010) correspond- ing to the M spectral class. Recent studies focused on various statistical methods to obtain the full kinemat- [email protected] ics of only the most likely members of these associa- 2 Gagne´ et al. tions, based on their sky position, and photometry, as well as radial velocities and parallaxes Table 1. Young associations included in this study. when available (e.g., see Mamajek 2005; Rodriguez et al. a b c d 2011; Malo et al. 2013, 2014; Kraus et al. 2014; Gagn´e Group h$i hνi Sspa Skin Age Ref. et al. 2014; Murphy & Lawson 2015; Gagn´eet al. 2015a; Name (pc) (km s−1) (pc) (km s−1) (Myr) Riedel et al. 2017; Shkolnik et al. 2017), and have started 118TAU 100 ± 10 14 ± 2 3.4 2.1 ∼ 10 1 to uncover and confirm the kinematics of a fraction of +20 +10 +51 ABDMG 30−10 10−20 19.0 1.4 149−19 2 their low-mass stars and substellar objects. The Gaia +20 βPMG 30−10 10 ± 10 14.8 1.4 24 ± 3 2 mission (Gaia Collaboration et al. 2016b) has already +11 CAR 60 ± 20 20 ± 2 11.8 0.8 45−7 2 started to benefit this field of research with the Data +7 CARN 30 ± 20 15−10 14.0 2.1 ∼ 200 3 Release 1 (Gaia–DR1; Gaia Collaboration et al. 2016a), +4 +98 CBER 85−5 −0.1 ± 0.8 3.6 0.5 562−84 4 which provided 2 million parallaxes for the Tycho cat- +3 +6 COL 50 ± 20 21−8 15.8 0.9 42−4 2 1 alog (Høg et al. 2000) . This will be even more true CRA 139 ± 4 −1 ± 1 1.5 1.7 4–5 5 +4.6 of Gaia–DR2, which will provide a billion parallaxes EPSC 102 ± 4 14 ± 3 2.8 1.8 3.7−1.4 6 that will allow to complete the population of all young ETAC 95 ± 1 20 ± 3 0.6 2.0 11 ± 3 2 HYA 42 ± 7 39+3 4.5 1.2 750 ± 100 7 associations within 150 pc down to ∼ 0.12 M (Smart −4 et al. 2017). This completion of the stellar population of IC2391 149 ± 6 15 ± 3 2.2 1.4 50 ± 5 8 IC2602 146 ± 5 17 ± 3 1.8 1.1 46+6 9 young associations in the Solar neighborhood will have −5 LCC 110 ± 10 14 ± 5 11.6 2.2 15 ± 3 10 many direct applications, such as comparing their ini- +30 +8 OCT 130−20 8−9 22.4 1.3 35 ± 5 11 tial mass functions (e.g., see Chabrier 2005; Luhman PL8 130 ± 10 22 ± 2 5.0 1.1 ∼ 60 12 2007; Bochanski et al. 2011; Jeffries 2012; Gagn´eet al. PLE 134 ± 9 6 ± 2 4.1 1.4 112 ± 5 13 2017a), providing strategic targets for the direct imag- ROPH 131 ± 1 −6.3 ± 0.2 0.7 1.6 < 2 14 ing of exoplanets, understanding the stellar formation TAU 120 ± 10 16 ± 3 10.7 3.6 1–2 15 THA 46+8 9+5 9.1 0.8 45 ± 4 2 history of the Solar neighborhood, and will provide im- −6 −6 THOR 96 ± 2 19 ± 3 3.9 2.1 22+4 2 portant benchmark populations to characterize the fun- −3 damental properties and chemical abundances of coeval TWA 60 ± 10 10 ± 3 6.6 1.5 10 ± 3 2 UCL 130 ± 20 5 ± 5 17.4 2.5 16 ± 2 10 stars (e.g., see King et al. 2000; Schuler et al. 2006). UCRA 147 ± 7 −1 ± 3 4.5 1.8 ∼ 10 16 The latest membership classification tool, BANYAN Σ +0.8 UMA 25.4−0.7 −12 ± 3 1.2 1.3 414 ± 23 17 (Gagn´eet al. 2018a), benefitted from Gaia–DR1 data to USCO 130 ± 20 −5 ± 4 9.9 2.8 10 ± 3 10 refine its kinematic models of the 27 well-characterized XFOR 100 ± 6 19 ± 2 2.6 1.3 ∼ 500 18 young associations within 150 pc of the Sun. The ages a Peak of distance distribution and ±1σ range. of these associations are in the range ∼ 1–850 Myr, and b their general characteristics are listed in Table1, which Peak of radial velocity distribution and ±1σ range. is a summarized version of Table 1 from Gagn´eet al. c Characteristic spatial scale in XYZ space. (2018a). The BANYAN Σ tool uses Bayesian inference d Characteristic kinematic scale in UVW space. to determine the membership probability that a Note—The full names of young associations are: 118 Tau (118TAU), AB Do- belongs to any of these 27 associations, based on its sky radus (ABDMG), β Pictoris (βPMG), Carina (CAR), Carina-Near (CARN), Coma position, proper motion, and optionally its radial veloc- Berenices (CBER), Columba (COL), Corona Australis (CRA),  Chamaeleontis (EPSC), η Chamaeleontis (ETAC), the Hyades cluster (HYA), Lower Centaurus ity and distance. When radial velocity and/or distance Crux (LCC), Octans (OCT), Platais 8 (PL8), the Pleiades cluster (PLE), ρ Ophiuci are not known, these observables are marginalized and a (ROPH), the Tucana-Horologium association (THA), 32 Orionis (THOR), TW Hya (TWA), Upper Centaurus Lupus (UCL), Upper CrA (UCRA), the core of the membership probability is still calculated. BANYAN Σ Ursa Major cluster (UMA), Upper Scorpius (USCO), Taurus (TAU) and χ1 For includes more associations and generates less contami- (XFOR). nants at a fixed recovery rate compared to all previous References—(1) Mamajek 2016; (2) Bell et al. 2015; (3) Zuckerman et al. 2006; tools available in the literature (e.g., Malo et al. 2014; (4) Silaj & Landstreet 2014; (5) Gennaro et al. 2012; (6) Murphy et al. 2013; (7) Brandt & Huang 2015; (8) Barrado y Navascu´eset al. 2004; (9) Dobbie et al. Gagn´eet al. 2014; Riedel et al. 2017). Furthermore, its 2010; (10) Pecaut & Mamajek 2016; (11) Murphy & Lawson 2015; (12) Platais analytical solving of marginalization integrals makes it et al. 1998; (13) Dahm 2015; (14) Wilking et al. 2008; (15) Kenyon & Hartmann 1995; (16) Gagn´eet al. 2018b; (17) Jones et al. 2015; (18) P¨ohnl& Paunzen 2010. less computationally intensive, and amenable to analyze much more easily large data sets such as Gaia–DR1 as well as the upcoming data releases. In this paper, we apply the BANYAN Σ tool to the Tycho catalog stars that benefit from parallaxes in the 1 Tycho has a Gaia limiting magnitude of G ≈ 11.6 (50% re- Tycho–Gaia Astrometric Solution (TGAS hereafter) to covery), and recovers less than 1% of objects with G ≥ 12.7. identify 32 new bona fide members and 219 new candi- New Young Association Members in Gaia–Tycho 3 date members of the 27 nearest young associations. In Section2, we build Gaia–2MASS MG versus G−J color- magnitude sequences for field stars and young associa- tions of different age categories that will complement the kinematic analysis of BANYAN Σ in our determination of Bayesian membership probabilities. Our method for selecting new candidate members is described in Sec- tion3, and we investigate their signs of youth such as UV, X-ray emission and model isochrones in Section4. The conclusion of this work is presented in Section5.

2. GAIA–2MASS COLOR-MAGNITUDE Figure 1. Gaia–2MASS G−J color as a function of spectral SEQUENCES OF YOUNG AND FIELD STARS type for the bona fide members of young associations com- piled by Gagn´eet al.(2018a), grouped by age. This color In this section, color-magnitude sequences are built allows to separate spectral types well in the range A0–L0 and for field stars and members of young moving groups at uses magnitudes that are readily available for a large number different ages. In order for the sequence to be useful of stars. See Section2 for more detail. for the most stars and across a large range of spec- tral types regardless of age, it is preferrable to use a four (G − J,MG) coordinates were rejected: color combination that spans a wide wavelength win- p = (1.02, −∞) , dow. The Gaia G-band2 and 2MASS (Skrutskie et al. 1 2006) J-band magnitudes respect this criterion and are p2 = (1.02, 2.40) , (1) both readily available for a large number of stars. In p3 = (1.14, 4.00) , Figure1, we show the G − J color as a function of spec- p4 = (3.00, 8.00) . tral type for all bona fide members of young associations compiled by Gagn´eet al.(2018a), for which TGAS and This rejection of giants from the field color-magnitude 2MASS cross-matches were already provided. The mem- sequence means that a search for young stars that is not bers are grouped by ages to demonstrate that the spread using parallax information may be susceptible to giant in G−J color is not significant in any age category. This stars contaminating a sample of young stellar candidate figure demonstrates how the G−J color provides a good members. This will however be mitigated by the kine- proxy for spectral type in the A0–L0 range. matic analysis of BANYAN Σ that will reject low-proper The full data set of TGAS was used to build a color- motion objects unless they happen to match those of a magnitude sequence in absolute MG band as a function young moving group by chance. In the current analysis, of G − J color. The TGAS catalog entries were cross- all entries of TGAS that fall in the region described in matched with the nearest 2MASS entries using a search Equation (1) are ignored. radius of 400 to achieve this. In order to build a mono- All stars in TGAS were first split in G−J color bins of tonic sequence that can be described as a function in 0.05 mag in the range -0.2–3.5 mag to build the field se- this color-magnitude space, giant stars were filtered out quence. A first sequence was built by measuring the from the TGAS data. A simple color-magnitude region median absolute MG-band magnitude in each G − J cut was used to achieve this (displayed in Figure2); all color bin. A cumulative distribution function of the stars redder or brighter than a color-magnitude region absolute MG-band magnitudes of all stars within each described by the three straight lines connecting these bin was then built, and used to determine the positive and negative error bars in absolute MG-band magni- tude that would each encompass 34% of the population 2 The Gaia G band has an effective central wavelength on both sides of the median value, such that both er- of ∼ 5900 A˚ and an effective width of ∼ 4200 A˚ as re- ported on http://svo2.cab.inta-csic.es/svo/theory/fps/index.php? ror bars contain 68% of all data and correspond to a id=GAIA/GAIA0.G, essentially encompassing the SDSS griz ± 1σ range. All three resulting median and ± 1σ color- bands. magnitude sequences were then smoothed with a 2-cells 4 Gagne´ et al.

Figure 2. Gaia–2MASS Color-magnitude sequence of field Figure 3. Color-magnitude sequences (thick lines) for the stars (red line) built from TGAS data (black dots). Giant bona fide members of young associations compiled in Gagn´e stars rejected from the criterion described in Equation (1) are et al.(2018a) (colored circles). The 27 young associations displayed as blue dots (delimited by the blue dash-dotted re- were grouped in three age categories which were found to gion). The red dashed lines represent the ± 1σ range of the follow distinct sequences in this particular color-magnitude vertical distribution of TGAS data around the field sequence. diagram. TGAS entries are displayed as black dots. The The G − J colors of most stars in TGAS are concentrated gray dashed lines delimitate the giants exclusion criterion in the range 0.6–1.2 mag, therefore here we displayed a fixed described in Equation (1). See Section2 for more detail. number of field stars (1000) per 0.05 mag color bin to facili- tate viewing. See Section2 for more detail. quence at colors bluer than G−J ≈ 1.0–1.2, and merges with it at redder colors. This can be attributed to field wide running average over all color bins. The resulting stars more massive than 0.96–1.00 M (corresponding to color-magnitude sequence of field stars is presented in G − J ∼ 1–1.2; Pecaut & Mamajek 20134) that start to Figure2. depart from the main sequence onto the giant branch af- Similar color-magnitude sequences were then built for ter ∼ 8–9 Gyr (Choi et al. 2016). At younger ages of 20– the bona fide members of young associations compiled 100 Myr, stars redder than G − J ≈ 1.0–1.2 are brighter by Gagn´eet al.(2018a) (although the giants rejection than the field sequence because their radii are still in- criterion was not applied, as we have detailed literature flated from their young age (e.g., see Soderblom et al. information on these stars confirming that none of them 2014). This effect is more dramatic for stars younger are giants). All members were first assigned to one of than 20 Myr, to the point where their sequence merges three age categories, which were found to assemble the with that of the field at colors bluer than G − J ≈ 1.0– stars that follow similar color-magnitude sequences: (1) 1.2. This illustrates how stars coming into and depart- younger than 20 Myr (i.e., members of 118TAU, CRA, ing from the main sequence are hard to distinguish using EPSC, ETAC, LCC, ROPH, TAU, TWA, UCL, UCRA isochrones alone. and USCO); (2) 20–100 Myr (i.e., members of βPMG, CAR, COL, IC2602, IC2391, OCT, PL8, THA and 3. IDENTIFICATION OF CANDIDATE MEMBERS THOR); (3) 100–800 Myr (i.e., members of ABDMG, CARN, CBER, HYA, PLE, UMA and XFOR). Known The BANYAN Σ software uses sky position, proper unresolved binaries were not included here, which will motion and optionally radial velocity and distance to make the current search less sensitive in discovering assign a Bayesian probability that a star is a member of binary systems in young associations3. The resulting a known young association within 150 pc of the Sun. color-magnitude diagrams are displayed in Figure3. TGAS includes parallax measurements, sky position, The 100–800 Myr sequence is fainter than the field se- proper motion and G-band magnitudes for 2 057 050 stars, but does not contain radial velocity measure-

3 A version of BANYAN Σ with binary hypotheses will be re- leased in a future publication. 4 See http://www.pas.rochester.edu/∼emamajek/EEM dwarf UBVIJHK colors Teff.txt New Young Association Members in Gaia–Tycho 5 ments. We used the same method described in Section2 to cross-match TGAS entries with 2MASS in order to obtain the J-band magnitudes of all stars. Giant stars were filtered out from this sample with the criterion de- scribed in Section2 (only for stars with MG < 3 to avoid rejecting low-mass stars younger than ∼ 20 Myr.), resulting in a sample of 1 338 580 stars. All stars with a trigonometric distance measurement at a statistical significance of less than 2σ (i.e., measurement over er- ror less than 2) or with a missing 2MASS J-band mea- surement were rejected, further refining the sample to 1 190 699 stars. All color-magnitude sequences described in Section2 were used to assign a Bayesian probability in each young association directly from a comparison of their G − J color and absolute G-band magnitude, assum- Figure 4. Color-magnitude diagram of all new candidate ing that the vertical spread around each sequence members identified here (open right triangles are objects is Gaussian. These probabilities are calculated by without radial velocities; filled circles are objects with ra- BANYAN Σ through the constraint_dist_per_hyp dial velocities) compared with the full TGAS catalog (black and constraint_edist_per_hyp keywords, and are dots), and the field and young sequences (thick lines). The subsequently multiplied to the Bayesian prior probabili- color scheme is identical to Figure3. Outliers to their re- ties in determining membership probabilities (see Gagn´e spective sequences are stars with disks and are discussed in et al. 2018b; Gagn´eet al. 2018a,b for more detail). The Section3. same color-magnitude sequences could be used to con- strain the acceptable distances of any star without a BANYAN Σ (e.g., Lupus). These selection criteria gen- parallax measurement, by using the same keyword in erated a total of 1 560 candidate members, which were the BANYAN Σ software; it then automatically deter- cross-matched with the compilation of bona fide and mines which method to adopt depending on whether candidate members compiled by Gagn´eet al.(2018a). trigonometric distances are available or not. Only the 830 stars that were not already listed in this Only stars with a Bayesian membership probability compilation will be considered here. above 90% for any young association were selected for The 830 candidate members were cross-matched with further consideration. This probability threshold was SIMBAD (Ochsenbein et al. 2000), the RAVE data re- designed to produce similar recovery rates of 50% for lease 5 catalog (Kunder et al. 2017) and the Kharchenko all associations in BANYAN Σ (Gagn´eet al. 2018a). et al.(2007) catalog to assign them radial velocity mea- BANYAN Σ assigns each candidate member of a young surements. These cross-matches retrieved radial veloc- −1 association with an optimal radial velocity that max- ity with measurement errors below 10 km s for 291 imizes its membership probability (see Gagn´e et al. stars. 67 stars were found to have a radial velocity mea- 2018a for more detail). These optimal radial veloc- surement in both RAVE and other catalogs; the RAVE ities were combined with measured kinematics to de- measurements were preferred in these cases. Only 6 of rive optimal space velocities UVW that correspond to them had radial velocity measurements that differed by the best-matching values that can be expected for the more than 2σ; we found no evidence that these stars are candidate member. The candidate members with an binaries in the literature. All stars with radial velocity optimal UVW located at more than 5 km s−1 or 5σ measurements were re-analyzed with BANYAN Σ, and from the core of its best-matching association kinematic the same probability and optimal UVW selection crite- model were also rejected, as this is larger than the typ- ria were used to reject an additional 122 candidate mem- ical spread of young association members (1–4 km s−1; bers. This resulted in a total of 539 candidate members Gagn´eet al. 2018a). This cut rejected 491 objects, which without a radial velocity measurement, and 169 candi- are heavily skewed toward large distances (313 of them date members with radial velocity measurements, for a have distances above 150 pc). Such candidate members total of 708 candidates which are listed in Table4. might correspond to field interlopers with peculiar ve- In Figure4, all 708 candidate members identified here locities or members of yet unknown young associations, are compared with the field and young color-magnitude as well as more distant associations not yet included in diagrams built in Section2. There are a few notable 6 Gagne´ et al.

Figure 5. Galactic coordinates XY of the 708 candidate members uncovered in this work, compared with the 1σ contours of the BANYAN Σ spatial models projected in the XY plane (the full models are 6D multivariate Gaussians in XYZUVW space). The candidates without radial velocity measurements are displayed as gray crosses, and those with full kinematics are displayed as black circles. New bona fide members identified in this work are marked as downward triangles and their color corresponds to that of their association. A handful of new UCL members are distributed toward USCO and ROPH in this 2D projection, but their UVW velocities are much more consistent with UCL, which explains their classification. See Section3 for more detail. New Young Association Members in Gaia–Tycho 7 Table 2 (continued) cases where stars fall well outside of the young color- magnitude sequences despite their having a Bayesian Name Membershipa membership probability above 90%. This indicates that HD 119573 UCL(84), LCC(16) they were a poor fit to even the field color-magnitude sequence. An investigation of the 6 such cases that have HD 120075 UCL(89), LCC(11) a radial velocity measurement (HD 145501, ROXs 43, TYC 8664–329–1 LCC(69), UCL(31) CD–33 10685, MZ Lup, DR Tau and TYC 8881–551–1) HD 120641 LCC(70), UCL(30) reveals that they have circumstellar disks or infrared ex- HD 120795 LCC(61), UCL(39) cesses that hint at a possible disk (McDonald et al. 2017; CD–51 7806 UCL(61), LCC(39) Cieza et al. 2009; Evans et al. 2003; Kraus et al. 2012; HD 121020 UCL(81), LCC(19) G´asp´aret al. 2016), which likely explains their peculiar HD 121191 UCL(86), LCC(14) position in the color-magnitude diagram. The Galactic coordinates XY of all 708 candidates HD 121617 UCL(87), LCC(13) are compared with the BANYAN Σ spatial models in HD 122414 UCL(84), LCC(16) Figure5. Ten candidates (DR Tau and 9 others without HD 122513 UCL(92), LCC(8) radial velocity measurements in Table4) are located at HD 124746 UCL(94), LCC(6) distances further than 200 pc and could be members of HD 125036 UCL(74), LCC(26) associations not included in BANYAN Σ. In Table2, HD 126181 UCL(93), LCC(7) we list the 60 targets that have ambiguous membership CD–25 11037 USCO(94), UCL(6) in more than one young association. HD 140390 UCL(75), USCO(25) Table 2. Ambiguous candidate members. HD 141960 USCO(67), UCL(33) HD 142540 USCO(72), UCL(28) Name Membershipa HD 143069 USCO(95), UCL(5) WOH S 216 ABDMG(75), BPMG(25) HD 144049 UCL(71), USCO(29) HD 110696 LCC(87), TWA(7), UCL(6) HD 147754 UCL(69), USCO(31) CD–45 8100 LCC(94), UCL(6) HD 148409 USCO(95), UCL(5) HD 112670 LCC(93), UCL(7) HD 148606 USCO(90), UCL(10) HD 113975 LCC(65), UCL(35) HD 148982 USCO(83), UCL(17) HD 114599 LCC(85), UCL(15) HD 149514 UCL(94), USCO(6) HD 114788 LCC(89), UCL(11) HD 149598 USCO(91), UCL(9) HD 114897 LCC(83), UCL(17) TYC 6809–836–1 USCO(92), UCL(8) HD 116116 LCC(91), UCL(9) HD 176423 CRA(93), UCRA(7) HD 116335 UCL(52), LCC(48) HD 195266 BPMG(92), CARN(8) CD–58 5027 LCC(82), UCL(18) HD 115371 TWA(82), UCL(11), LCC(6) HD 116553 UCL(63), LCC(37) HD 117620 LCC(94), UCL(6) HD 116587 LCC(93), UCL(7) TYC 8273–917–1 LCC(80), UCL(20) HD 116649 LCC(83), UCL(17) HD 123247 UCL(78), LCC(22) HD 116651 LCC(92), UCL(8) Cl* NGC 5606 VF 51 UCL(92), LCC(8) HD 117353 LCC(74), UCL(26) HD 142992 UCL(74), USCO(26) HD 118134 LCC(92), UCL(8) TYC 6801–214–1 UCL(55), USCO(45) TYC 8269–314–1 LCC(63), UCL(37) HD 146974 USCO(77), UCL(23) HD 118867 UCL(68), LCC(32) TYC 6803–994–1 USCO(90), UCL(10) HD 119067 UCL(86), LCC(14) aPossible associations are listed with their relative probabil- HD 119403 UCL(90), LCC(10) ities (%) in parentheses. These relative probabilities add up to 100%, and represent the relative shares of the total HD 119404 UCL(76), LCC(24) young association probability of each target. All targets in this table have a total young association probability above Table 2 continued 90%. 8 Gagne´ et al.

4. SIGNS OF YOUTH FROM THE LITERATURE A literature search was performed to determine whether the candidates identified in Section3 were already known as candidate members of a young associ- ation, or whether they display signs of youth. A total of 254 candidates were never identified as candidate mem- bers of young associations in the literature, 38 of which now have complete kinematics. These stars are listed in Table3. There are three stars in Table3 (TYC 8881– 551–1, TYC 8098–597–1 and CD–31 11053) that were identified as spectral binaries by (Torres et al. 2006). This makes them uncertain members because their or- bital motion could affect the measured radial velocities, and we therefore do not draw a firm conclusion about Figure 6. Population histogram of new candidate members of each young association identified in this work. Candidates their membership here. DR Tau has complete kinemat- with diagonal hashing have radial velocity measurements. A ics consistent with TAU, but is located at a distance few associations are displayed separately at the top of the of ∼ 207 pc, significantly larger than its other members figure because they each have only one candidate member. (∼ 120 pc). It is possible that TAU is spatially much See Section4 for more detail. larger than previously thought, but we do not draw any firm conclusions on the membership of DR Tau here. Similarly, CD–33 10685 (at a distance of ∼ 141 pc) has complete kinematics consistent with UCL, but Mer´ın et al.(2008) classify it as a member of Lupus, which is too distant to have been included in the BANYAN Σ models. We will therefore wait for the future inclusion of Lupus in the BANYAN Σ models before drawing a conclusion on its membership. We found that 53 objects were already known as bona fide members with full kinematics and were either over- looked or excluded in the Gagn´eet al.(2018a) compila- tion of bona fide members. For example, some members of HYA identified by Gaia Collaboration et al.(2017) were not clearly identified as cluster or stream members, and some ABDMG members identified by (Zuckerman & Song 2004) had a “Questionable membership flag”. We consider that their high membership probability cal- culated in this work warrants considering them as bona Figure 7. Fractional population histogram of new candidate fide members, as it demonstrates that they have kine- members of each young association identified in this work, matics consistent with other unambiguous members. A divided by the number of known bona fide members. Some histogram of the associations in which new candidate associations such as PL8 and OCT have not been extensively members were identified here is displayed in Figure6. In studied in the literature. See Section4 for more detail. Figure7, we display the fractional number of new can- didate members identified here compared to the number Seventy five others objects were already known as can- of currently known bona fide members. Some associa- didate members, and the addition of a TGAS parallaxe tions such as PL8 and OCT were not extensively stud- or a newly compiled radial velocity confirms their mem- ied in the literature, and as a consequence our sample bership in Sixty six cases, or revises it to a different will make a significant contribution to their number of association in 9 cases. One other star (EX Cet) that known members upon full confirmation of their kinemat- we identify as a candidate member of βPMG was clas- ics. sified as a member of the Hercules Lyra (HLY) associ- New Young Association Members in Gaia–Tycho 9 ation by L´opez-Santiago et al.(2006), but this associa- that EX Cet is located at 4 km s−1 from the core of the tion was not included in BANYAN Σ because it is likely BANYAN Σ kinematic model of βPMG, we do not draw composed of non-coeval stars (Mamajek 2015). Given any conclusion on its membership here.

Table 3. Candidate members with full kinematics.

Name Spectral Isochronal G − JNUV − G X-Ray Li EW Signs of Bona fide Ref.d

Typea Ageb (Myr) (mag) (mag) HR1 (mA)˚ youthc member

ABDMG CD–26 1643 F9V ··· 0.9 5.0 −0.15 ··· X Y 1,– HD 61518 F5V ··· 0.8 · · · −0.23 ··· IR Y 2,– HD 147512 G8/K0V ··· 1.0 6.3 ······ IR Y 3,– HD 221239 K2.5V ··· 1.3 7.4 −1.00 ··· UV Y 4,–

BPMG TYC 8098–597–1e K3V ··· 2.0 ··· 0.16 25 X ? 5,6 HD 207043 G5V ··· 1.0 5.9 ······ IR Y 7,–

CAR HD 37402 F6V ··· 0.8 4.8 −0.17 110 Li,IR Y 8,9

CARN S1* 329 K7V(ke) ··· 2.1 8.5 0.47 ··· X,UV Y 7,– L 106–104 M3 ··· 2.2 ········· IR,Ca Y 10,–

COL HD 29329 F7V ··· 0.8 · · · −0.01 88 X,IR Y 11,11 TYC 8881–551–1e K0IV/V ··· 1.8 6.1 −0.22 ··· UV,Sp ? 12,– +3 V* AI Lep G2V 25−5 1.1 ··· 0.00 213 X,Li,IS Y 11,11

LCC

+5 TYC 8649–1758–1 (K2) 13−4 1.5 ········· IR,Ca,IS Y –,– +3 TYC 8653–1049–1 (G8) 28−6 1.3 ········· IR,Ca,IS Y –,–

OCT TYC 7053–832–1 (G6) ··· 1.2 5.8 ······ UV,IR,Ca Y –,– HD 35212 F5V ··· 0.8 · · · −0.27 ··· IR Y 2,– HD 275012 G5 ··· 1.2 · · · −0.01 ··· X,IR,Ca Y 13,– CD–35 2433 (G2) ··· 0.9 · · · −0.02 ··· X,IR Y –,– +2 HD 42122 F7/G0V 18−4 0.8 4.7 ······ IR,IS Y 8,– +70 TYC 8534–1810–1 (G7) 45−9 1.2 ··· 0.11 ··· X,IR,Ca,IS Y –,– TYC 8895–112–1 (G4) ··· 1.0 · · · −0.32 ··· IR,Ca Y –,– TYC 8104–898–1 (G1) ··· 0.9 ············ N –,– TYC 9178–1390–1 (K1) 40 ± 10 1.4 ········· IR,IS Y –,–

Table 3 continued 10 Gagne´ et al. Table 3 (continued)

Name Spectral Isochronal G − JNUV − G X-Ray Li EW Signs of Bona fide Ref.d

Typea Ageb (Myr) (mag) (mag) HR1 (mA)˚ youthc member TYC 9341–1233–1 (G9) ··· 1.3 8.0 ········· N –,–

TAU

+1 HD 284659 A2 8−2 0.2 ········· IS ? 13,–

THA HD 10863 F0IV ≤ 1000 0.6 5.5 ······ IS,Sp Y 14,–

UCL CD–31 11053e K3Ve 5 ± 1 1.8 ··· 0.68 470 X,Li,IR,IS ? 6,6 +2 TYC 7295–853–1 (G7) 16−3 1.2 ········· IR,Ca,IS Y –,– +3 TYC 7296–1194–1 (K0) 22−5 1.3 ········· Ca,IS Y –,– +2 TYC 7353–768–1 G8V 18−5 1.1 ··· 1.00 270 X,Li,IR,IS Y 6,6 +2 HD 321958 G9V 14−3 1.2 ··· 0.51 275 X,Li,IR,IS Y 6,6 TYC 8332–2024–1 K5Ve ··· 1.7 ··· 0.03 480 X,Li Y 6,6 V* V991 Sco G6/8 9 ± 1 1.1 · · · −0.05 ··· X,IR,IS Y 15,– +2 CD–23 13197 K0IV(e) 13−4 1.3 ··· 0.52 360 X,Li,IR,IS,Sp Y 6,6 +2 HD 317637 K2V 13−3 1.4 ··· 0.03 390 X,Li,IR,IS Y 6,6 +1 BD–18 4557 K2IV(e) 9−2 1.5 ··· 0.18 420 X,Li,IR,IS,Sp Y 6,6 +2 CD–43 11887 G9V 9−3 1.3 ··· 0.13 350 X,Li,IR,IS Y 6,6

USCO

+0.8 CD–25 11942 K0IV 6.3−0.7 1.4 ··· 0.01 310 X,Li,IS,Sp Y 6,6 aSpectral types in parentheses were estimated using the G−J color with the spectral type–color relations of Pecaut & Mamajek (2013), see also http://www.pas.rochester.edu/∼emamajek/EEM dwarf UBVIJHK colors Teff.txt. b Pre-main sequence ages derived from MIST isochrones in absolute G versus G − J. See Section4 for more detail. The color- magnitude positions of HD 284659, HD 42122 and TYC 8534–1810–1 are also consistent with respective post-main sequence +70 +0.5 +4 ages of 560−100 Myr, 4.5−0.9 Gyr and 10−6 Gyr. c Signs of youth compiled from the literature. See Section4 for more detail. X: X-ray emission with HR1 ≥ -0.15; UV: Galex NUV − G versus G − J consitent with youth; Li: Lithium absorption above 100 mA;˚ E: Mid-infrared excess; Lm: class consistent with youth; Is: Young isochronal age consistent with; Ca: Ca II infrared triplet age consistent with proposed association. dReferences for: (1) spectral type and (2) Li absorption. e Spectral binary (Torres et al. 2006).

References—(1) Jaschek et al. 1964; (2) Houk 1978; (3) Houk & Swift 1999; (4) Gray et al. 2003; (5) Kharchenko 2001; (6) Torres et al. 2006; (7) Gray et al. 2006; (8) Houk & Cowley 1975; (9) Mo´oret al. 2013; (10) Rousseau et al. 1996; (11) White et al. 2007; (12) Nordstr¨omet al. 2004; (13) Nesterov et al. 1995; (14) Pribulla et al. 2014; (15) Houk 1982.

at Galactic latitudes South of l = 30°. This figure is The G − J versus NUV − G colors of the stars with similar to Figure 2 of Rodriguez et al.(2011), but uses an entry in the data release 5 of GALEX (Martin et al. Gaia colors instead of those based on Tycho V . The 2005) were compared with the field and young sequences field sequence was built from a combination of the field and are displayed in Figure8. A total of 133 stars in sample of Rodriguez et al.(2011), complemented with our sample have an entry in GALEX ; the main reason all stars in the sample of Oh et al.(2017), from which for this incompleteness is the poor coverage of GALEX all known young stars were removed, as well as any star New Young Association Members in Gaia–Tycho 11

Figure 8. GALEX NUV excess for field stars (black dots), Figure 9. Histogram of ROSAT hardness ratios HR1 for the known bona fide members of young associations (green tri- full and young samples. The full sample is skewed toward angles) and the new candidates (red circles) and bona fide high HR1 values as expected, and most stars with X-ray members (red stars) identified here. The criterion for NUV detections are young. See Section4 for more detail. excess defined in Equation (2) is displayed in orange, and the new candidates identified in this work that are selected by this criterion are displayed with filled symbols. See Section4 for more detail. with a BANYAN Σ probability above 1% of belonging to a known young association. Any groups of stars in the Oh et al.(2017) sample that display signs of youth as a population (see J. K. Faherty et al., in preparation) were also excluded from our field sample. The sample of young associations compiled by Gagn´eet al.(2018a) are compared with the field NUV sequence in Figure8, which allowed us to derive a simple criterion that delim- itates regions dominated by young stars: NUV − G < 6.5 (G − J) − 1.09 if G − J < 1.476, NUV − G < 1.5 (G − J) − 6.30 if G − J ≥ 1.476, (2) This criterion is especially efficient at identifying the NUV excess of G-type stars or later (G − J > 1). For Figure 10. Histogram of the statistical significance Nσ of earlier-type stars, the young and field sequences become infrared excess for the full and young samples. A large frac- gradually harder to distinguish and this criterion will tion of stars in the full sample has a significant excess, and fail to identify most young stars. this is even more true of the young sample. See Section4 for The candidate members identified here were similarly more detail. cross-matched with the second ROSAT all-sky survey catalog (Boller et al. 2016) and the XMM-Newton slew et al.(2003), were flagged as likely young. The distribu- survey Source Catalogue v2.0 (XMM-SSC 2018). A to- tion of HR1 values are displayed in Figure9. Stars with tal of 222 stars in our sample have an entry in either a mid-infrared excess detected at a ≥ 1.5σ statistical sig- one of these catalogs. The main limitation of this cross- nificance in the McDonald et al.(2017) catalog were also match is the limited ROSAT sensitivity, which does not flagged as likely young. McDonald et al.(2017) analyzed allow it to detect the furthest and/or lowest-mass stars most of the TGAS sample, but some of the stars could in our sample. All stars with a HR1 hardness ratio not be cross-matched to older catalogs because they ig- above -0.15, consistent with the observed distribution nored their proper motion, and they used a more con- of young βPMG, TWA and THA members in Kastner servative cut on the distance precision (they required a 12 Gagne´ et al. statistical significance above 2.4σ versus our 2σ require- happens to share the spatial position and kinematics ment), which resulted in only 656 stars in our sample of TAU by pure chance. Figure 11 displays the MIST having such a mid-infrared excess measurement. These solar- tracks compared with stars of Table3 measurements are displayed in Figure 10. Zerjalˇ et al. and empirical color-magnitude sequences derived in Sec- (2017) provide age constraints with a precision of ∼ 50% tion2. for RAVE survey stars based on the Ca II infrared triplet A total of 32 candidate members with full kinemat- chromospheric activity indicator. There are 17 stars in ics have at least one sign of youth that is consistent our sample that have such activity-based ages consis- with their kinematic membership, and we therefore pro- tent with their respective association. Lithium equiva- pose them as new bona fide members of their respec- lent widths were also reported by Torres et al.(2006), tive young associations. The OCT candidate member White et al.(2007), da Silva et al.(2009), Mo´oret al. TYC 8104–898–1 has no literature information that al- (2013) and Pecaut & Mamajek(2016) for 114 stars in lows us to put a constraint on its age, and its position in our sample. Measurements of lithium equivalent widths a MG versus G − J color-magnitude diagram is slightly above 100 mA˚ were adopted as a sign of youth (e.g., see under-luminous compared to all solar-metallicity MIST Mo´oret al. 2013). A weaker lithium line is not neces- tracks. The RAVE data release 5 catalog (Kunder et al. sarily inconsistent with youth, but does not provide a 2017) provides a sub-solar metallicity measurement of strong indication of youth. All youth indicators based [m/H]= −0.26 ± 0.09 dex for this star, which may ex- on NUV , X-ray, lithium, infrared excess or the Ca II plain its peculiar . We therefore re- infrared triplet are reported in Tables3 and4. ject TYC 8104–898–1 as a candidate member of OCT. We used the MIST solar-metallicity model tracks of TYC 9341–1233–1 is also rejected because its GALEX – Choi et al.(2016) to determine isochronal ages for the Gaia NUV − G color is consistent with field stars, 38 new candidate members with complete kinematics. and no conclusion is drawn on the TAU membership of To do so, we calculated the minimum Nσ distance of HD 284659 because of its inconsistent (but likely young) the star to each isochrone in absolue Gaia MG versus isochronal age. Gaia–2MASS G − J to build a probability density func- Seven stars in our sample have signs of youth but are tion as a function of age. The probability density func- rejected as candidate members of young associations. tions were then visually inspected, and were classified These stars could be slightly older and have formed in one of three categories to determine whether (1) they in groups that are now completely dissolved; scattered do not provide a significant age constraint; (2) they pro- members of known associations; or members of associa- vide a unimodal age constraint, or (3) they provide a tions not yet discovered. Similarly, several young brown bimodal age constraint (i.e., a pre-main sequence age dwarfs without a clear origin were identified in previ- and a post-main sequence age). The resulting pre-main ous work (e.g., Gagn´eet al. 2015b; Faherty et al. 2016). sequence ages are reported in Table3, and corroborate The upcoming of Gaia DR2 will help understanding the membership in all cases but one; the pre-main sequence origin of these objects. isochronal age of the A2 TAU candidate HD 284659 is +1 8−2 Myr, which is significantly older than the estimated 5. CONCLUSIONS age of TAU (1–2 Myr; Kenyon & Hartmann 1995). It We used the BANYAN Σ tool in combination with remains unclear whether HD 284659 is a 1–2 Myr mem- TGAS to identify 32 new F0–M3 bona fide members ber of TAU (in which case the MIST tracks systemati- of nearby young associations and 219 additional new cally over-estimate the age in this very young regime), candidate members.These new candidate members in- or if it is part of an older sub-group with similar kine- clude HD 121191, a new A-type candidate member of matics to TAU that is not considered in BANYAN Σ. UCL which is known to have a significant infrared ex- HD 284659 is located spatially within the distribution cess (McDonald et al. 2017; Melis et al. 2013), and 3 of TAU members (at 5.8 pc, or 0.6σ from the core of the other infrared excess candidate members of associations BANYAN Σ spatial model), and at 3.9 km s−1 (or 1σ) older than ∼ 10 Myr (TYC 8602–718–1 in βPMG; CD– from the core of the BANYAN Σ kinematic model. Find- 60 2373 in PL8; TYC 8602–718–1 in CAR). The discov- ing more 6–9 Myr objects in the vicinity of HD 284659, ery of accretion disks around these slightly older stars or calibrating the MIST tracks for 1–2 Myr A-type stars would be valuable to understand their lifetimes, as only using more empirical data, would help in clarifying the few such examples are currently known (e.g., Boucher membership of HD 284659. Alternatively, it is possible et al. 2016; Silverberg et al. 2016; Murphy et al. 2018). that HD 284659 is instead a 560+70 Myr-old star that −100 Five new candidate members of CARN and ABDMG is starting to depart from the main sequence and that are located within 30 pc of the Sun (the nearest one, New Young Association Members in Gaia–Tycho 13

Figure 11. MIST isochrones compared to empirical color-magnitude sequences (thick colored lines) and objects from Table3 (black circles). There are 18 stars in this figure for which the isochrones do not provide a useful age constraint; those have no age measurement in Table3. The median scatter of each empirical sequence is indicated in the lower portion of the figure. MIST isochrones younger (older) than 500 Myr are represented with dashed (dash-dotted) lines for clarity. See Section4 for more detail. HD 19819, is a candidate member of CARN at ∼ 22 pc), these associations may extend to larger distances not yet and 26 objects in our sample are new A-type candidate explored due to the paucity of parallax measurements members of young associations. These stars will be par- previously available beyond 150 pc. The new candidates ticularly valuable for direct-imaging searches of exoplan- presented here have the potential to almost double the ets, as proximity makes it possible to detect companions number of members in associations that were not exten- at smaller separations, and massive stars are known to sively studied in the literature such as PL8 and OCT. have a larger occurrence of giant companions This work hints that the upcoming Gaia–DR2 will al- which are easier to detect (Lannier et al. 2017). Fur- low us to uncover many new young stars, complete their thermore, 26 new candidate members (21 with signs of kinematic picture and investigate the initial mass func- youth) of OCT, TAU, UCL and USCO are located at tion of several young associations down to the regime of spatial distances above 150 pc, making them > 5 σ out- low-mass stars. The identification of new young stars liers to the spatial model of their respective association, and their assignment of accurate ages will be useful to while displaying consistent kinematics. This hints that build standard stellar populations, and will provide valu- able targets for direct-imaging searches of exoplanets. 14 Gagne´ et al. c Ref. b E 14,–,–,– XE –,7,–,– 8,7,–,– EUVUVUVUV –,–,–,– 14,–,–,– –,–,–,– 26,–,–,– 14,–,–,– UVUVUV –,–,–,– 25,–,–,– 15,–,–,– X,Li,E,IsX,Li,Is,Lm 21,16,–,– 22,12,–,– LmX 23,–,–,– 24,–,–,– X,Li,E,Is,Lm 15,20,–,– X,Li,E,Is 10,10,10,– X,Li,E,Is,Lm 10,10,10,– X,E,Ca,IsE,CaE,Is 10,10,10,– Is,LmE,Ca,Is –,7,–,– Ca,IsX,Li,E,Is –,7,–,– 17,18,–,– X,Li,E,Is 10,10,10,– X,Li 10,10,10,– 10,10,10,– X,E,Is 19,6,–,– 10,10,10,– 10,10,10,– E,Is –,7,–,– X,UVE,CaX,EX,Li,Is 11,12,13,– E,Ca,Is 14,7,–,– E,Ca,IsUV,E,Ca 11,7,–,– –,7,–,– E –,7,–,– X,E,Ca –,7,–,– –,7,–,– X,E 15,16,–,– 8,12,–,– –,7,–,– XEEUVLi,E 1,2,–,– 3,4,–,– 5,5,5,– 6,4,–,– 9,4,10,– Group Known Youth ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ex 7 8 8 3 0 6 0 0 1 2 7 1 1 1 7 6 3 7 3 0 8 4 5 9 4 2 6 4 8 0 6 5 1 6 0 7 5 0 0 ...... Nσ 1 0 2 ············ ······ 2 1 1 2 2 3 1 1 1 1 2 1 1 1 IR 2 2 1 2 2 1 2 1 2 004 3 02 01 03008 0 0 04 05008 0 0 002 1 006 1 08 1 03 2 004 0 004 1 01005 0 3 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ········· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· NUV 77 41 40 24 15 01 92 84 ...... 099 358 987 326 826 821 800 213 ...... 17 17 16 17 16 13 14 11 14 13 55 14 50 18 12 32 05 01 02 01 27 15 13 0017 15 12 23 ...... 16 01 13 18 03 52 00 51 11 03 47 18 00 ...... 0 0 0 0 0 0 0 0 0 0 1 0 0 ··· ··· ············ ········· ··· ····················· − − − − − − − − − − 7 7 8 2 0 . 5 0 5 5 0 ) (mag) . . . 006 7 0 . . . 0 4 . . 1 4 0 0 1 0 2 0 1 0 0 2 0 2 0 1 4 1 2 0 1 0 0 1 0 2 2 2 1 5 11 1 0 2 0 0 2 1 3 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 4 8 4 7 1 6 9 ········· ······ ·················· ········· ······· · · − · · · − ················ · · − . 0 8 7 18 . . . 2 . . . . − − − − 4 2 9 − 19 129 − − − . − 6 29 0 0 55 21 23 8 1 93 36 6 83 9 35 61 4 7 6 51 4 0 3296 9 5 5 51 1 2 1 0 9 23 203 9 13 7 34 62 24 29 8 4 11 12 11 8524 23 16 49 10 84 31 0 23 ...... 4 3 6 8 0 5 7 4 5 13 1 0 4 3 6 0 1 9 3 3 4 0 0 0 0 0 3 3 0 1 0 0 2 1 0 0 1 0 7 0 0 2 12 0 3 3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 2 2 4 0 8 6 9 7 6 3 7 9 3 9 8 2 0 5 3 2 3 4 9 6 8 9 ...... 25 17 79 22 61 81 50 90 11 00 75 84 03 11 45 95 ...... Distance Rad. Vel. HR1 8 61 04 33 62 49 09 45 89 31 85 54 51 61 5 45 60 38 54 51 47 54 3 117 48 38 34 51 6 122 5 98 1 123 34 137 32 110 7 116 95 153 502 125 45 35 155 9 169 84 130 145 96 129 14 26 93 134 93 114 65 153 03 32 605 72 66 126 117 75 122 90 129 33 54 03 27 05 25 0509 68 30 06 60 ) (pc) (km s ...... 1 2 1 2 0 0 2 0 1 0 1 2 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 8 6 8 5 9 0 6 9 5 7 0 0 ...... 46 73 31 20 47 13 75 60 52 31 36 07 75 88 85 16 52 53 67 87 09 59 69 86 60 61 38 35 05 85 36 95 ...... Table 4 continued 58 29 33 32 31 29 23 21 32 17 88 52 47 57 96 99 24 26 45 30 12 18 55 − − − − − − − − − − 187 131 109 118 113 135 176 130 − − − − − − − − − − − − − − − − − − − − − 14 02 49 9 87 4957 18 21 05 06 0409 32 164 31 05 6 2 05 1 07 24 61 67 90 5 58 94 54 0 2 50 90 4 8 7 78 76 8 1502 16 16 7 2 2 1 74 19 6177 20 84 18 19 ) (mas yr ...... 0 0 4 0 1 0 0 0 0 1 0 0 1 1 0 0 2 1 2 0 0 3 1 1 0 1 3 4 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± . Candidate members recovered in this work. cos 6 5 4 2 3 9 6 5 2 4 2 8 8 2 6 9 ...... 31 37 14 19 75 48 88 66 56 03 30 59 87 91 07 16 01 59 02 44 12 36 74 93 92 28 76 29 4 7 7 . . . 8 7 ...... α 14 13 19 11 12 28 7 8 10 µ − − − − − 33 31 78 12 24 26 15 10 12 11 − − − − − − − − − 113 − − − − − − − − − − − Table 4 (hh:mm:ss) (dd:mm:ss) (mas yr a Type BPMG K3V 05:33:36.170 –51:03:56.07 3 d Name Assoc. Spectral R.A. Decl. 329 CARN K7V(ke) 08:41:32.326 –68:25:37.77 ∗ TYC 8895–112–1TYC 9178–1390–1 OCTHD OCT 10863TYC 7295–853–1 (G4) (K1)TYC 7296–1194–1 UCLTYC UCL 7353–768–1 THAHD 321958 UCL (G7) 06:34:59.827TYC (K0) 06:55:31.649 –60:00:08.64 8332–2024–1 F0IV –68:54:15.03 V991 UCL Sco G8V UCL 14:32:04.282 K5Ve 14:39:00.943 –30:03:33.44 01:46:01.167 –30:42:02.03 G9V –27:20:56.47 16:37:43.358 UCL –33:56:53.46 17:04:23.446 96 –48:15:09.95 G6/8 16:46:40.279 –38:08:51.06 17:06:29.102 –37:49:27.35 TYC 8534–1810–1 OCT (G7) 06:13:35.475 –53:23:32.68 L 106–104HD 29329AI LepTYC 8649–1758–1 CARNTYC LCC 8653–1049–1 COLTYC LCC M3 7053–832–1HD (K2) 35212 OCT COL F7VHD (G8) 275012CD–35 2433 (G6) G2V 22:46:45.574HD 42122 13:09:52.078 –63:18:06.00 OCT –54:19:44.29 04:46:00.903 13:13:38.585 OCT +76:36:37.73 –55:29:56.96 198 OCT 05:09:00.130 F5V 05:40:20.752 –36:27:39.84 G5 75 –19:40:11.11 OCT (G2) 20 F7/G0V 05:20:16.641 –51:59:58.59 05:37:20.481 05:38:49.303 06:04:42.334 –48:35:10.89 –35:29:31.61 –62:07:35.28 New Bona Fide Members CD–26 1643HD 61518HD 147512HD ABDMG 221239 F9VHD 37402 ABDMGS1 ABDMG F5V G8/K0V ABDMG 04:21:33.518 K2.5V –25:43:10.14 CAR 16:22:32.642 –04:14:59.94 07:37:02.743 –52:21:56.94 42 23:30:13.963 F6V +31:42:19.02 191 05:34:26.199 –60:06:14.59 25 HD 207043TYC 7909–2501–1 BPMG (K4) BPMG G5V 18:28:32.107 –41:29:09.28 21:47:55.459 –52:55:51.63 12 103 BD+73 300TYC 3385–23–1TYC 1216–1411–1 ABDMGBD+25 BPMG 430 ABDMG (G8)TYC K4V 8098–597–1 (K2) BPMG 06:39:30.438 05:51:49.748 +48:52:04.45 02:35:54.309 G0 +73:51:07.10 +15:14:54.00 21 60 02:38:36.283 +26:14:18.00 48 BD–13 835HD 28982WOH S 216 ABDMG (K2) ABDMG ABDMG G6V M0.5 04:12:45.395 –13:07:57.59 04:33:06.262 05:16:53.816 –24:00:48.74 –68:21:07.85 40 38 14 CD–25 11942New Young Candidate Members HD USCO 236717BD+49 646 K0IVV1274 Tau ABDMG K0IV/V ABDMG 17:06:01.190 K0 –25:20:30.86 ABDMG K5 01:24:27.324 +57:51:04.71 112 02:22:34.008 +50:33:35.42 03:45:58.004 +27:33:33.54 75 43 CD–43 11887 UCL G9V 17:38:06.079 –44:03:32.10 BD–18 4557 UCL K2IV(e) 17:32:23.849 –18:50:26.51 HD 317637 UCL K2V 17:27:25.531 –33:16:49.36 CD–23 13197 UCL K0IV(e) 17:12:08.726 –23:09:49.50 New Young Association Members in Gaia–Tycho 15 c Ref. b EEEEEX –,–,–,– X –,–,–,– E 19,–,–,– E 26,–,–,– E,Lm 34,–,–,– X,E –,–,–,– E –,–,–,– E –,–,–,– 8,–,–,– –,–,–,– 19,–,–,– E 8,–,–,– E 11,–,–,– EE –,–,–,– –,–,–,– 11,–,–,– –,–,–,– UV,EX,EX 19,–,–,– 14,–,–,– 31,–,–,– E,Lm –,–,–,– XX,EE 14,–,–,– 19,–,–,– –,–,–,– UVEEUVE 14,–,–,– X,EUV,Lm 27,–,–,– X 14,–,–,– 28,–,–,– EX,Li,E 14,–,–,– 5,5,5,– –,–,–,– XE,LmE 14,–,–,– 27,–,–,– E 14,–,–,– Lm –,–,–,– E 14,–,–,– EE 29,–,–,– 27,–,–,– 19,–,–,– 26,–,–,– E 14,30,–,– E –,–,–,– X,EEEE 32,–,–,– E 14,–,–,– 8,–,–,– 33,–,–,– –,–,–,– –,–,–,– 26,–,–,– Group Known Youth ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ex 5 5 8 8 7 4 3 6 5 1 2 8 0 8 6 2 6 8 9 4 6 9 5 4 5 8 8 6 0 7 9 0 5 7 1 2 7 7 6 1 4 3 6 1 8 ...... Nσ 1 2 1 1 1 1 1 1 2 2 1 2 1 2 2 IR 1 1 ······3 1 1 0 2 1 2 2 1 2 1 2 2 2 1 1 004 1 03 1 02006 2 1 003 1 002 2 04 0503 1 02 0 004 2 3 02 1 07 2 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ············ ··· ··· ············ ··· ··· NUV 68 60 22 67 54 78 24 41 ...... 588 555 062 069 922 . . . . . 17 16 16 18 18 13 12 11 58 02 06 30 16 04 23 03 06 16 15 08 22 16 ...... 66 16 00 07 13 20 08 13 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 3 ) (mag) . 1 0 − ± ·················· ··························· ·········· · ·· · ···· − ········· − ····················· ·················· ······ ··· ··· ··· · · ········ · · − − ····················· ··········································································· ················ · ·· · ·· · · − · · · − − − ···························· · · − · · ··················· − ······ 3 . 6 7 7 7 0 8 9 8 7 9 0 9 7 1 3 5 5 5 8 8 7 14 32 3 2 6 1 7 9 3 8 8 25 1 635 18 8 87 74 1 3 5 2 5 7 8 2 ...... 2 4 8 4 5 8 8 7 6 6 8 5 6 7 6 7 14 3 2 8 2 8 0 0 1 2 2 4 3 3 18 5 3 6 0 2 1 0 1 0 0 7 3 8 5 8 6 6 7 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 7 1 4 0 1 6 8 8 3 6 3 2 1 1 5 7 0 0 8 9 0 3 7 2 8 3 4 2 5 9 8 4 3 7 2 6 9 0 2 0 ...... 98 43 20 48 13 99 ...... Distance Rad. Vel. HR1 (continued) 61 108 63 145 56 190 09 145 06 142 576 158 132 91 166 60 159 75 165 74 172 71 156 54 164 06 170 79 149 81 172 59 170 64 125 05 100 4 148 51 169 08 113 59 178 08 21 07 33 105 76 84 04 103 76 110 71 110 75 113 68 147 67 132 05 168 22 31 71 83 248 86 06 39 73 73 61 1 41 76 126 67 104 0 124 9 111 481 151 155 77 150 74 163 ) (pc) (km s ...... 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 9 1 8 2 5 8 3 1 ...... 94 86 96 94 17 90 36 68 96 40 09 45 41 19 44 62 31 85 60 48 32 76 12 09 40 90 83 54 99 83 58 57 57 57 25 57 25 60 21 37 21 ...... Table 4 continued 3 9 16 10 14 12 19 35 13 15 129 Table 4 − − − 135 − − − − − − − − − 6862 15 8 780706 7 10 14 76393 11 12 59 13 73 14 0 12 7366 13 14 0682 7 11 7 8 10 67 9 3 23 0081 11 20 12 0706 131 67 95 04 0 65 13 6206 12 10 31 4 9 199 27 49578 17 11 1 6 17 6305 19 25 04 75 56 60 06 83 3 28 3 2 1 49 26 ) (mas yr ...... 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 5 0 9 6 6 4 9 2 1 4 0 4 9 9 ...... 91 97 53 12 98 67 34 12 91 30 57 18 95 14 69 70 33 56 87 15 29 63 35 48 15 85 37 45 25 72 43 34 06 90 79 ...... α 17 12 13 7 9 12 15 14 33 29 35 32 13 12 µ 19 16 13 14 14 16 15 14 20 12 12 21 14 14 17 18 14 39 36 34 32 13 16 13 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type COL K0IV/V 04:59:05.759 –63:25:29.48 28 d Name Assoc. Spectral R.A. Decl. CD–37 2904TYC 7074–1129–1TYC OCT 7074–1427–1CD–32 OCT OCT 3255 (G7)TYC 7631–1464–1 (G4)HD OCT G0 49096HD OCT 49155 (K0)HD 06:34:24.148 49756 –31:23:00.27 HD (F5) 06:35:51.931 49964 –31:12:45.71 06:33:40.386 OCTTYC 5962–379–1 –37:24:56.27 OCTHD 06:42:32.321 50653 OCT A9V –40:31:05.13 OCTTYC 7632–1686–1 06:39:58.988 F3V OCTTYC –32:52:29.37 OCT 7628–69–1 (G7) F3V A7IV OCT OCT (G6) 06:44:02.786 –50:31:34.03 06:45:20.784 06:50:03.773 (G7) A2V –38:46:26.34 TYC 06:47:38.494 –22:29:47.83 7629–1509–1 06:47:56.470 –46:33:27.30 HD OCT 06:53:28.601 54504 –53:10:41.43 –39:45:42.70 HD 57723 06:56:48.970 (F5) 06:52:24.379 –39:20:18.63 –38:37:03.26 OCT OCT 07:05:03.602 F3V –38:27:37.79 F2V 07:06:55.219 –45:03:04.33 07:15:41.426 –72:44:28.74 HD 33512HD 35289TYC 9170–2192–1 OCT OCT OCT K0 F5/6V F3V 05:09:02.438 05:35:38.219 –36:27:52.13 –71:30:02.76 CD–28 05:21:26.132 3128 –45:20:27.88 OCT F5 06:33:32.643 –28:36:09.78 CD–40 2836HD 54154TYC 8537–2148–1 OCT OCT OCT (G0) (G2) F3/5V 07:02:02.563 07:00:44.227 –53:27:10.44 –40:30:07.69 07:00:57.190 –72:33:37.95 HD 195266TYC 8602–718–1HD 19819 CAR2M0520–3110 BPMGCPD–35 525 (K0) K5/M0VHD 30984 CARN CARNTYC 8881–551–1 20:32:09.005 K2V COLHD 277665 K5Vk: –47:42:08.57 09:53:47.527HD 38700 –54:53:53.88 100 COL2M0640–0331 (G6) 03:08:22.853TYC 05:20:04.689 4271–37–2 COL –60:10:19.20 –31:10:00.51 F5VHD 108735 COL COL COL2M1238–6404 208 04:41:15.776 K0 59 –35:13:58.17TYC 8659–111–1 G8 K5Ve G0VHD 04:51:03.863 111875 LCC LCC EPSC 34 –27:31:11.13TYC 8997–601–1TYC A6IV 8660–441–1 05:12:23.065 LCC (K4) (K4) 22:06:36.746 32 TYC +41:19:37.30 05:46:42.439 06:40:22.361 8674–2473–1 +63:45:16.91 LCC LCC –21:49:36.69 –03:31:59.63CPD–43 LCC 395 (K3) 52 12:30:17.556 (K3) 80 G3/5III/IV 12:38:23.710 12:41:15.170 18 –72:59:07.02 (K2) 1 –64:04:50.47 –58:23:31.36 12:53:23.076 OCT –65:40:28.14 12:53:33.782CD–33 2814 –64:07:21.66 13:03:50.868 (G4)TYC 8534–1243–1 13:32:18.708 –58:20:54.51 –59:59:08.35 CD–28 OCT 2901TYC OCT 6510–2246–1 (G8)TYC OCT 03:50:29.486 8538–1564–1 –43:37:05.86TYC OCT (F6) OCT 7074–1187–1 (G6)HD OCT 46603 (G6) F8 6 06:15:56.376 –54:18:19.84 (G2) 06:13:55.974 –33:26:09.81 06:21:18.183 –25:16:22.08 OCT 06:24:50.364 –55:43:56.10 06:19:11.910 06:27:18.229 –28:41:45.69 A1IV/V –31:15:06.07 06:32:58.458 –30:51:47.09 16 Gagne´ et al. c Ref. b EELmXEX,E –,–,–,– E 8,–,–,– 11,–,–,– EX 8,–,–,– E –,–,–,– 11,–,–,– X,EE 26,–,–,– E –,–,–,– E 11,–,–,– E –,–,–,– –,–,–,– X,UV,EUV,E 14,–,–,– –,–,–,– –,–,–,– –,–,–,– 33,–,–,– 11,–,–,– X,EUVUV –,–,–,– –,–,–,– 11,–,–,– X,EUVE,Lm –,–,–,– –,–,–,– –,–,–,– XUVE 19,–,–,– 35,–,–,– 8,–,–,– E –,–,–,– E –,–,–,– X,UV,EX,EE 36,–,–,– –,–,–,– –,–,–,– E –,–,–,– EEE,LmEEE 11,–,–,– –,–,–,– E –,–,–,– X,Li,E,IsUV –,–,–,– 19,–,–,– 10,10,10,– 29,–,–,– –,–,–,– 11,–,–,– E –,–,–,– UV –,–,–,– IsUVXX,EUV,E –,–,–,– E,Lm 19,–,–,– 8,–,–,– –,–,–,– 29,–,–,– –,–,–,– Group Known Youth ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ex 6 1 3 2 6 8 6 0 0 5 7 3 7 9 1 1 5 7 4 1 1 0 5 4 3 5 5 9 7 2 1 6 0 5 2 0 6 1 3 9 1 9 0 1 6 2 8 9 ...... Nσ IR 1 2 1 1 1 1 2 3 0 2 2 2 1 1 2 1 2 1 1 1 1 3 2 1 1 6 3 1 2 2 1 1 ······ 0 2 1 01005 2 3 0701 1 1 01004 1 3 01 1 005 1 006 2 05 1 005 01006 1 0 09 2 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· NUV 78 28 17 52 09 46 03 28 ...... 985 055 870 274 942 188 ...... 19 15 15 16 18 16 19 12 13 13 12 04 08 45 36 00 15 73 67 00 57 68 84 12 15 15 30 ...... ······ 0 0 0 0 1 0 0 1 0 0 0 0 ) (mag) 1 2 1 0 − ± ± ··· ······································· ····················· ············ ·········································· ··· ··· ············ ··· ······ ········· ········· ··············· ········· ··· ········· ········· ············ ··················································· ········· ······ ······ ········· ··· ··············· 3 9 9 9 5 5 6 7 5 0 1 3 8 9 9 7 6 6 6 6 8 7 9 7 3 9 0 0 6 5 5 95 5 4 7 4 15 7 8 5 1 9 4 ...... 4 5 5 11 10 4 5 5 6 4 4 6 5 4 7 4 15 5 24 4 14 9 3 3 8 22 6 15 4 6 3 5 3 4 6 5 5 4 3 6 5 4 5 5 7 3 3 7 4 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 4 2 4 4 4 1 1 2 0 2 8 4 0 2 2 6 8 4 5 6 4 4 2 0 9 9 3 2 4 2 2 3 9 7 2 0 3 8 3 1 6 9 ...... Distance Rad. Vel. HR1 (continued) 5810 197 140 97 192 68 158 09 158 54 132 36 128 06 133 538 114 130 62 122 71 138 63 137 50 127 60 148 5606 155 134 38 122 53 184 8852 99 121 33 201 05 111 65 120 575 181 161 53 143 4 134 35 118 0 131 95 123 38 135 08 127 61 127 87 136 56 142 48 152 541 117 48 85 129 09 148 40 133 30 118 65 142 52 185 2 123 3 116 96 131 131 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 2 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 3 2 6 0 4 8 0 1 0 ...... 43 13 14 91 47 40 83 95 44 19 57 24 02 39 93 22 05 38 88 35 49 99 46 58 14 20 74 87 65 55 79 56 60 66 31 37 84 30 85 14 ...... 8 . Table 4 continued 7 9 8 12 6 14 23 22 7 17 16 13 − 13 19 13 18 19 13 18 14 14 20 13 13 26 15 19 23 21 20 20 13 29 23 15 21 15 23 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 46 09 56 010 11 44 3406 16 1 16 354 17 15 274 11 79 11 15 2 14 8 09 11 2 8 3 61 85 08 2 7 2 67 0 1 5 16 27 9 41 43 09 6 4 9 7 0 3 3 57 75 6 6 1 97 ) (mas yr ...... 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 2 1 0 0 0 1 2 1 0 2 0 1 2 0 0 0 1 3 1 1 4 1 1 0 0 0 1 1 1 3 0 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 0 0 9 3 4 4 8 3 4 4 7 8 3 5 7 0 5 8 0 1 6 0 4 5 7 9 ...... 86 80 57 53 03 43 60 25 56 27 14 56 63 75 33 51 54 78 79 50 68 88 04 ...... 0 1 1 . α 21 0 13 14 14 18 19 27 22 22 18 30 33 22 0 3 µ − − − 12 13 15 13 15 29 24 22 26 13 − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type UCL K3Ve 14:17:20.064 –32:30:47.33 d Name Assoc. Spectral R.A. Decl. HD 56735HD 141824HD 161382HD 160581 OCTTYC 9063–458–1 OCTHD 163837 OCT OCT F3VHD 76162 F0V OCTCD–60 2373 (G3) F0IVTYC 8581–1172–1 F3/5V OCTHD PL8 07:16:01.397 76413 16:03:41.918 –46:52:00.62 PL8TYC PL8 8173–504–1 A9V –81:32:18.19 17:52:20.141 18:04:43.990TYC 17:56:44.278 –72:46:48.32 –65:09:15.75 8586–850–1 (K3) PL8 –82:04:08.89HD A3V 302118 F5 PL8 PL8TYC 8595–2309–1 5 9 (K2) 18:13:30.103 8 TYC PL8 8588–1331–1 –81:39:58.09 08:53:02.614 (G2)TYC PL8 A3V –59:18:47.99 663–631–1 08:51:51.989 PL8HD –57:17:36.88 08:51:54.670 23586 12 (G2) TAU 09:00:26.638 –60:42:06.12 HD 285373 (K1) –50:21:20.11 G0 09:04:51.379 08:53:27.007 –54:42:59.45 (G8) –56:31:09.82 09:08:16.570 TAU –59:35:08.73 09:20:45.444 TAU –55:59:39.27 09:06:52.406 F0 03:43:29.007 –58:45:23.45 F8 +14:45:30.85 6 03:46:55.584 04:03:22.370 +18:17:02.18 +17:16:26.88 7 4 HD 285392HD 285370HD 25737 TAU TAU K5 TAU G0 F5 04:04:54.265 +16:39:25.32 04:05:19.706 +17:40:19.78 04:05:47.178 10 +21:12:22.65 9 5 HD 281602HD 26128AHD 284208 TAU TAU A5 TAU A8IV G0 04:08:53.515 04:07:05.148 +23:05:54.63 +29:26:25.72 04:12:05.736 11 +21:04:10.66 5 2 HD 283560HD 284329HD 27900 TAU TAU G0 TAU A2 F5 04:16:20.415 +24:01:10.02 04:20:48.062 +21:15:04.22 04:24:57.692 2 +20:03:23.71 3 0 HD 286781 TAU G5 04:27:57.084 +14:10:42.19 2 HD 28944 TAU F5 04:34:28.284 +23:06:33.04 0 HD 127444TYC 8680–285–1 UCL UCL (G6) F6V 14:41:16.392 –52:32:07.09 14:32:50.263 –46:42:07.46 HD 284612 TAU F5CD–51 7806 04:38:52.150HD +20:46:50.42 121191TYC 7807–315–1TYC 5 UCL 7811–566–1 UCLTYC 7816–16–1 UCL UCLTYC F2 7804–1669–1 (K2) UCLCD–31 UCL 11053 (K3) A5IV/VTYC 7303–851–1 (K2)HD (K3) 127359 UCL 13:55:18.838 14:05:38.851 13:53:01.133 –53:31:43.01 –40:20:32.25 14:09:57.823 –52:13:26.47 –42:33:21.77 (K2) 14:11:24.175 14:12:36.098 UCL –44:21:35.67 –38:30:46.43 F3V 14:31:21.134 –35:07:50.67 14:31:33.475 –28:37:34.77 HD 284659 TAU A2HD 119740 04:42:12.192 +22:56:32.27 UCL A9V 13:45:45.946 –34:44:42.86 TYC 2378–56–1HD 284761 TAUHD 286269TYC 711–294–1 (K0)BD+43 1331 TAU TAUTYC 7692–2943–2 TAU UCL G0 (K3) TAU 04:46:19.686 F8 +32:15:15.77 F8 K0III 05:17:49.189 5 04:49:45.834 +14:34:41.44 +22:23:47.83 04:58:07.085 05:43:14.529 09:37:02.714 +15:38:39.88 +43:22:24.36 –38:17:16.69 New Young Association Members in Gaia–Tycho 17 c Ref. 26,–,–,– 14,–,–,– 26,–,–,– 14,–,–,– 8,–,–,– 14,–,–,– –,–,–,– –,–,–,– 14,–,–,– 14,–,–,– 14,–,–,– 26,–,–,– 14,–,–,– 9,–,–,– 17,–,–,– –,–,–,– 9,–,–,– –,–,–,– –,–,–,– –,–,–,– 9,–,–,– 26,–,–,– –,–,–,– b LmUVEE,LmE 19,–,–,– E –,–,–,– X,E –,–,–,– UV,E 14,–,–,– 8,–,–,– 14,–,–,– –,–,–,– 11,–,–,– EEX,EEEX,E 11,–,–,– X –,–,–,– 11,–,–,– –,–,–,– –,–,–,– 19,–,–,– 19,–,–,– E –,–,–,– E 19,–,–,– LmUV 8,–,–,– 9,–,–,– LmXEXX,E 29,–,–,– 37,–,–,– –,–,–,– 38,–,39,– –,–,–,– E 40,–,–,– Group Known Youth ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ······ ···································· ··· ··· ························ ··· ··· ··· ··· ··· ············ ··· ex 2 0 6 5 8 6 8 0 9 4 2 5 6 5 0 8 1 8 8 1 0 0 0 6 0 0 0 3 8 9 2 2 7 3 0 0 1 6 ...... Nσ IR 2 2 2 4 2 2 3 2 1 1 1 0 2 2 ·········0 0 1 0 0 ·········0 1 ·········0 1 0 0 0 1 1 1 2 ·········1 1 ········· 041 0 1 03 2 1 04 0 02 03 0 007 06 0 06 3 ...... 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· 7 2 4 . . . NUV 90 67 34 80 91 94 91 ...... 910 18 19 . 21 16 17 18 15 16 18 18 14 90 . 46 71 02 00 73 00 88 ...... 0 0 0 0 0 0 1 0 ) (mag) 1 − ························ ··························· ······ ········· ············ ····················· ··· ········· ·················· ········· ························································································································ ········· ·········· · ·········· − ··············· ······ ········· ······ ··· ············ ··· ····················· ··························· ······ 0 0 8 6 8 4 7 7 1 2 2 8 4 2 89 28 48 58 44 4 0 2 3 81 5 8 98 23 80 4 53 8 7 57 3 9 7 0 0 3 5 3 42 ...... 4 4 8 21 5 7 5 7 25 6 9 4 5 3 7 13 2 0 11 0 0 0 0 1 1 1 1 0 1 5 0 0 0 1 0 4 7 0 9 5 3 4 2 1 2 13 1 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 3 3 4 7 8 9 7 4 6 4 2 1 4 6 7 3 0 3 9 0 3 0 2 6 4 9 2 2 5 8 ...... 74 82 98 13 19 29 49 54 87 77 08 72 ...... Distance Rad. Vel. HR1 (continued) 36 130 106 150 115 0 168 63 192 43 134 46 109 72 147 1 166 066 94 9 176 73 134 130 55 119 2 180 149 33 166 02 69 46 56 86 30 38 42 743 37 42 3 53 6196 55 60 7653 69 47 60 76 45 141 47 64 62 30 72 52 51 42 41 40 6 140 05 146 47 47 41 190 43 157 06 123 57 121 63 201 9 48 770 50 62 35 61 60 29 ) (pc) (km s ...... 0 1 0 1 0 0 0 0 1 0 2 1 0 4 1 3 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 2 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 5 5 0 4 4 3 4 5 2 8 9 5 5 ...... 61 54 31 62 69 79 09 34 27 66 57 94 43 52 76 60 31 60 62 32 43 75 61 55 15 28 05 67 36 59 52 12 47 57 28 ...... Table 4 continued 19 21 21 21 25 34 21 30 57 60 7 22 64 52 29 23 22 26 33 24 40 29 27 61 28 44 54 60 36 90 26 17 22 22 22 18 97 Table 4 − − − − − − − − − − − − − − 110 115 121 132 195 − − − − − − − − − − − − − − − − − − − − − − − − − − − − 04 4 75 6 6 4 47 97 9 08 2 4 68 9 6 9 28 02 19 75 51 36 79 0 7 51 73 74 95 93 54 53 82 3 74 189 39 43 55 1 08 84 77 79 09 96 0 85 1 1 8 9 ) (mas yr ...... 0 1 2 0 2 2 0 0 3 0 3 2 0 2 1 2 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 2 0 0 0 0 0 0 1 0 1 1 1 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 3 2 9 1 6 7 0 4 8 9 1 7 6 0 3 6 9 4 3 0 0 9 ...... 77 93 72 89 64 57 01 11 26 06 00 00 99 99 01 22 25 42 68 37 70 75 86 63 15 40 ...... 9 7 2 ...... 3 . α 12 18 13 18 11 11 17 93 56 68 99 7 8 µ − − − − 22 27 23 20 19 11 13 22 84 12 37 − − − − − − − − − − − − − 111 − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 131622TYC 6775–1126–1TYC UCL 7325–26–1HD 137582 UCL UCLTYC (K2) 7335–550–1TYC 7840–1265–1 UCL K0III/IV (K1)HD UCL 141518 UCLTYC 7341–482–1 15:25:16.608 14:55:28.922 (K2) –24:45:53.76 –29:48:19.48 TYC (K0) 7858–585–1 UCL F0IV/V 15:26:56.971 UCL UCL –36:02:43.52 (G7) 15:29:33.031 15:36:11.532 15:37:22.673 –57:14:52.00 –34:45:20.85 (G6) F3V –40:17:59.99 15:54:24.562 –36:08:57.41 16:37:42.089 15:50:44.350 –40:10:17.38 –33:39:49.36 HD 149848TYC 7871–694–1HD 321883 UCLHD 154742 UCLHD 323198 (K2)TYC 6839–501–1 UCL G3VTYC 7415–1656–1 UCL UCL UCRA UCL K0 16:42:00.137 –40:02:58.12 (K2) (K0) F5V 16:38:31.354 –31:06:04.29 K0 16:42:07.154 18:41:03.257 17:40:34.574 17:09:32.921 –37:28:30.48 –33:50:46.38 –29:37:44.20 –46:29:07.35 17:20:27.737 –39:54:01.62 HD 174689 UCRA A0V 18:53:24.686 –37:16:28.19 3 HD 175048 UCRA A5IV/V 18:55:15.317 –38:34:45.15 3 TYC 7153–1287–1CD–35 ABDMG 9294 K5TYC 2655–3429–1CD–61 ABDMG 6893 (K8)HD ABDMG 287167 (K3)HD 32965 09:18:32.414TYC ABDMG –31:25:56.71 698–538–1 K5 19:36:14.436TYC 698–538–2 BPMG +30:23:45.19 BPMGBD–05 14:09:40.114 1229 –35:41:36.17 K0 BPMG BPMGHD K2 70703 40 TYC (K5) K3V 8896–340–1 23:54:40.399TYC BPMG 8577–2627–1 –60:51:34.91 CARNCD–44 CARN 5788 G5 04:48:47.549 109 (K1) CAR 05:07:55.024HD 297970 +09:40:27.52 05:07:55.160 (G8) 05:06:30.075 +08:24:07.83HD +08:24:06.42 –11:02:35.80 305342 A0/1V 23 BD+26 CARN 537 23 18 TYC 35 05:59:42.229 05:20:40.420 5944–411–1 CARN K5 08:46:23.662 –62:08:32.51 –05:47:11.63 –56:46:00.54 08:21:00.422 COL CARN K0 –52:13:40.39 COL K0 19 9 (G5) G5 09:44:16.404 –44:38:49.65 10:16:53.210 –51:10:08.46 06:05:07.854 10:33:02.854 –21:43:30.77 –61:44:22.19 03:18:20.460 +26:54:32.76 9 95 TYC 7917–609–1HD 177386 UCRA (G5) UCRA F3IV/V 19:03:55.135 –38:23:52.59 19:05:56.748 –36:11:46.81 5 5 BD–18 4115HD 142249HD 144393BD–13 USCO 4465TYC 6809–836–1 USCO (G9) USCO USCO F5V USCO (K2) F8CD–30 (K1) 15:37:49.416 658 –19:20:57.54 Wolf 1259 15:54:14.518TYC 1853–1452–1 –23:10:08.32 16:52:00.240TYC ABDMG –23:15:31.96 5919–1490–1 16:38:19.762 16:06:06.461 ABDMG K7 –13:44:54.56 BD+11 –12:18:15.56 ABDMG (K2) 1690 (K1) ABDMG (K1) ABDMG 01:54:17.741 05:06:13.920 G5 05:20:39.547 –29:23:24.20 +27:31:56.60 –18:36:58.35 03:41:03.642 +23:25:15.82 74 28 10 47 07:50:20.340 +11:35:59.28 New Candidate Members with NoG 133–40 Known Signs of Youth ABDMG (M0) 01:47:29.691 +34:13:06.28 119 18 Gagne´ et al. c Ref. –,–,–,– 11,–,–,– 11,–,–,– –,–,–,– 41,–,–,– 35,–,–,– 14,–,–,– 14,–,–,– 14,–,–,– –,–,–,– –,–,–,– –,–,–,– –,–,–,– –,–,–,– 19,–,–,– 8,–,–,– 8,–,–,– –,–,–,– 19,–,–,– –,–,–,– –,–,–,– –,–,–,– –,–,–,– –,–,–,– 19,–,–,– 19,–,–,– 8,–,–,– 8,–,–,– 14,–,–,– 8,–,–,– –,–,–,– 26,–,–,– 9,–,–,– 8,–,–,– –,–,–,– –,–,–,– 19,–,–,– 19,–,–,– 14,–,–,– 19,–,–,– –,–,–,– 19,–,–,– 19,–,–,– 8,–,–,– –,–,–,– –,–,–,– –,–,–,– –,–,–,– 8,–,–,– b Group Known Youth ·········································· ······ ······················································ ············ ······················································ ························ ········································································ ············ ······ ex 0 2 2 4 7 4 2 3 9 0 1 3 5 9 4 2 3 2 3 4 3 1 0 6 8 2 3 3 7 0 9 3 0 0 8 2 0 0 0 1 9 2 5 5 3 4 5 ...... Nσ 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 IR 0 0 1 1 1 1 1 0 1 0 0 0 1 0 04 0 006 0 003 0 004 1 03 0 005 1 008 1 ...... 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ············ NUV 97 90 . . 226 144 339 412 829 . . . . . 16 17 14 12 13 13 14 23 . 0 ) (mag) 1 − ··························· ········· ··························· ······ ································· ·················· ······························································································································ ··························· ··············· ··············· ··························································································· · · − ········· ········· ········· 3 4 4 9 6 4 7 4 0 6 1 1 3 8 3 9 6 8 8 7 0 8 5 2 8 1 8 9 7 9 1 3 5 4 4 3 5 6 1 ...... 5 5 4 5 7 9 3 4 5 9 3 1 8 8 21 27 4 3 5 3 11 3 4 4 3 13 14 23 10 5 5 10 17 2 4 3 5 6 2 5 5 8 7 8 8 6 4 16 5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 4 4 5 7 6 7 7 7 1 1 6 5 7 8 8 6 3 7 7 3 4 4 6 0 4 5 9 0 6 2 7 9 0 9 6 0 4 5 4 ...... Distance Rad. Vel. HR1 (continued) 58 133 48 134 63 127 55 125 66 175 50 189 9891 235 84 219 122 1 128 53 216 195 134 148 040 100 44 67 131 10 172 96 153 69 215 156 62 154 38 120 40 121 42 145 0581 144 163 66 120 49 124 06 125 38 117 09 127 69 156 47 140 97 101 15 115 61 130 81 110 35 137 66 164 84 108 05 150 53 146 03 160 72 170 3504 190 169 06 170 52 167 9 120 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 3 6 6 3 0 3 ...... 60 99 94 55 89 39 49 64 08 53 27 83 57 77 12 02 49 31 83 59 84 80 96 77 18 18 10 72 14 65 85 43 83 57 09 38 15 22 53 77 79 86 25 9 ...... Table 4 continued 9 8 4 29 8 15 7 25 18 18 9 − 26 20 18 17 18 26 20 22 13 17 19 19 15 16 13 10 10 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − 6552 13 93 14 15 93 07877 9 64 9 44 58 87 79 09 6 4 1 91 82 10 39 5 1 17 1 8497 12 7 94 1348 27 14 86 367567 9 11 05 22 61 13 03 13 72 12 37 11 0405 8 10 64 10 6 76 86 0 1 2 0 4 2 ) (mas yr ...... 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 1 1 0 1 3 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 8 1 2 3 8 8 3 3 6 5 4 0 5 ...... 36 95 43 54 82 29 71 68 84 73 40 54 06 60 27 12 61 60 02 21 19 37 65 22 36 84 48 75 23 63 84 16 90 46 84 74 ...... 4 ...... α 16 0 1 0 18 20 20 14 15 20 0 µ − 16 17 19 37 37 12 14 13 25 14 15 14 16 14 15 15 18 32 14 15 14 57 27 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. CD–43 3185HD 58620TYC 8753–682–1HD OCT 176966 OCTHD 202969 OCTHD (G1) 76717 (G4)HD 78387 OCT F3VTYC 8591–2056–1 OCTHD PL8 07:23:48.581 22510 F5V 18:37:53.045 PL8 –43:36:23.42 HD –57:34:03.30 24454 F8/G0V PL8HD 07:24:21.773 281427 (G2) –43:12:07.29 HD F3V 285279 21:22:17.734 8 19:06:03.581 TAUHD –64:47:53.20 A8V 281514 –58:09:25.42 TAUHD 281973 09:16:41.172 TAU G0 30 TYC –56:37:23.17 1272–784–1 10 08:55:34.178 TAU G0BD+18 –54:50:34.38 641 09:05:26.338 TAU A7 TAUHD –58:55:29.56 284494 F5 TAUHD 284658 (K2) F8 03:37:56.112HD 30633 +21:42:32.96 TAU G0 03:54:12.847HD 285147 03:58:57.568 +24:34:10.73 TAU +29:49:12.68HD 287553 G5 04:01:30.388 7 TAU 04:23:08.654HD 12 +19:48:38.93 +19:12:07.14 242207 04:02:51.262 G5 TAUHD +29:01:57.92 5 04:21:11.262 244945 F5 TAU +32:49:48.38CD–37 5 7822 TAU 6 A3TYC 04:29:07.952 7833–37–1 G0 4 TAU +18:27:17.90HD 04:30:27.488 133730 5 G0 THOR UCL +21:57:25.08 HD TWA 134669 04:42:05.850 F6V 4 G0HD +23:03:36.37 135849 04:49:57.137 (G6) (G7)TYC 05:02:48.329 7321–285–1 +15:31:51.65 UCL +23:12:41.66 HD 05:11:02.336 136854 UCL UCL 05:16:30.252 +02:44:24.34TYC 7844–885–1 +14:08:48.60 UCL F6/7V 05:34:02.079 15:02:46.042 12:20:55.877 +11:20:27.99 UCL (K2) F6/7V –43:18:10.51 –38:18:42.59 3 UCL F5V 1 15:07:07.858 (G5) –35:37:50.67 9 15:13:02.383 F3/5V 15:20:01.392 –49:04:05.02 –34:36:40.72 15:18:55.428 –44:30:01.43 15:31:52.630 15:24:12.082 –42:00:34.57 –36:31:28.03 TYC 7101–1613–1CD–42 OCT 3089 (G2) OCT (G3) 07:01:40.781 –36:41:30.44 07:15:55.901 –42:29:28.62 TYC 8979–2156–1TYC LCC 8979–1618–1HD LCC 27908HD (K3) 38702HD (K8) 40884CD–32 3040 OCTTYC 7625–1291–1 12:23:32.184 OCT –62:40:41.25 HD OCT 45632 12:29:00.648 G1V OCT –63:12:18.86 HD OCT 46142 F8 (G6)HD 49592 A8/9VTYC (F6) 7100–1341–1 OCTHD OCT 04:21:49.918 51486 –50:00:14.71 OCTHD 06:26:45.138 51607 06:00:50.042 05:46:40.711 A2V –43:47:18.86 OCT (G5)HD –21:56:26.12 52059 06:26:29.924 –22:43:54.30 A1VTYC –32:14:25.59 6527–1103–1 A2V OCT OCT OCT 06:26:47.398 06:47:53.549 –37:13:56.88 A1V –36:50:05.47 OCT (G7) 06:29:49.003 –38:00:20.71 A0V 06:47:21.168 –38:55:16.40 F0V 06:55:59.131 07:00:22.661 –34:57:25.61 –25:12:05.80 06:56:17.863 –38:36:34.58 06:57:52.711 –40:22:44.84 HD 309445 LCC G5 11:59:59.604 –62:44:44.87 New Young Association Members in Gaia–Tycho 19 c Ref. 11,–,–,53 8,–,–,54 19,–,–,54 43,–,–,44 26,–,–,45 14,–,–,45 47,–,–,45 –,–,–,– 11,–,–,– –,–,–,– 11,–,–,– 9,–,–,– 9,–,–,– 26,–,–,– 29,–,–,– 29,–,–,– 9,–,–,– –,–,–,– –,–,–,– b ··· ··· ··· ··· ··· ··· ··· Group Known Youth HYA ··········································Nonmember X,UV 22,20,–,42 ······ ·················· ex 40 LCC9 LCC2 Lupus Sco-Cen E E E X60 Sco-Cen USCO 55,–,–,55 X,Lm 19,–,–,53 56,–,–,56 –,–,–,57 X 29,–,–,53 29,–,–,53 68 CAR8 CAR2 CAR9 CAR X,Li,E,Lm7 Carina-Vela X,Li,E1 E Carina-Vela X,Li,E –,13,13,13 0 X,E CAR X,Li,E9 Nonmember 10,10,10,49 4 E Nonmember –,13,13,13 5 UV,E Nonmember X,Li,E 10,10,10,50 4 10,10,10,50 Nonmember –,–,–,51 8 E Nonmember6 E Orion –,–,–,52 –,–,–,51 –,13,13,13 LCC 8,–,–,54 E8 8,–,–,54 6 Lupus4 USCO Lupus E 8,–,–,53 1 E5 E USCO USCO 29,–,–,53 X,Li,E 19,–,–,53 19,–,–,54 19,–,–,54 54 CAR CAR X,Li,E X,Li,E 48,–,–,48 –,13,13,13 90 CRA UCL Lm E 58,10,10,59 10,10,10,60 0 Trumpler 33 94 Nonmember3 E Sco-Cen Sco-Cen E,Lm 46,–,–,45 26,–,–,45 0 HLY 9 4 3 0 9 0 0 2 0 0 7 ...... Nσ 2 2 1 0 0 1 2 1 2 1 2 2 0 2 1 3 1 2 1 2 0 2 0 1 2 1 IR 0 1 1 1 0 0 0 ··· 1 0 0 0 004 2 002 2 007 1 002 1 002 2 002 3 008 1 004 0 07 ...... 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· NUV 21 . 732 043 807 218 404 198 203 960 ...... 12 12 13 13 11 12 14 30 30 13 . . 23 11 49 32 42 02 03 10 33 81 04 21 16 19 ...... 0 0 0 0 0 0 0 − 7 0 1 0 4 0 7 0 002 ) (mag) . . . . . 1 0 10 0 1 0 2 0 0 0 0 1 0 − ± ± ± ± ± ± ± ± ± ····················· ··· ··· · · ······· − ··························· ············ ···································· ········· ········· ········· ········· ··························· ············ ··························· ······································· ··························· ··························· 0 8 3 1 . . . . 706 . 9 3 6 6 8 8 0 5 60 22 89 23 22 1 87 7 22 7 7 2 2 7 8 5 7 25 0 22 8 1 6 22 8 9 5 5 8 4 5 2 2 9 7 84 9 17 11 6 ...... 8 5 4 4 6 15 13 5 4 8 6 6 5 4 2 5 7 5 6 2 6 2 11 5 5 4 4 2 3 3 1 5 4 2 9 2 4 1 0 9 10 13 0 12 8 3 2 7 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 8 1 8 1 4 4 2 7 5 5 0 8 7 0 9 7 1 1 6 4 9 4 8 9 7 3 4 4 9 8 9 6 9 1 1 7 2 2 4 ...... 02 96 . . Distance Rad. Vel. HR1 (continued) 81 139 44 150 38 116 07 131 41 156 60 150 46 150 03 99 94 126 68 117 269 134 134 73 132 84 131 35 118 40 107 43 136 29 109 03 111 350 111 141 50 104 21 150 955 88 170 56 105 92 121 34 133 39 119 79 124 30 79 86 99 18 93 54 59 7 84 476 137 101 27 155 121 97 71 132 207 9 200 72 87 30 53 54 186 36 145 04 23 78 165 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 1 3 6 0 9 6 8 ...... 70 55 53 41 10 02 29 38 01 50 12 45 74 84 87 19 75 14 25 21 18 90 17 55 97 74 33 21 13 47 38 38 44 70 05 53 08 02 45 17 03 ...... Table 4 continued 13 42 38 26 21 22 19 21 23 31 20 23 16 34 14 15 13 16 15 17 34 25 28 26 49 26 77 40 19 36 29 45 23 98 20 20 Table 4 − − − − − − 113 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 4317 89 7 19 69 2 2 7 7 78 3 15 4 67 4 6 05 2 75 83 41 08 2 47 61 05 306 15 1 13 0 11 1 11 33 13 67 13 51 24 04 6 1 0 4 3 41 87 12 1 15 3 36 86 60 4 ) (mas yr ...... 1 1 0 0 0 0 2 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 2 2 0 0 0 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 9 3 3 8 1 7 0 2 6 4 2 8 6 7 4 8 6 6 4 3 0 4 8 ...... 97 19 96 99 84 86 15 61 51 07 52 79 50 65 53 27 35 76 02 81 08 74 43 23 90 ...... 2 9 ...... 4 . 6 . . . 6 α 10 9 14 13 19 16 13 15 2 2 25 23 24 12 13 33 15 29 14 12 16 µ − − − − − 18 11 12 26 16 25 13 24 20 15 28 39 13 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 118867LO LupHD 133971TYC 7335–194–1 UCL UCL UCL F7V UCL F5VHD 146626 A9V K2HD 147754 13:40:32.021 –46:31:13.97 15:41:41.064 –34:00:59.59 UCL 15:08:41.561 15:07:37.716 –40:17:09.43 UCL –46:03:15.95 F3V A9V 16:18:39.010 –35:24:30.99 16:24:56.299 –31:34:00.07 TYC 8594–1049–1CD–55 PL8 2543CD–54 2644TYC 8591–1338–1 (G6)TYC PL8 PL8 8595–993–1TYC PL8 8595–1740–1 PL8HD PL8 25161 (G3) G8V 09:01:45.523HD –58:41:05.99 284154 G5V(e) (G4)HD 29181 (G3)HD 31315 09:15:08.981 09:09:29.323 09:13:16.855 TAUHD –57:00:33.34 32561 –55:38:26.98 –55:29:02.93 TAU 09:15:26.2252M0507+1010 09:15:57.564 –58:47:23.72 A0 TAUHD –59:11:06.94 116335 G0 TAUHD TAU 116553 F0 TAU A0 K2 UCL 04:00:40.658 A2 04:05:14.358 +20:24:47.79 UCL +20:08:21.30 F6V 04:36:27.648HD 144049 +18:39:56.36 4 A9V 04:55:19.567 05:07:31.146TYC 4 7851–810–1 +16:37:12.83 +10:10:36.66 05:04:50.053TYC 6801–214–1 +18:15:13.93 UCL 0 13:23:44.354 UCL UCL –45:11:53.31 13:25:00.581 (K3) –43:55:21.02 CD–51 10295 A5/7III: G0VHD 176497 16:11:50.662 16:08:30.686 UCL –27:33:10.32 –38:28:27.22 16:04:52.819 –26:40:14.21 UCRA K2V(e) A0IV 16:33:50.417 –51:19:01.93 19:02:06.797 –36:21:42.28 4 TYC 8927–2869–1CD–54 PL8 2499 (G4) PL8 G5IV 08:59:04.426 –60:51:46.39 08:59:28.711 –54:46:48.90 CD–25 11133 USCO (G3) 15:51:07.891 –25:38:59.66 HD 313300HD 244198TYC 8957–871–1HD 99644 LCC BPMGHD 120641 COL K0TYC 8931–2967–1 (K5) PL8 K0 LCC LCC (G1) 18:23:51.206 10:46:22.478 A3III/IV –19:30:17.46 –61:13:37.72 B8V 05:30:34.137 11:26:58.778 +32:39:21.37 –69:02:48.46 08:52:43.543 7 –63:04:17.69 31 13:52:02.906 –52:48:36.12 TYC 7341–545–1HD 147236 UCLHD 150972HD 152355 (G4)HD 153749 UCLHD 322681 UCLHD 154743 UCL G6/8 15:57:32.496TYC 7870–216–1 –35:45:24.19 UCL G0/2VTYC 6212–1023–1 UCL UCL F5V USCO UCL G0V 16:22:16.615HD 16:45:40.790 –38:42:39.12 34718 (K4) K0 (K2) –31:02:26.83 Reclassified F0V Candidate 16:54:56.273 Members –45:04:34.39 2M0346+1709 17:03:28.757 –46:27:15.81 EX 17:19:18.994 16:01:56.462 Cet 118TAU 17:05:50.705 –37:30:39.74 –21:37:04.26 F5 ABDMG 17:09:30.115 –38:15:14.82 K4/5 –46:32:28.66 BPMG 03:46:14.875 05:20:35.038 +17:09:08.33 +24:06:32.49 G9Vk 47 2 01:37:35.640 –06:45:39.00 171 TYC 7846–954–1 UCL (G8) 15:54:56.858 –41:35:31.66 TYC 6780–773–1 USCO (K1) 16:06:50.285 –23:06:42.01 20 Gagne´ et al. c Ref. 10,10,10,81 82,70,–,83 5,5,5,77 14,7,–,70 14,70,–,66 75,76,–,75 10,10,10,54 10,10,10,54 b ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth THA X,Li,UV 10,10,10,54 HYA 3 ROPH Li,E,Lm 19,–,–,64 ex . 8 UCL X,E 19,7,–,54 13 UCL UCL X,Li,UV,E,Lm 10,10,10,54 X,Li,E 10,10,10,54 46 UCL UCL X,Li,E,Lm Li,E,Ca,Lm 10,5,10,85 10,10,10,54 50 THA THA X,Li,UV,E X,Li,UV,Lm 8,6,–,54 10,10,10,54 0 TAU4 THA X X,Li,E,Ca 10,10,10,53 35,7,–,54 13 PLE7 PLE 5 PLE1 PLE Li6 PLE PLE X E 10,10,10,54 52,84,10,84 –,84,–,84 1 PLE 1 OCT X,Li,UV,E 8,80,–,54 4 LCC X,Li,E,Lm 10,10,10,54 0 LCC E 10,10,10,54 1 LCC E 11,7,–,54 2 LCC X,Li 10,7,10,10 7 LCC X,Li,E 10,10,10,10 8 LCC X,Li,E,Lm 79,7,13,10 0 LCC X,Li,E,Lm 10,10,10,10 1 LCC X,Li,E,Ca,Lm 78,70,–,70 4 LCC 0 LCC X,Li,E 10,10,10,10 2 LCC X,Li,E 10,7,10,65 8 LCC X,Li,E 14,70,–,70 0 LCC 0 HYA 0 HYA UV 10,10,10,10 5 COL Li,UV,E 74,7,–,73 5 COL X,Li,E 72,70,–,73 9 COL X,Li,UV,E –,70,–,71 2 COL X,Li,UV,E,Ca 69,70,–,66 4 COL Li,UV 67,4,–,68 4 CBER Lm 5,5,5,66 05 Sco-Cen9 Sco-Cen4 Sco-Cen X,E,Lm Sco-Cen X,E X,E 19,–,–,44 E,Lm20 ABDMG6 9,–,–,61 BPMG 14,–,–,62 X,E BPMG –,–,–,63 X,Li,Lm X,Li,E 10,10,10,10 10,65,10,65 10,7,10,10 ...... Nσ 1 1 0 ··· 2 1 1 0 0 2 0 1 2 2 2 1 1 1 2 3 1 2 2 1 0 0 2 IR 1 2 1 1 3 10 2 1 1 02006 3 2 01 2 07009 2 0 03 04 2 01 0 02 1 04 1 01 2 03 1 ...... 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ······ ··· ··· ··· NUV 77 89 81 42 33 16 94 43 09 68 ...... 714 589 . . 01 13 35 01 14 07 18 0806 17 03 03 18 31 17 20 15 25 16 05 11 06 ...... 35 16 67 53 14 27 00 09 18 44 36 17 00 26 46 32 01 15 17 23 15 54 67 92 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ························ ······ ······ ······ ······ ······ ······ ······ ······ ······ 0 0 0 − − − − − − − − − − − − − − − 6 9 3 5 0 9 ) (mag) . . 5 3 2 9 2 1 2 ...... 1 0 0 1 0 1 0 2 0 1 0 1 0 3 2 1 0 3 0 2 0 1 2 0 5 1 0 1 0 1 1 1 4 1 2 2 0 1 0 2 0 1 0 1 51 2 0 0 3 2 0 0 1 0 0 0 7 0 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 2 ··· ··· ··· ········· 4 8 1 . . 8 7 8 7 1 8 ...... 4 0 − − 979 6 9 7 80 14 6 97 9 5 21 7444 10 13 6 13 74 6 5 3 5 0 3 4 10 0 10 2 10 8 16 2 12 7 11 9 16 4 13 3 13 7 16 4 15 6 16 2 16 5 17 9963 39 38 43 1 22 1 24 6 24 7 20 7 23 3 0 4 3 0 1 841 18 4 31 ...... 4 8 5 6 26 0 1 1 6 7 8 9 4 0 1 0 0 2 7 7 14 5 10 4 5 11 6 4 2 5 4 3 4 1 4 3 3 7 4 4 6 3 0 1 1 2 2 1 1 1 3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 7 3 4 0 4 4 0 6 3 3 2 3 1 3 4 0 0 5 4 1 7 8 5 7 0 8 8 2 8 5 4 0 2 4 1 7 4 4 5 ...... 42 68 18 96 35 . . . . . Distance Rad. Vel. HR1 (continued) 86 138 87 141 1 149 51 141 32 126 70 63 1 65 494 44 43 37 106 53 147 66 116 3331 139 123 3 129 53 137 07 127 71 76 87 114 54 129 65 106 59 124 66 76 46 137 46 112 84 109 21 114 80 100 82 99 8 118 69 111 52 50 16 51 41 78 97 33 93 1 83 93 84 98 86 03 94 58 148 39 145 5 173 93 87 34 127 58 52 69 3 55 ) (pc) (km s ...... 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 2 0 0 1 1 2 0 0 1 0 0 0 1 1 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 8 5 3 7 9 2 7 8 4 3 2 3 ...... 44 96 84 11 40 77 94 71 27 18 66 87 28 60 42 94 25 19 39 08 77 39 21 06 26 98 18 10 92 98 37 75 71 73 13 60 ...... 2 ...... 7 ...... 6 Table 4 continued 19 22 6 8 49 7 4 34 40 21 8 58 63 − − − 19 17 15 20 42 45 49 44 46 44 45 20 17 18 10 17 10 12 10 11 23 25 32 20 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 99 38 5 05 29 5 3 4 79 90 3 89 63 3 52 49 3 5 0 8 62 1 2 11 46 23 78 7 75 49 73 74 70 69 21 81 91 0 4 90 2 3 0 7 87 12 34 11 79 15 56 12 80 2 0 6 ) (mas yr ...... 0 0 2 0 0 1 0 0 1 0 0 2 1 2 1 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 2 1 0 0 0 0 0 1 0 0 2 1 2 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 1 3 1 7 0 9 2 6 7 3 7 9 1 7 9 2 5 3 5 ...... 36 97 62 23 58 68 63 51 91 86 49 49 44 05 17 37 98 52 09 25 08 53 79 05 66 81 66 22 38 ...... 4 5 ...... α 13 25 23 30 34 µ − − 21 17 14 10 24 21 28 35 32 28 51 28 35 36 33 38 36 30 − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 142540HD 143069HD 144713HD 145101 USCOROXs 43A USCO A2/3IIIConfirmed USCO Candidate Members A3V USCOCD–41 2076 F3/5V 15:56:05.083V1841 USCO Ori –25:56:09.38 A3IV/VCD–54 7336 G5IVe 15:59:11.870 16:08:05.206 ABDMG –26:35:01.18 16:09:58.039 –24:55:33.60 K5Ve –22:24:35.29 BPMG BPMG 16:31:20.114 –24:30:05.43 K2IV K1V 05:48:30.422 –41:27:30.24 05:00:49.303 13 +15:26:59.82 17:29:55.068 –54:15:49.60 17 HD 119658HD 123484 UCL UCL F6V K0/1 13:45:41.930 –49:04:59.24 14:09:03.542 –44:38:44.63 TYC 7796–286–1TYC 8266–2914–1 UCL UCL K3.5IV K2IVn 13:38:49.332 –42:37:23.75 13:44:24.394 –47:06:34.29 CD–86 147HD 116099 THA UCL G8IV G2IV 23:27:50.186 –86:13:19.33 13:22:04.435 –45:03:23.40 52 CD–60 416CD–46 1064CD–30 2310 THA THA THA K5Ve K3V K4Ve 02:07:32.393 –59:40:21.40 03:30:49.229 05:18:29.091 –45:55:57.44 –30:01:32.16 93 88 39 HD 23195BD+22 548BD+23 527 PLEV1046 TauBD+07 582A PLE F6V PLE G0V PLE TAU G0V 03:43:58.825 G5 K0 +23:52:57.14 03:46:10.065 +23:20:23.30 03:46:53.769 22 +23:35:00.12 03:46:54.939 21 04:00:09.420 +24:47:46.13 +08:18:15.04 21 12 17 Cl Melotte 22 173 PLETYC 1260–498–1 PLE K0V (G4) 03:43:48.435 +25:11:23.55 03:44:41.842 +22:27:51.69 22 22 HD 22887 PLE F0V 03:41:22.991 +23:29:12.29 21 CD–46 287 OCT K6Ve 01:01:16.748 –45:56:36.87 33 HD 117884 LCC G2IV 13:34:20.201 –52:40:36.42 CD–49 7937 LCC G0 13:26:51.331 –49:46:27.09 TYC 8674–2317–1 LCC (K4) 13:21:20.201 –59:03:44.43 CD–59 4629 LCC G3V 13:13:28.046 –60:00:44.82 HD 112245 LCC K0Ve 12:56:09.288 –61:27:25.73 CD–52 5008 LCC G2IV 12:22:33.185 –53:33:49.13 HD 107441 LCC G8IV 12:21:16.421 –53:17:45.15 TYC 9231–1185–1 LCC K3IV(e) 12:16:40.150 –70:07:36.33 HD 105383 LCC B9V 12:08:04.814 –50:45:49.28 HD 104919 LCC G9V 12:04:48.775 –64:09:55.49 CPD–63 2126 LCC G8V 12:04:14.326 –64:18:51.61 TYC 8973–2084–1 LCC K4V(e) 11:59:46.010 –61:01:13.36 HD 95766 LCC G0/2 11:02:07.164 –61:27:30.59 HD 285828HD 285766HD 29896 HYA HYA K2 HYA K2 K3 04:27:25.446 +14:15:38.10 04:27:59.075 +18:30:00.40 04:43:15.798 96 +17:04:08.38 105 99 CD–40 2458 COL K0V 06:26:06.918 –41:02:53.60 5 CD–43 1846 COL G0 05:26:22.996 –43:22:36.12 19 HD 272836 COL K2V(e) 04:53:05.244 –48:44:38.50 28 HD 31242 COL G5V 04:51:53.583 –46:47:13.11 30 CD–36 1785 COL K1Ve 04:34:50.820 –35:47:21.13 32 BD+27 2139 CBER K0III 12:28:56.412 +26:32:57.26 New Young Association Members in Gaia–Tycho 21 c Ref. 14,70,–,96 52,7,52,84 8,4,–,53 19,4,–,103 11,12,–,54 10,12,10,81 100,12,–,101 –,7,–,96 43,7,–,96 b ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth LCC X,Li 19,4,–,54 HYA HYA HYA HYA BPMG Li 14,12,–,97 ABDMG X,Li 40,94,39,42 UCLUCL X,Li X,Li,Lm 10,10,10,54 10,4,10,54 ex 06 TAU0 TAU UCL X E E 8,4,10,54 19,4,–,54 19,81,–,54 03 LCC 4 LCC TAU Li,E 8,4,–,54 09 LCC LCC X,Li,E E 10,10,10,54 81,4,–,54 0 HYA 00 HYA0 HYA HYA Ca Ca Ca 10,10,10,50 10,12,10,54 11,12,–,103 6 COL0 E0 HYA HYA Ca 99,7,–,96 102,7,–,96 2 CAR X,Li,E 46,30,–,98 9 USCO2 E0 ABDMG ABDMG E Li 52,7,52,52 95,12,–,95 43,70,–,96 20 UCL0 UCL3 UCL2 UCL X,Li,UV4 UCL X,Li,E,Lm1 UCL E9 USCO 8,7,–,54 X,Li,E,Lm 10,10,10,54 3 USCO X,Li8 USCO X,Li,E 10,10,10,84 X USCO X,Li,E 10,10,10,54 X 10,92,10,10 10,10,10,10 52,7,52,93 52,10,10,52 52,7,52,84 31 UCL4 UCL1 UCL7 UCL X,Li,E,Lm UCL X,Li,E,Lm UV 89,86,–,89 9 X,Li 10,5,10,54 UCL X,E 10,10,10,85 X,Li,E 90,80,–,88 –,91,–,54 10,10,10,54 5 UCL X,Li,E 19,80,–,55 6 UCL X,Li,E 10,10,10,88 41 UCL UCL X,Li X,Li,E 10,10,10,85 29,86,–,87 ...... Nσ 0 1 2 0 2 3 2 0 0 0 3 0 3 2 4 2 2 2 1 2 1 2 1 0 2 2 1 1 1 2 IR 1 1 2 004 1 02 0 01 0 004 0 01 1 007 1 ...... 0 0 0 0 0 0 ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ······ ··· ··· ··· ······ ··· ··· ··· ··· ··· ··· ··· ········· ······ NUV 14 17 30 . . . 168 434 556 . . . 16 16 14 21 13 72 05 09 24 13 04 05 ...... 36 58 27 00 00 22 00 00 00 13 19 34 10 47 15 07 75 42 36 50 69 ...... 0 0 0 0 0 0 0 ············ ············ ······ ········· ··· ······ ······ ··············· ····················· ······ ········· ············ ······ ······ ··· − − − − − − − 1 7 0 3 1 . 7 3 0 3 0 9 3 8 9 3 4 9 7 6 ) (mag) . . 5 0 2 8 0 ...... 1 0 . . . 1 1 10 2 1 10 1 0 5 0 1 0 2 2 1 1 2 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 10 1 0 1 7 0 2 1 1 1 0 1 1 0 1 0 3 1 0 1 0 1 0 1 0 0 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0 3 1 2 6 3 3 0 2 . 4 3 9 6 3 8 1 3 4 8 0 7 13 0 . . 0 6 3 ...... − − − − − − 7 1 − − 11 − − − 2 7 891 12 0 10 15 20 22 11 12 7 11 53 43 8270 42 42 60 39 51 35 92 38 431 40 54 39 0 40 38 9 23 0 16 69 1 3 32 74 24 2 63 6 7 2 82 5 2 9 8 52 5 6 0 2 1 2 0 9 3 7 6 7 8 3 8 6 4 ...... 4 0 0 0 6 5 3 8 5 2 20 1 4 7 7 5 4 4 5 21 2 4 4 22 6 4 6 12 13 4 1 4 9 2 4 2 0 0 0 0 0 0 0 1 0 1 3 1 0 5 8 8 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 1 8 5 9 1 3 1 2 6 2 3 3 8 7 4 1 4 6 3 4 2 8 9 3 2 5 2 2 2 0 3 5 ...... 06 11 60 10 46 74 43 00 54 22 44 60 ...... Distance Rad. Vel. HR1 (continued) 0205 131 115 02 106 1205 91 114 05 128 1409 99 118 06 106 4 43 85 60 7 48 40 50 42 52 55 44 076 42 40 52 47 35 49 03 70 66 57 49 132 36 50 62 28 03 49 05 31 42 127 1 147 46 149 5 154 53 106 128 49 134 31 135 36 140 06 97 93 104 64 165 45 136 45 123 46 197 4 136 47 136 40 128 43 140 1 178 41 131 84 136 ) (pc) (km s ...... 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 4 6 9 8 0 5 3 9 2 ...... 46 72 53 42 07 42 51 09 07 03 52 41 18 81 08 23 13 17 88 88 49 20 94 56 17 98 21 06 45 19 51 38 24 19 98 70 11 95 08 ...... Table 4 continued 9 21 26 31 29 24 23 32 25 19 21 22 24 25 18 11 17 15 20 24 51 20 33 25 25 22 25 80 95 32 25 24 25 21 33 32 20 27 28 18 26 27 23 20 24 Table 4 − − − − − − − − − − 172 161 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 88 86 5 4 3 81 0 3 1 0 03 07 02 11 08 08 11 08 07 0 3 6 71 1 8 0 86 67 65 03 83 62 79 33 47 04 07 32 1 9 1 1 1 7 3 31 08 6 0 ) (mas yr ...... 1 2 0 0 0 0 0 0 0 0 0 2 1 4 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 2 1 2 2 1 1 1 0 0 0 0 1 1 1 1 2 0 1 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 7 4 3 7 2 3 2 6 1 5 7 7 1 7 1 7 1 6 4 6 5 6 ...... 12 80 93 57 77 63 25 10 72 05 62 08 94 14 71 85 98 45 32 21 87 92 80 69 77 46 ...... 9 ...... α 10 13 15 14 14 14 6 28 16 19 10 16 23 26 24 16 µ − 20 26 35 41 37 29 37 13 17 17 17 25 − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. CD–27 10839Known Bona Fide Members PW USCO AndHD 15407 (G3)HD 217343 ABDMG 16:12:10.997 ABDMG K0Ve ABDMG –28:18:13.36 F5V G5V 00:18:21.057 +30:57:19.56 02:30:50.800 23:00:19.409 +55:32:52.83 141 –26:09:15.92 81 109 HD 147048HD 147558CD–37 10801CD–30 13383 UCLCD–25 12033 UCL UCLHD 141618 G9IV UCLHD 142506 F0V UCL K0IVCD–24 12445 G8VHD 145501A USCO 16:21:12.180 K0V –40:30:21.03 USCO USCO 16:27:30.530 16:24:58.315 G0/2 –37:49:21.91 –48:36:05.50 USCO G8V 16:42:07.714 G0 –30:38:38.18 17:13:32.810 B9V –26:02:07.67 15:50:56.395 –25:34:19.39 15:55:48.804 –25:12:24.47 16:00:00.758 –25:09:42.77 16:11:58.529 –19:27:01.00 CD–52 6550HD 135932HD 329929HD UCL 143099HD 143358 UCLMZ G9IV Lup UCLHD 146610 UCL F8VCD–33 11099 UCL K0V 15:18:01.697 F5V –53:17:29.36 UCL UCL G1V UCL 15:19:00.173 –33:03:28.21 15:46:51.766 –49:19:05.12 G5IVe G0V G6V 15:59:58.241 –38:24:32.14 16:01:07.906 –32:54:52.97 16:01:08.957 16:18:38.530 –33:20:14.46 16:19:50.556 –38:39:12.31 –33:54:45.72 TYC 7829–2168–1 UCL K3IV 15:08:54.698 –43:03:14.16 CD–47 9621 UCL G4V 15:01:58.786 –47:55:46.80 CD–47 9419CD–35 99182M1501–4120 UCL UCL UCL G6V G8V G3V 14:47:31.738 –48:00:05.95 14:57:19.601 15:01:11.534 –36:12:27.81 –41:20:40.90 HD 28929CD–51 7878 TAU UCL B6 G0 04:34:37.994 13:59:13.778 +28:57:39.82 –51:52:39.20 1 HD 117651HD 119269HD 283420HD 28150 LCC LCC TAU A0V G3V TAU F8 13:33:35.782 A1 –65:37:58.01 13:43:28.459 –54:36:43.87 04:10:35.876 +25:21:44.77 04:27:04.868 +18:12:27.03 2 5 HD 113466HD 116402 LCC LCC G5(V) G3V 13:05:05.201 –64:13:55.54 13:24:35.069 –55:57:24.39 HD 106506 LCC G1V 12:15:18.470 –63:25:30.48 Cl Melotte 25 348 HYA M0V 05:01:36.124 +13:55:58.51 85 HD 29159TYC 1280–681–1HD 286085 HYA HYA (G6) HYA K0 K6 04:48:51.754 +15:56:50.83 04:36:05.366 69 +15:41:02.05 04:50:00.801 +16:24:43.01 96 84 HD 283044HD 285804HD 285836V997 Tau HYAHD 28878 HYAHD 28977 K7 HYA K7V HYA K5 HYA G5 HYA 03:52:41.165 04:28:10.991 G5 +25:48:15.20 +16:28:14.90 K0 04:32:41.042 140 +19:06:48.03 114 04:32:59.556 +15:49:07.90 90 04:33:38.069 +16:45:44.61 100 04:34:32.276 +15:49:38.90 97 90 HD 37306 COL A1V 05:37:08.793 –11:46:32.20 20 HD 42270 CAR K0V 05:53:29.497 –81:56:52.23 25 HD 173167 BPMG F5V 18:48:06.386 –62:13:48.21 12 22 Gagne´ et al. c Ref. 29,–,39,39 26,–,–,68 117,–,–,68 118,–,–,66 26,–,–,68 29,86,–,105 19,81,–,54 19,12,–,81 19,4,–,53 81,10,10,103 120,–,–,66 –,–,–,122 b ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth HYAHYA X UV 102,–,–,126 99,–,–,96 ABDMG ABDMG ABDMG ABDMG Li 11,–,–,115 ex 34 EPSC EPSC X,E,Lm X,E,Lm 124,–,–,125 –,–,–,61 90 CBER0 CBER 0 CBER 7 UV CBER4 CBER CRA Lm UV,E,Lm 26,–,–,121 Lm 26,–,–,123 17,–,39,39 14,–,–,96 50 CBER CBER UV,E UV 119,–,–,119 120,–,–,68 07 ABDMG 6 CBER CBER E 3,–,–,68 0 ABDMG X,Li –,–,39,116 91 USCO USCO Li,E,Lm X,Li,E 112,12,–,113 10,12,10,114 1 USCO E 99,110,–,111 0 USCO E 5,7,5,96 7 USCO X,E 5,7,5,96 1 USCO E 9,7,5,96 1 USCO X,Li,E 69,5,5,96 7 USCO E 108,12,–,109 6 UMA E 11,13,13,107 33 UCL7 UCL4 UCL0 UCL X,E0 UCL Lm4 UCL X,Li,E,Lm0 UCL X,Li,E0 UCL 104,12,–,103 29,4,–,103 4 UCL X,Li,Lm3 10,10,10,54 UCL X,Li,Lm 10,4,10,103 8 UCL X,Li UMA 29,86,–,103 E,Lm 29,86,–,103 E 29,4,–,103 10,10,10,54 10,12,10,106 46 UCL UCL E E 81,10,10,103 10,4,10,103 01 UCL 0 UCL UCL UV,E X,E,Lm 10,10,10,103 19,4,–,54 92 UCL UCL E 19,12,–,103 ...... Nσ ··· 3 2 0 1 ··· 0 1 ··· 0 1 5 2 2 3 3 3 1 1 1 2 1 0 1 0 5 1 5 2 2 IR 1 2 1 0 03 103 0 008 1 0 03 1 0608 1 0 1 02 0 05 002 1 01 2 03 0 01 2 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ······ ··· ··· ··· ··· ··· ··· ··· 4 0 . . NUV 65 01 06 43 78 86 46 79 24 36 ...... 080 232 19 . 20 . 17 16 16 18 18 15 19 18 16 15 06 10 04 02 35 12 . . . . . 30 92 86 95 38 18 00 07 79 14 70 ...... 0 0 0 0 0 ······ ······ ··· ············ ······ ······ ······ ······ ······ ······ ············ ······ ········· ······ 0 − − 4 0 2 2 3 2 . . ) (mag) . . . 2 4 0 0 0 . . 1 1 2 3 1 0 0 2 0 2 1 0 3 0 1 3 133 0 1 0 31 0 0 0 0 1 1 1 0 1 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0 0 5 1 2 5 6 1 1 1 6 1 7 ······ · · · − · · · − ············································· ······ ······ ························ ·················· ······ · · · − ············ . . . . . 3 0 . . − − − − − − − − 5 3 8 10 10 − − − − − 47 66 1 5 0 9 3 7 4 7 6 8 67 91 8 32 3 44 76 89 4 6 9 3 3 1 4 1 1 4 507 1 5 2 4 0 0 2 4 2 3 37 20 6 4 8 7 6 2 66 4 3 6 4 5 2 ...... 6 7 3 4 3 5 4 4 12 5 0 0 6 2 6 6 6 6 2 10 4 0 0 3 2 1 2 2 5 2 3 2 3 0 0 2 0 5 0 0 14 0 2 8 6 5 6 5 9 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 1 5 4 7 8 8 9 3 3 0 1 8 7 7 3 3 4 5 0 2 4 4 2 1 5 6 0 2 6 7 7 5 1 0 3 ...... 31 08 13 78 89 61 24 19 51 87 ...... Distance Rad. Vel. HR1 (continued) 53 37 72 47 02 95 5655 84 62 82 75 83 73 82 127 04 101 2 87 69 85 96 83 381 44 48 95 86 18 36 2 88 4 40 59 55 09 127 83 55 08 100 08 167 06 153 10 152 05 144 06 133 05 150 14 151 10 174 06 144 08 112 09 126 11 125 11 142 08 135 12 126 12 143 06 25 03 24 07 158 08 93 08 151 08 141 04 147 13 103 04 137 03 160 ) (pc) (km s ...... 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 2 3 4 1 . . . . 11 94 40 26 79 04 54 43 56 31 88 08 29 59 21 82 53 75 28 63 43 73 36 15 11 70 89 72 57 29 31 03 61 13 45 03 05 54 43 05 77 91 71 33 . . . . . 9 ...... 9 ...... Table 4 continued 7 8 8 9 9 9 − − 43 11 26 10 18 10 121 154 91 23 91 35 20 23 23 24 24 21 22 21 22 34 27 29 26 29 28 29 18 19 38 21 23 18 32 17 17 Table 4 − − − − − − 154 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 14 12 17 16 11 17 10 14 11 09 10 07 17 07 05 1 17 1 03 75 6 66 76 87 58 04 93 2 2 3 58 23 5 4 90 15 6 13 13 11 14 08 09 08 22 13 16 0602 9 ) (mas yr ...... 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 2 8 1 4 6 3 4 5 2 ...... 63 84 63 09 11 05 07 94 94 21 09 30 68 72 04 50 62 81 10 34 77 23 57 15 41 20 62 33 00 82 57 14 84 53 52 65 03 20 64 . . . . 8 ...... α 6 8 14 10 94 11 7 9 8 9 µ − 21 18 31 23 31 18 22 21 18 43 11 13 12 14 41 11 61 95 17 10 11 26 20 19 19 19 19 11 11 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. AS 209 USCO K4Ve 16:49:15.295 –14:22:08.00 ∗ HD 142113 USCO F8V 15:53:20.878 –19:23:53.95 HD 135619HD 138009AHD 138995HD 140374 UCL UCLHD 140463AHD 141521 UCL A2IV G2.5IVCD–41 10454 UCL UCLRY Lup G6VeHD 149551 15:30:26.208 UCL G8V 15:17:10.682 UCL G4IVAK –32:18:13.45 –34:34:37.81 ScoHD 238087 15:37:04.632 G8IV G3VHD –40:09:22.56 115043 UCL UCL 15:44:21.029 15:44:57.667 –33:18:55.39 –34:11:54.12 UMA 15:51:13.706 G2/5V: G8/K1IV/V UCL 15:57:14.669 –42:18:51.78 15:59:28.373 UMA –41:30:20.87 –40:21:51.58 K5V F5V 16:37:12.854 G1V –39:00:38.37 12:12:05.405 16:54:44.839 +58:55:35.27 13:13:37.212 –36:53:18.00 +56:42:29.48 97 111 HD 129683HD 133259 UCL UCL F6V K1:V 14:44:56.854 –34:22:54.05 15:04:48.871 –39:49:24.28 HD 127236V1009 CenHD 129490HD 129590 UCL UCL UCL F0V UCL G8/K0V F7IV/V 14:33:25.740 G3V 14:31:33.362 –34:32:38.17 –44:45:02.23 14:44:04.320 –40:59:22.58 14:44:30.934 –39:59:20.99 HD 124469HD 124961 UCL UCL A9V B9V 14:14:45.470 –38:22:52.61 14:17:39.192 –40:51:42.45 TYC 78–257–1 HYA (K1) 04:21:04.251 +03:16:07.85 139 HD 105515HD 284155 EPSC HYA A6III/IV G5 12:09:07.471 –78:46:52.84 04:08:36.341 +23:46:06.35 119 BD+24 2462BD+29 2290BD+28 2119 CBERBD+26 2362 CBERHD 176423 K0 CBEREF Cha G5 CBER G7IV G6III CRA 12:27:20.676 +23:19:47.32 12:27:48.278 12:28:21.096 A1III/IV EPSC +28:11:39.75 +28:02:25.95 12:33:42.103 +25:56:33.82 A9III/IV 19:01:50.424 –36:39:53.15 12:07:05.311 –78:44:28.15 5 2M1212+26152M1223+2314 CBER CBER K2 (K2) 12:12:53.222 12:23:47.201 +26:15:01.29 +23:14:44.35 TYC 1988–920–1 CBER K3 12:11:35.148 +29:22:44.37 TYC 4365–1316–1TYC ABDMG 8966–1336–1 (K4)CD–51 ABDMG 9202 (K6)BD+25 24552M1207+2535 07:58:50.023 ABDMG +70:43:20.19 M0 10:53:28.294 CBER CBER –65:24:29.00 G6 K3 15:32:36.550 –52:21:23.09 12:04:23.263 12:07:57.703 +24:49:14.33 +25:35:11.28 StKM 1–543 ABDMG K5 05:10:11.818 +60:38:10.62 34 HD 24681 ABDMG G5V 03:55:20.447 –01:43:46.57 42 EM Known Candidate Members HW Cet ABDMG (K2) 03:12:34.343 +09:44:55.75 61 HD 147491 USCO G2IV 16:23:22.915 –26:22:16.94 HD 146089 USCO F5V 16:15:10.438 –22:07:10.26 HD 146069 USCO F2V 16:15:09.271 –23:45:35.40 HD 145655 USCO G2V 16:12:55.325 –23:19:46.06 HD 145631 USCO B9V 16:12:44.093 –19:30:10.72 HD 144548 USCO F7V 16:07:17.774 –22:03:36.92 New Young Association Members in Gaia–Tycho 23 c Ref. 11,–,–,54 8,–,–,54 14,–,–,54 43,–,–,96 14,–,–,103 99,–,–,96 43,–,–,77 132,–,–,54 11,–,–,54 11,–,–,54 133,–,–,133 11,–,–,54 133,–,–,133 8,–,–,54 3,–,–,135 b ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth LCC X,UV 11,–,–,54 HYA HYAHYA X 14,–,–,127 LCC X,Li,Lm 133,–,–,134 LCC X 8,–,–,54 ex 0 LCC 5 LCC95 LCC X,E7 LCC LCC X,E,Lm X,Li,E,Lm –,–,–,54 Lm 8,–,–,54 35,–,–,54 8,–,–,54 12 LCC4 LCC7 LCC7 LCC UV LCC Lm E E48 –,–,–,54 LCC 3,–,–,133 LCC 11,–,–,54 X –,–,–,54 –,–,–,54 20 HYA9 HYA 1 IC26027 IC2602 UV2 IC2602 E1 IC26023 IC2602 E0 IC2602 X 128,129,–,130 LCC X,Li,E E,Lm 43,–,–,61 43 LCC E 14,–,–,131 4 –,–,–,96 LCC 11,–,–,96 3 LCC –,–,–,131 LCC Lm 52,–,52,96 55 LCC 14,–,–,54 LCC E 11,–,–,54 20 LCC LCC X,Li,E36 LCC –,–,–,44 4 LCC2 LCC3 LCC X,Li,E,Lm LCC E X,E 8,–,–,54 5 LCC –,–,–,54 133,–,–,133 7 X,Li,E,Lm9 LCC LCC –,–,–,54 79 LCC E0 LCC X,Li,Lm LCC E 11,–,–,54 E –,–,–,134 8,–,–,54 9,–,–,134 07 LCC0 LCC LCC Li,E,Lm X,E,Lm Lm –,–,–,54 8,–,–,54 52,–,52,52 ...... Nσ 0 ··· 1 1 2 0 1 2 1 0 1 IR ··· 1 1 1 1 2 2 2 0 1 0 1 2 0 2 0 8 1 2 1 1 2 0 1 2 0 2 1 0 009 009 1 005 0 2 032 0 0 006 1 ...... 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ······ ··· ··· ··· ······ ··· ··· ······ ··· ··· 2 4 . . NUV 42 . 999 052 465 735 . . 20 20 . . 17 13 14 13 41 20 . . 31 13 91 34 96 44 31 38 04 04 23 25 28 72 61 50 69 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) (mag) 1 − ············ ··· ··· ··· ········· ······························ ··············· ············································· ······ ··· ··· ·········· · · − ······················································ ··· ··· ··· ··· ············ ··· ··· ··························· ············ ······························ · · ···· ········· − ······ 3 7 1 7 8 0 6 7 3 5 1 77 42 0 0 3 2 9 6 4 4 3 1 5 7 4 4 7 82 4 2 4 1 3 2 8 5 7 77 5 0 9 8 4 5 7 5 ...... 19 6 4 4 3 4 3 3 2 5 5 6 0 0 1 8 5 5 3 7 5 5 3 3 4 6 8 4 5 0 13 5 4 3 7 3 3 4 2 6 0 3 5 6 2 4 3 4 4 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 6 1 7 9 2 6 4 1 3 2 8 8 3 5 2 9 2 9 7 1 7 7 5 0 2 0 0 8 9 2 2 7 4 0 9 0 1 0 8 6 4 8 9 ...... 94 25 64 65 . . . . Distance Rad. Vel. HR1 (continued) 25 149 86 137 57 122 70 125 59 114 92 124 10 104 19 109 56 100 49 141 3 101 47 122 82 47 18 42 2 53 55 153 140 53 146 51 102 45 150 71 146 06 146 60 107 7 123 6849 90 118 28 134 81 144 76 103 26 111 65 47 86 121 60 114 79 99 69 116 59 108 56 102 25 112 8007 97 148 78 42 11 121 03 111 03 119 82 105 79 105 70 119 53 135 89 121 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 0 0 8 5 8 . . . . . 33 62 79 54 65 67 68 06 75 30 42 33 02 82 09 75 17 28 93 95 33 23 93 55 93 55 22 79 32 68 96 63 09 86 10 83 75 57 44 69 07 86 84 16 ...... Table 4 continued 7 19 50 33 5 0 8 5 3 6 7 7 13 13 16 13 15 17 13 15 13 17 19 11 11 10 10 12 16 14 10 22 45 12 11 10 11 11 18 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 94 61 5 89 80 74 45 17 4 8 16876 11 11 10 27 9083 10 06 10 721 9 4 87 3 1 35 0 0 1 96 5 73 03 66 2 1 11 1 03 2 25 10 17 54 1 88 72 81 26 70 08 74 83 67 ) (mas yr ...... 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 2 1 0 0 0 0 0 0 2 0 1 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 5 3 1 4 8 3 5 5 9 4 6 9 5 9 4 ...... 67 95 55 43 12 56 00 93 60 73 07 15 87 95 99 23 50 17 56 63 76 03 93 24 86 10 89 21 85 20 20 32 94 35 ...... α 26 36 18 32 29 28 33 31 34 35 µ 32 32 27 32 16 16 17 18 18 27 35 30 28 28 37 31 27 31 36 36 41 33 35 31 34 38 39 33 33 39 29 32 27 31 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 111436CD–45 8100HD 112332HD 112482 LCC LCCHD 112821 LCC A3/5VHD G0 312273 LCCHD 113316 F7V 12:49:48.809 LCC G2/3V –51:23:34.91 LCC 12:54:31.390 LCC F7/G0IV/V –46:07:36.65 12:56:32.450 12:57:35.299 13:00:09.646 K0IV –51:25:03.04 –51:35:41.25 –54:01:53.68 K1/2III 13:02:46.954 13:03:39.689 –62:13:59.28 –56:34:54.38 HD 111161CPD–66 1944BCD–65 1343HD LCC 311987 LCC LCC (F5) A3III/IV LCC (F8) 12:48:16.574 –67:07:52.56 HD 112670 12:48:18.852 K0 –67:07:54.42 12:49:03.667 –66:25:07.28 LCC 12:49:33.845 –61:29:30.91 F5V 12:58:59.830 –45:39:38.55 StKM 1–498HD 284785StKM 1–541HD HYA 307802HD 91451 HYA K4/5TYC HYA 8965–604–1V564 Car K4:V IC2602 IC2602 K7HD 310131 (G4) A5 IC2602HD 04:37:58.338 93874 +04:40:11.30HD F2V 305830 04:47:09.039 IC2602HD +20:52:55.57 305810 IC2602 96 05:03:07.166 10:43:00.199 (G3) +19:01:04.21 –65:30:17.64 10:31:07.462 G6V IC2602HD 98 –64:10:55.01 99486 10:31:44.882 LCCHD A3(IV) –63:29:21.78 308856 LCC 64 HD 104917 10:46:14.791 F0/2 10:46:32.976TYC –64:02:57.91 8974–711–1 10:48:41.914 G6V –65:27:18.14 LCCTYC –63:49:58.70 8241–2652–1 LCC LCC LCC LCC 10:56:14.266 G2/3V –61:47:22.45 (G2) G0 11:00:18.888 K3IV(e) –61:18:02.03 A9/F0IVCD–56 4356 11:26:12.559TYC –58:23:11.05 12:09:02.201 8979–1734–1 12:04:51.012 12:06:47.122 –51:20:41.15 –50:51:13.41 HD LCC 107298 11:40:01.548 –60:25:37.19 TYC –61:37:30.10 LCC 8633–2254–1 LCC (G4) (G3) LCC K9IVe 12:19:06.847 A6V –62:50:44.47 12:13:43.553 12:20:22.795 –57:34:53.36 –52:42:18.42 12:20:19.339 –51:13:07.04 HD 110696 LCC F8V 12:44:19.274 –45:25:23.67 LP 475–68HD 284455 HYA HYA M1V K5V 04:26:04.812 +15:02:28.65 04:26:47.744 +21:14:05.02 101 113 HD 98194 LCC F3/5VHD 105785HD 106049HD 106101 11:16:50.827 –61:05:07.95 LCC LCC LCC A3V F7VTYC 8983–854–1 A1/2VTYC 8975–871–1 LCC 12:10:42.005 LCC –56:26:32.52 12:12:14.436 12:12:35.734 K3IVe –60:20:13.87 –52:46:39.14 K5IVe2M1227–6239CD–55 12:23:47.400 4663 –64:02:55.08 HD 12:24:09.689 109276 LCC –60:03:41.84 TYC 8992–346–1HD LCC 110229 LCC K3IV(e) LCC (G2) 12:27:16.558 (K0) –62:39:14.35 LCC A2V 12:31:59.882 F3/5V 12:36:43.793 –56:30:31.65 –63:10:45.59 12:33:58.205 –56:34:14.71 12:41:10.690 –58:18:59.50 HD 107919HD 108167HD 108234 LCC LCC LCC F7IV G8(III) F5V 12:24:23.765 12:25:44.890 –55:52:48.84 –46:53:10.72 12:26:19.646 –47:38:56.12 24 Gagne´ et al. c Ref. 8,–,–,54 11,–,–,54 –,–,–,54 8,–,–,54 8,–,–,54 8,–,–,54 8,–,–,54 138,–,–,54 8,–,–,54 8,–,–,54 b ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth ex 63 LCC LCC X,E E 8,–,–,54 11,–,–,54 1 UCL X,E,Lm 8,–,–,54 0 LCC 54 LCC4 LCC2 LCC LCC E E X,Lm X,E 11,–,–,54 –,–,–,54 –,–,–,54 11,–,–,54 7 UCL E 19,–,–,54 91 LCC8 LCC 2 LCC2 LCC X,E,Lm2 LCC3 LCC E LCC 8,–,–,54 X,E E 8,–,–,54 11,–,–,54 8,–,–,54 35 THOR TWA X E 11,–,–,54 11,–,–,54 37 LCC4 LCC9 LCC7 LCC E6 LCC Li,E,Lm2 LCC E,Lm9 LCC E2 LCC –,–,–,54 E,Lm2 LCC E 136,–,–,54 LCC –,–,–,54 X,E E 137,–,–,54 E 8,–,–,54 E 8,–,–,54 8,–,–,54 8,–,–,54 –,–,–,54 8,–,–,54 6 THA X,Li,UV,E 8,–,–,54 81 LCC4 LCC0 LCC5 LCC X,Li,E,Lm3 PLE Lm1 PLE E 8,–,–,54 PLE E0 –,–,–,54 PLE 8,–,–,54 8,–,–,54 9 TAU X,E,Lm0 THA –,–,–,54 E 8,–,–,54 91 PLE0 PLE PLE 6 E3 PLE E0 PLE PLE 0 E2 TAU X,UV 11,–,–,54 0 TAU –,–,–,54 3 TAU TAU E 8,–,–,54 UV,E 11,–,–,54 UV E 11,–,–,54 8,–,–,54 8,–,–,54 8,–,–,54 ...... Nσ IR 2 3 2 1 2 1 2 1 1 1 0 2 1 2 0 2 2 2 2 1 1 2 2 2 2 1 1 2 1 0 1 1 2 3 1 2 1 1 0 2 6 004 1 007 1 006 3 009 3 006 1 05 1 005 5 01 1 ...... 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· NUV 22 81 . . 030 649 477 343 575 964 ...... 14 14 13 13 13 14 12 14 . 61 36 29 41 46 58 13 33 79 55 00 18 ...... 0 ······ 0 0 0 0 0 0 0 0 0 0 1 04 ) (mag) . 1 0 − ± ··· ··············· ··· ····················· ··· ··············· ··· ··························· ·················· ··· ······························································· ············ ········· · · · − ··· ········· ······················································ ········· ··························· ····················· ········· ············ 10 . 1 7 2 6 5 0 4 0 5 8 5 5 5 3 0 2 2 5 9 7 1 8 0 3 0 1 66 9 2 5 6 2 8 4 2 52 8 6 9 4 7 4 4 2 ...... 5 3 5 3 5 7 11 5 4 4 4 6 4 9 16 3 5 5 4 2 5 2 5 6 18 3 6 5 6 6 5 4 4 7 5 9 8 5 4 3 4 20 13 21 7 3 5 2 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0 6 2 5 6 2 3 5 6 3 2 1 4 0 1 1 0 4 4 6 7 4 5 2 5 2 2 0 9 5 5 2 1 8 4 0 2 9 5 6 6 4 ...... 01 22 . . Distance Rad. Vel. HR1 (continued) 05 102 44 140 67 120 93 97 56 127 80 140 4 138 77 138 1 117 0458 89 140 51 126 44 134 32 118 62 145 134 95 135 3 134 41 111 34 132 32 124 57 122 0549 88 134 54 95 61 96 61 128 98 136 3 152 80 99 61 51 48 124 63 132 44 134 38 137 49 125 49 135 45 138 04 131 45 137 92 143 04 46 36 139 60 141 36 133 38 120 098 166 207 53 130 ) (pc) (km s ...... 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 7 6 4 9 0 2 ...... 77 80 79 22 19 25 36 19 19 41 27 85 71 74 16 60 21 62 51 73 76 98 37 68 73 95 36 88 81 37 15 43 84 96 40 58 63 95 28 62 24 41 39 ...... Table 4 continued 9 12 7 17 21 16 16 5 11 16 17 13 17 18 23 19 16 17 12 11 17 19 17 20 13 23 12 32 17 16 14 17 33 20 17 42 42 45 45 45 47 17 31 43 47 44 50 12 13 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 05 91 67 60 81 2 69 5 46 94 29 8 6 54 4 59 06 83 80 4 84 74 04 60 42 38 35 62 05 50 48 1 9 5 77 70 4 1 58 61 89 92 04 0 1 68 64 13 8 ) (mas yr ...... 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 2 2 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 2 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 6 2 3 3 2 9 9 4 0 6 9 4 5 4 ...... 20 83 64 75 16 35 51 36 70 63 77 05 34 79 27 36 89 84 97 76 48 37 48 87 14 53 63 23 27 95 12 42 20 07 82 ...... α 27 29 27 38 25 27 24 28 29 29 0 µ 28 35 28 35 30 28 29 30 31 28 24 40 25 40 36 29 32 29 41 26 31 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. eta Mus C LCC F0 13:15:09.890 –67:52:49.66 CD–57 4849HD 113726HD 113975 LCC LCC (G3) LCC F5V F5V 13:05:17.726 –57:58:15.79 13:06:49.680 –62:06:40.49 13:07:50.047 –41:54:33.44 TYC 9001–1753–1 LCC (G7)HD 114212HD 114599TYC 8653–192–1 13:03:48.218 –66:40:54.98 HD 114731 LCC LCC LCC (G5) F7/8V LCC F5IV/V 13:10:01.118 G8III/IV 13:12:16.068 13:12:17.995 –55:27:26.68 –46:22:06.11 –54:38:54.16 13:13:19.990 –54:01:51.33 HD 114788HD 114897∗ TYC 8653–384–1 LCCCD–53 5069 LCC LCCHD 116116 A9VCD–58 5027 (G1) F5V LCC LCC 13:13:27.502 LCC (G5) –45:44:11.07 13:15:32.700 13:14:11.182 –54:41:10.06 F0/2V –45:26:44.29 K3 13:18:20.510 –54:21:32.39 13:22:31.910 –52:10:06.27 13:24:42.686 –59:33:57.89 TYC 8998–760–1HD 116587 LCCHD 116649HD 116651 K3IVTYC 8674–2466–1 LCCHD LCC 117353 LCCHD 117620 13:25:12.029 LCC A5IV/VHD (F8) –64:56:20.95 118134 A0VTYC 8269–314–1 LCC A5III/IV 13:25:30.024TYC 8273–917–1 –52:21:43.31 LCC LCC 13:25:55.932 13:29:59.654 LCC LCC F5V 13:25:44.633 –51:10:37.70 –59:32:27.11 (G5) –47:49:08.77 F2/3V K0IV A6V 13:30:33.019 13:32:42.410 –46:36:01.02 13:37:09.070 –55:49:39.53 –50:34:37.47 13:38:11.230 13:36:08.105 –52:14:25.40 –52:42:49.17 HD 119912TYC 8664–329–1HD 120795 LCCHD 22146 LCCV1225 Tau (K1)TYC 1799–816–1 LCC F8/G0IV/VHD 23290 13:48:27.274 PLE PLE –67:27:19.15 PLE F6/7V 13:48:47.609 –53:16:35.76 G2 A5HD 24086 A5 PLEV1051 13:52:58.380 Tau –53:58:46.29 F5 03:43:50.726 03:34:58.687 PLETYC +24:14:50.30 664–764–1 03:39:51.182 PLE +23:31:47.882M0418+1750 +25:11:40.83 21 TAU F2 20 G5 19 03:44:44.876 TAU +20:44:52.11 G7IV G0 19 03:51:06.359 03:51:16.888 +25:35:40.22 03:50:24.966 +23:49:35.09 +13:04:13.82 20 20 04:18:38.606 6 +17:50:29.58 3 HD 23584V1211 Tau PLETYC 1261–1630–1 PLEHD PLE 24655 F6V G5 (K1)HD 285893 PLEHD 286987 03:47:10.076DR +24:16:35.28 Tau 03:53:28.877 03:50:51.465 F8 +20:54:25.84 +23:19:43.98 TAU 20 TAU 19 19 F8 G0 TAU 03:56:03.901 +22:13:36.34 K5Ve 20 04:36:30.824 +18:42:15.14 04:43:21.722 +12:26:45.41 04:47:06.221 +16:58:42.60 3 1 HD 119403 UCL F8IV 13:43:55.642 –43:45:40.60 HD 115371HD 119067 TWA UCL F3V A9V 13:17:28.898 –42:55:59.06 13:41:53.611 –43:10:36.52 HD 36338 THOR F5 05:31:15.709 +05:39:45.89 9 HD 22213 THA G8V 03:34:16.428 –12:04:07.81 74 HD 10269 THA F5V 01:39:07.789 –56:25:46.23 91 New Young Association Members in Gaia–Tycho 25 c Ref. 8,–,–,54 –,–,–,54 19,–,–,54 19,–,–,54 19,–,–,54 8,–,–,54 8,–,–,54 8,–,–,54 –,–,–,54 b ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth ex 12 UCL UCL7 UCL E Lm E,Lm 19,–,–,54 19,–,–,54 1 19,–,–,54 0 UCL8 UCL7 UCL2 UCL E0 UCL E6 UCL E6 UCL X,E5 UCL E6 UCL X,Li,E,Lm 8,–,–,54 2 UCL E,Lm –,–,–,54 UCL 8,–,–,54 19,–,–,54 8,–,–,54 E X,E 8,–,–,54 19,–,–,54 19,–,–,54 8,–,–,54 36 UCL7 UCL6 UCL3 UCL UV,E9 UCL Lm6 UCL X,E4 UCL E UCL 8,–,–,54 E,Lm E,Lm4 8,–,–,54 E 19,–,–,54 UCL 1 8,–,–,54 11,–,–,54 5 UCL 8,–,–,54 0 UCL8 UCL 8,–,–,54 7 UCL E8 UCL E8 UCL E UCL X,E X,E,Lm E,Lm 8,–,–,54 11,–,–,54 35,–,–,54 –,–,–,54 138,–,–,54 35,–,–,54 98 UCL9 UCL2 UCL5 UCL E3 UCL E UCL E E X,E X,E 26,–,–,54 8,–,–,54 8,–,–,54 19,–,–,54 8,–,–,54 19,–,–,54 5 UCL E,Lm 19,–,–,54 20 UCL9 UCL3 UCL5 UCL X,Li,E2 UCL X UCL E9 X,E 19,–,–,54 0 UCL E1 UCL E8 UCL 19,–,–,54 9 UCL 8,–,–,54 –,–,–,54 UCL E 8,–,–,54 8,–,–,54 E 8,–,–,54 35,–,–,54 4 UCL ...... Nσ IR 1 2 2 1 1 2 2 1 0 1 1 1 0 1 1 3 1 3 1 1 2 4 2 1 1 2 0 1 1 1 2 1 2 2 1 1 2 2 2 0 2 1 0 1 004 2 004 1 005 2 004 2 005 1 . . . . . 0 0 0 0 0 ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· NUV 476 766 532 778 161 . . . . . 13 13 13 12 13 14 01 . . 57 66 27 58 19 27 26 74 22 ...... 0 0 0 0 0 0 0 0 0 0 0 ) (mag) 1 − ············ ············ ··············· ······························ ··························· ······ ···································· ··· ·················· ··················· · · − ······························································· ····················· · · · − ··· ··· ·········································· ··· ································· ········· 1 2 7 8 9 9 3 5 1 3 3 8 1 2 4 7 2 0 0 8 4 5 5 3 4 0 7 6 9 4 6 0 5 2 8 5 6 5 8 ...... 6 8 6 6 4 9 11 5 5 4 15 6 13 7 4 5 5 4 6 4 8 9 20 4 8 8 19 15 7 3 19 5 5 7 7 4 14 9 4 3 5 8 7 5 5 5 4 12 17 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 6 1 4 5 8 8 5 6 4 4 9 2 4 7 2 8 2 9 6 1 1 5 3 2 9 9 1 0 8 6 4 0 4 2 1 4 6 5 9 ...... Distance Rad. Vel. HR1 (continued) 89 165 44 159 75 120 43 151 31 146 41 115 35 142 66 119 29 146 63 123 56 148 52 122 70 160 4 152 90 138 5236 160 136 40 138 44 129 44 144 4602 146 102 70 126 49 110 34 132 44 172 40 143 71 131 36 139 05 129 28 128 26 118 41 147 65 139 141 146 131 9 151 96 133 46 136 41 113 37 142 42 127 134 141 136 77 147 53 145 7 144 44 141 43 132 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 0 0 0 1 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 7 5 5 7 3 . . . . . 96 72 92 55 72 16 79 97 63 85 98 83 09 50 74 97 77 13 72 11 97 23 26 87 78 96 38 19 41 18 03 99 56 18 29 26 42 51 38 99 04 22 12 90 ...... Table 4 continued 21 19 22 22 22 15 18 17 19 19 20 21 22 20 21 20 21 18 18 19 20 20 18 19 28 18 24 19 17 23 22 19 19 20 23 25 20 23 22 24 26 28 22 22 22 25 22 28 22 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 78 32 0 0 2 1 94 78 83 36 07 25 90 65 56 86 83 91 89 51 40 36 51 0 3 2 9 1 02 96 52 33 55 99 98 1 5 2 6 4 89 90 94 46 41 40 8 1 6 ) (mas yr ...... 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 6 0 0 0 0 0 0 0 0 0 1 1 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 1 1 0 3 4 0 6 2 8 4 6 1 3 0 3 3 4 ...... 70 29 22 94 97 07 56 93 04 32 27 83 33 56 20 99 42 09 32 77 75 84 23 05 13 05 10 28 20 94 88 48 ...... α 20 24 22 27 20 25 18 21 23 22 23 22 24 25 22 21 20 µ 27 26 26 26 27 23 26 27 32 19 19 28 21 22 21 23 34 26 26 19 20 23 23 24 22 26 22 19 21 21 14 20 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 122414HD 122513HD 122778HD 122922 UCLV1335 Cen UCL UCL F5V UCL A3III UCL F6V F3IV/V 14:02:58.296 14:03:53.784 G0/2V –49:32:30.92 –53:46:28.42 14:06:04.584 14:05:06.979HD 126042 –50:04:16.85 –49:29:57.70 HD 14:07:01.138 126180 –42:33:00.90 HD 126315HD 126181 UCLHD 126503 UCL2M1427–5944 UCL F3VHD 126710 UCL F7VHD 127326 UCL UCL G0VHD 127466 F7V 14:24:26.791HD 128360 K5IVe UCL F8/G0V –46:21:12.99 14:25:29.909HD 128737 UCL –51:30:08.15 14:25:44.438TYC 7308–862–1 –36:52:46.50 UCL 14:27:02.652 A8/9IV 14:25:47.026 14:27:54.204 –41:53:51.41 UCL UCL A8/9V –55:07:39.72 –59:44:35.37 UCL F7/G0 14:28:26.580 –45:52:22.53 (K1) A1V 14:32:04.210 F3V –46:05:59.93 14:32:46.661 –43:37:03.58 14:39:45.466 14:37:25.106 –36:00:44.72 –36:43:21.86 14:39:44.270 –40:22:06.39 HD 119404HD 119573HD 120075CD–45 8723 UCLHD 120835 UCLHD 121020 UCL F6/7VHD UCL 121617 A5/7IV/VCD–39 8596 UCL F3V 13:44:57.302 13:44:04.092 F8 –45:13:23.66 UCL –47:05:14.51 UCL F5IV/V UCL G2IV 13:48:02.510 A1V –41:59:38.65 13:52:54.288 13:49:30.593 (G3) –43:52:19.01 –45:48:17.65 HD 123247 13:54:16.003HD –50:12:24.85 123482 13:57:41.086HD 124746 13:58:56.362 –47:00:34.60 HD –39:39:37.97 125036 UCLHD 125647 UCLHD 125777 UCL B9.5V UCL F6V UCL F8/G0V 14:07:40.757 UCL F5IV –48:42:14.92 14:16:58.202 A1/2IV 14:09:00.254 –53:55:48.21 A3V –41:48:47.52 14:18:51.487 14:21:48.439 –56:58:51.00 –38:40:51.34 14:22:57.787 –46:16:45.82 HD 129033HD 129103HD 129166TYC 8283–586–1 UCLCD–50 8807 UCL UCL2M1448–4102 UCL G3V (G3) G0V UCL UCL G0/1 14:41:26.585 F8 K2 –36:28:27.40 14:45:02.054 14:42:13.193 –47:35:47.04 –45:45:56.93 14:43:15.874 –57:29:11.94 14:47:08.426 14:48:13.176 –50:35:14.31 –41:02:59.41 CD–42 9693CD–44 9674HD 131607HD UCL 131609TYC UCL 8280–2879–1HD UCL G0 132349 UCLHD G0 132690 UCLHD (K1) 133023 F5/6VHD 133057 UCL F6V 14:49:41.270HD 133195 UCL –43:00:18.51 14:53:01.675HD 14:55:53.230 133317 14:59:40.404 UCL F7/8V –44:34:13.39 –39:43:44.64 –46:47:32.58 HD 133319 UCL F0V 14:56:12.026 UCL F0V –45:07:02.80 14:59:52.414 UCL A8V –40:11:59.83 UCL F0V 15:01:58.507 F3V –45:50:54.90 15:03:48.010 A5IV –45:47:44.45 15:03:59.537 –43:44:22.78 15:04:10.682 –31:56:12.98 15:04:54.053 15:04:58.337 –35:57:15.15 –37:41:20.99 26 Gagne´ et al. c Ref. 8,–,–,54 29,–,–,54 19,–,–,54 19,–,–,54 141,–,–,141 19,–,–,54 19,–,–,54 8,–,–,54 –,–,–,54 19,–,–,54 –,–,–,54 b ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth ex 86 UCL UCL E,Lm E,Lm 19,–,–,54 19,–,–,54 10 UCL7 UCL9 UCL1 UCL E UCL X,E E X,Li,E,Lm Lm 19,–,–,54 19,–,–,54 11,–,–,54 19,–,–,54 35,–,–,54 04 UCL UCL X,Li,E E 19,–,–,54 139,–,–,44 8 UCL E 140,–,–,54 53 UCL5 UCL8 UCL0 UCL E0 UCL X,E UCL E00 UCL 5 UCL 19,–,–,54 8,–,–,54 0 UCL7 UCL 29,–,–,54 5 UCL X,Li0 UCL E4 UCL X2 UCL X,E7 UCL E 19,–,–,54 9 UCL X,Li,E8 UCL 19,–,–,54 8 UCL E 29,–,–,54 29,–,–,54 UCL 19,–,–,54 19,–,–,54 X,Li,E,Lm1 X,Li,UV UCL –,–,–,54 19,–,–,54 19,–,–,54 X,E 19,–,–,54 58 UCL0 UCL UCL X,E X,E X –,–,–,54 19,–,–,54 19,–,–,54 69 UCL UCL X,Li,UV,E,Lm 19,–,–,54 1 UCL 93 UCL2 UCL UCL E Lm 29,–,–,54 8,–,–,54 70 UCL UCL4 E6 UCL Lm9 UCL4 UCL1 UCL E,Lm8 UCL X,E 19,–,–,54 19,–,–,54 UCL E,Lm E 8,–,–,54 E Lm 29,–,–,54 19,–,–,54 29,–,–,54 29,–,–,54 19,–,–,54 12 UCL UCL E 19,–,–,54 ...... Nσ IR 1 1 2 1 2 2 1 1 2 0 0 1 0 0 4 1 1 1 6 2 0 2 2 1 1 1 2 1 1 1 1 2 1 1 2 2 0 2 1 01 2 07005 2 1 04 2 003 0 02 0 04 0 003 2 06006 2 0 ...... 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· NUV 26 33 93 24 35 35 ...... 146 171 853 214 . . . . 15 16 13 12 13 18 18 02 71 00 42 17 33 46 13 80 29 17 36 13 20 69 96 27 57 18 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) (mag) 1 1 1 − ± 2 ········· ········· ·················· ··· ······ ··· ········· ········· ···································· ··· ····················· ············ ··· ······························ ··· ··· ··· ········· ············ ········· ··· ··· ······ ·················· ····················· ············ ···································· ········· ········· − 1 6 9 3 2 7 3 3 5 3 6 1 1 7 8 9 0 4 9 0 2 8 4 6 6 0 6 8 7 4 8 3 9 4 9 1 1 3 0 ...... 5 12 4 6 9 5 11 7 5 14 4 4 4 8 4 7 4 3 4 6 5 5 7 6 4 8 4 4 14 7 16 10 12 6 7 5 7 7 20 6 5 6 3 7 4 6 14 10 6 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 9 8 2 5 6 6 2 6 6 9 6 5 6 6 5 2 1 3 9 6 4 3 0 1 5 1 6 0 4 5 0 3 9 5 2 3 2 5 5 ...... Distance Rad. Vel. HR1 (continued) 47 133 5243 171 139 34 131 51 147 270 140 131 6 136 64 143 95 163 05 119 43 132 35 125 29 146 85 140 96 131 42 149 36 137 57 128 40 131 31 124 47 128 59 151 08 153 3646 184 153 4051 150 139 48 162 42 141 42 181 11 135 51 149 52 131 77 142 2 172 56 156 33 133 44 162 40 147 47 143 35 154 4140 149 129 39 142 29 155 80 111 67 132 47 157 ) (pc) (km s ...... 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 2 9 8 . . . 44 67 94 01 03 54 34 46 77 30 81 46 54 19 98 47 94 64 00 00 07 23 79 81 63 28 36 86 93 31 88 85 23 83 85 81 25 74 04 91 26 33 58 05 87 18 ...... Table 4 continued 21 24 19 22 21 24 27 17 18 23 20 28 30 24 24 24 26 22 28 27 25 31 32 24 22 19 22 25 29 17 26 22 28 22 22 23 24 29 21 23 22 23 24 27 23 21 25 23 20 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 74 48 84 1 93 8 62 0 4 88 68 74 3 42 3 48 29 58 75 12 35 76 5 77 1 81 81 14 82 2 9 33 94 40 08 73 47 29 1 0 52 96 43 34 79 5 0 7 0 ) (mas yr ...... 0 0 0 1 0 2 0 4 1 0 0 0 0 0 0 0 2 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 2 1 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 8 4 8 7 3 6 1 7 9 6 9 7 0 8 7 5 ...... 93 49 26 43 96 59 87 44 97 42 53 76 06 59 99 06 61 60 69 88 45 35 62 36 70 86 38 31 90 97 98 78 51 ...... α 18 17 25 21 24 20 20 22 15 17 19 19 21 21 19 18 µ 21 17 18 19 19 14 22 25 17 18 21 16 14 15 18 19 16 16 16 17 18 17 25 19 17 20 19 22 20 14 19 21 19 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 133263HD 133531CD–29 11540 UCL UCL UCL F2IV/V A5III/IV F8 15:05:11.410 15:06:13.942 –47:34:33.75 –37:17:24.15 15:07:18.360 –29:43:55.58 HD 133974HD 133940TYC 7822–2509–1HD UCL 134392 UCLTYC 7316–564–1 UCL K3IV(e) UCL F5/6V UCL F5V 15:10:29.522 K6 –39:02:56.96 15:08:51.389 A9/F0IV/V –43:03:22.83 15:10:49.442 15:09:01.313 –38:07:48.63 –49:59:48.32 15:11:04.474 –32:51:30.79 HD 134910HD 134989 UCL UCL G0V: F2V 15:13:50.364 –40:25:02.25 15:14:06.982 –38:09:08.42 HD 135085 UCL F5V 15:14:29.280 –36:14:05.96 HD 1366252M1524–3030HD 137080HD 137041 UCL UCLHD 137350HD 137953 K0 UCL F5VCD–41 9968 UCLHD 137990 UCL F8/G0VCD–31 12102A UCL A2 15:22:57.979HD UCL 15:24:11.443 139614 15:25:27.175 A2V –36:58:50.32 –30:30:58.62 HD UCL –39:31:39.80 140197 UCL F2VHD G0 140219HD G5V 140390 15:26:08.136 UCL A7/8V 15:26:46.747CD–33 –53:33:28.00 10685 –35:46:50.32 UCL 15:30:22.730HD 140498 UCL F0V –38:19:02.24 15:30:26.911HD 15:30:36.826 140655 15:37:02.112 UCL A2V –41:29:54.94 –37:41:24.78 UCLTYC –31:36:40.24 7837–1282–1 F7VHD UCL 140862 UCL F0V K2e 15:40:46.358TYC 7845–55–1 UCL –42:29:53.92 15:43:49.870MV (G3) Lup –39:27:41.30 A0V UCL 15:43:57.235HD 141338 UCL F8V –39:28:57.39 15:44:21.718 15:45:12.850 –30:12:02.93 K3IV(e) –34:17:30.97 15:46:16.171 F3V 15:45:20.194 –38:56:12.01 HD 142275 UCL –39:46:24.17 UCL 15:49:58.390 15:45:58.524 –43:06:37.38 –34:13:41.55 K2 F5/6 15:48:04.087 UCL –48:59:04.25 F3V 15:50:07.860 15:49:59.191 –38:56:13.05 –36:29:57.84 15:54:59.616 –36:17:46.03 HD 135127HD 134997TYC 7822–1757–1 UCL UCL UCL (G3) F5V F3V 15:15:28.058 15:14:39.562 –39:04:29.51 –34:45:41.66 15:14:54.466 –52:20:12.97 HD 136531 UCL F3/5 15:22:23.167 –34:37:27.35 HD 141779HD 142045 UCL UCL A5/6IV/V F3/5V 15:52:18.787 –39:30:58.02 15:54:14.218 –44:48:27.61 HD 135255HD 135349HD 135583 UCLHD 135646 UCLHD 135878 A3IIICD–34 10314 UCL G2VCD–43 9830 UCLHD 136423 UCL A9IV/V 15:15:55.951 UCLTYC –47:09:30.03 6775–1218–1 F6V 15:16:15.005 UCL UCL –44:28:48.03 A2IV/V 15:17:27.576 (G4) –43:23:02.10 UCL K3IV(e) G0 15:19:07.042 15:18:09.499 –42:26:15.90 A7IV –48:28:33.92 15:19:08.196 15:21:52.390 –34:32:02.10 –28:42:38.66 15:21:32.042 15:21:52.080 –44:14:08.59 –37:32:55.90 HD 135524 UCL F7V 15:17:02.335 –43:26:33.73 New Young Association Members in Gaia–Tycho 27 c Ref. 11,–,–,148 19,–,–,54 19,–,–,44 –,–,–,77 19,–,–,54 8,–,–,54 19,–,–,54 19,–,–,54 19,–,–,145 19,–,–,54 14,–,–,54 142,–,–,142 29,–,–,54 29,–,–,54 29,–,–,54 8,–,–,54 29,–,–,54 8,–,–,54 29,–,–,54 19,–,–,54 19,–,–,54 b ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Group Known Youth USCO USCO UCL UCL ex 1 USCO 2 USCO X,Li,E,Lm 52,–,52,52 27 USCO8 USCO USCO E,Lm X,Li,E,Lm 26,–,–,146 11,–,–,147 0 USCO Lm 14,–,–,54 5 USCO E 19,–,–,54 62 USCO 8 USCO USCO E 8,–,–,54 4 USCO 01 UCL UCL 0 USCO E 19,–,–,54 4 UCL8 UCL E E 19,–,–,54 19,–,–,54 27 UCL UCL X,E 19,–,–,54 2 UCL 16 UCL 0 UCL2 UCL 7 UCL UCL E5 E4 UCL E UCL 29,–,–,54 X,E X,E –,–,–,54 142,–,–,142 29,–,–,54 29,–,–,54 62 UCL UCL 8 UCL E 144,–,–,54 17 UCL5 UCL9 UCL7 UCL X,Li,E UCL E,Lm E E 14,–,–,54 X,Li,E 19,–,–,54 29,–,–,54 29,–,–,54 5 29,–,–,54 1 UCL UCL 61 UCL3 UCL5 UCL1 UCL E UCL E E,Lm7 E UCL E 29,–,–,143 0 –,–,–,54 29,–,–,54 UCL 29,–,–,54 14,–,–,54 70 UCL UCL E E 8,–,–,54 –,–,–,142 ...... Nσ 1 8 3 0 2 1 1 0 1 2 1 0 0 2 2 1 0 1 0 IR 0 2 1 3 1 1 2 0 1 1 3 1 2 1 2 0 1 2 2 2 2 2 0 0 1 2 ··· ··· ··· ··· ··· ··· ··· NUV 47 99 00 21 06 81 00 ...... 0 0 1 0 0 0 0 ) (mag) 1 − ········· ··· ········· ························ ············ ········· ········· ··························· ········· ········· ·················· ········· ········· ············ ········· ·················· ···························································· ··· ········· ··· ··· ························································· ··························· ···································· ·················· 3 3 7 0 0 9 0 6 4 1 3 9 5 7 2 6 8 1 6 5 3 8 8 2 7 5 6 0 3 7 7 4 4 6 0 7 4 5 4 5 8 ...... 4 7 6 4 5 4 5 7 9 4 5 9 9 21 7 7 5 9 8 11 8 13 6 8 12 8 7 6 6 7 11 4 3 9 5 4 8 4 24 23 7 7 8 6 6 8 10 6 5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 2 0 6 6 1 2 5 6 8 3 7 9 3 6 4 0 1 3 3 6 9 8 8 5 9 8 8 8 6 2 1 0 4 5 9 7 0 9 7 0 3 ...... Distance Rad. Vel. HR1 (continued) 51 165 31 165 90 154 28 139 35 144 97 133 54 156 28 138 37 155 39 134 33 115 42 133 69 144 8 134 71 169 5151 160 138 9 161 12 160 4 173 45 164 44 133 25 146 34 137 38 135 37 130 40 124 09 135 04 102 4 188 48 143 6 175 42 161 05 127 29 140 48 131 50 142 40 175 27 184 56 176 63 165 67 129 03 159 44 170 74 143 78 176 4 243 1 162 1 158 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 4 3 9 2 6 6 2 8 ...... 80 94 87 25 35 12 57 20 03 91 13 50 22 38 30 13 02 91 35 61 19 16 16 81 49 66 24 93 71 63 35 69 97 70 58 48 02 78 98 59 26 ...... Table 4 continued 27 22 25 22 20 19 23 22 19 22 23 18 24 23 17 23 24 23 27 24 21 22 23 22 21 20 28 22 24 28 31 25 30 33 25 27 27 27 27 21 17 21 23 27 20 22 20 25 22 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 99 3 33 68 47 99 2 1 11 06 1 09 25 0 85 87 80 84 85 30 7 7 44 1 79 25 1 51 66 47 4 1 76 51 87 1 12 8 40 45 0 60 72 57 04 4 9 4 8 ) (mas yr ...... 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 2 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 2 0 0 0 0 0 0 0 1 0 1 1 1 6 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 1 6 7 3 7 1 0 0 0 7 9 5 1 1 4 2 0 3 ...... 51 10 54 00 64 35 41 42 99 80 63 67 08 92 80 42 79 92 52 74 12 88 99 78 00 53 89 13 05 51 19 . . 9 9 . 8 ...... 9 ...... 7 9 α 16 14 11 14 8 18 13 12 11 12 12 13 9 11 µ − − − − − − 16 14 17 17 14 18 20 15 16 17 17 11 10 10 13 12 14 19 16 11 11 18 13 12 16 12 12 10 12 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 143730HD 143791HD 144277HD 144295 UCLHD 144691 UCLHD 144825 UCL G5VHD 144795 UCL G8/K0TYC 7342–10–1 UCL A1VHD 145211 UCL F3V 16:03:30.914 UCL 16:03:54.8282M1613–4548 –36:24:40.87 UCL A9V –38:47:37.85 HD 325434 F5V 16:06:33.194 (G7) UCL –39:15:34.60 UCL A6/7V 16:06:37.709 –39:08:42.87 16:08:31.334 F3V –35:09:50.17 UCL F3V 16:09:17.076 16:09:44.542 16:10:12.403 –36:09:26.42 –47:21:46.33 –37:08:18.40 G 16:13:11.926 16:11:14.983 –45:48:41.64 –37:27:40.61 16:13:52.135 –40:17:39.97 TYC 7838–962–2HD 142562 UCLHD 142992HD 143181 M0eNN Lup UCLHD 143653 UCL UCL F3IV/V 15:56:09.192 –37:56:06.48 F0V UCL UCL B9V 15:56:58.908 –42:53:02.99 F5/6V K3 15:58:50.122 –32:03:08.73 16:00:22.320 –38:59:38.13 16:03:14.609 –38:15:36.46 16:01:59.160 –36:12:56.01 HD 145720HD 146681HD 328171HD 147875 UCLHD 148248 UCL UCL F3/5V UCL A7II/III UCL G0 16:13:57.670 A8V 16:19:14.801 –39:11:15.64 –40:49:15.40 A0 16:26:00.091 16:26:09.866 –45:57:13.29 –41:13:34.19 16:28:35.952 –41:55:20.91 HD 321803 UCL G5 16:34:11.630 –39:37:36.16 TYC 6784–241–1 USCO (G6) 16:11:06.902 –26:09:23.89 HD 144273TYC 6213–1122–1 USCO USCO K3IV B9V 16:10:12.634 –21:04:44.86 16:05:44.832 –19:40:52.13 TYC 6212–946–1HD 144113 USCO G22M1608–1904 USCO USCO A3IV/V 16:02:03.744 K3IVe –21:22:46.86 16:04:55.447 –20:54:00.37 16:08:10.807 –19:04:48.29 HD 143318 USCO F5V 16:00:42.643 –26:23:29.96 HD 142988 USCO A3III 15:58:30.377 –20:53:36.33 HD 142933 USCO F5/6V 15:58:12.432 –24:20:38.91 HD 141575HD 141662HD 141960 USCO USCO A2V USCO G3V A9V 15:50:30.552 –20:50:53.62 15:50:58.846 –22:22:22.66 15:52:56.532 –29:50:34.53 HD 141147 USCO G6V 15:48:21.290 –24:43:49.63 HD 150989HD 326253HD 152369CD–25 11037 UCL UCL UCL F0V USCO G5 (G3) A9V 16:46:13.190 –39:44:44.95 16:49:18.403 15:41:33.538 16:54:34.075 –43:25:19.14 –26:03:57.18 –38:06:20.64 HD 150092 UCL G0 16:40:52.270 –40:25:59.86 HD 149726HD 149948 UCL UCL F0V G1/3 16:38:31.210 –41:38:07.37 16:39:37.272 –40:03:22.11 HD 149738 UCL A0V 16:38:26.940 –39:39:06.83 HD 149439HD 149514HD 149533HD 149638 UCL UCL UCL A3V UCL F2V B9V F5V 16:36:15.542 –34:12:00.15 16:36:41.578 –33:14:37.48 16:37:02.628 –38:40:34.71 16:37:43.176 –39:42:31.37 HD 149336 UCL F5V 16:35:34.802 –37:06:36.68 28 Gagne´ et al. c Ref. 8,–,–,64 11,–,–,54 52,–,–,54 –,7,–,– –,7,–,– b ··· ··· ··· Group Known Youth ······ ······ ex 81 USCO4 USCO 4 USCO E USCO Lm Lm 52,–,52,52 52,–,52,52 8,–,–,54 98 USCO3 USCO8 USCO5 E USCO8 Li,E,Lm USCO6 Lm USCO3 E USCO 11,–,–,114 E,Lm USCO E 52,–,52,52 E,Lm 52,–,52,52 52,–,52,52 6 52,–,52,52 USCO 52,–,52,54 133,–,–,68 E 52,–,52,52 0 USCO E84 USCO0 USCO0 USCO2 E,Lm 52,–,52,52 USCO9 E,Lm USCO3 E USCO5 E USCO 52,–,52,52 E USCO 52,10,10,52 E E X,E 52,–,52,52 52,–,52,52 52,–,52,52 2 19,–,–,54 52,–,52,52 52,–,52,52 94 USCO0 USCO3 USCO E USCO E X,E 52,–,52,52 52,–,52,52 52,–,52,52 54 USCO2 USCO7 USCO E USCO Li,Lm X9 E 52,–,52,52 52,–,52,52 19,–,–,54 52,–,52,52 ...... Nσ IR 1 1 1 1 1 2 1 2 1 2 1 1 1 2 1 3 2 3 2 1 4 1 1 1 2 2 1 2 1 1 1 06 0 . 0 ± ··· ··· ··· NUV 32 . 19 98 49 85 . . . ········· 0 0 0 ) (mag) 9 . 1 2 0 − ± ± ···································· ············································· ···································· ··························· ················································ ····················· ··························· ········· ··· 8 . 4 3 8 2 9 7 7 4 0 1 2 4 1 7 7 0 9 7 3 6 1 66 10 4 7 8 5 2 7 ...... 6 8 5 7 6 4 5 9 5 10 7 6 6 9 4 7 7 5 4 4 9 4 15 5 5 11 4 6 3 4 6 14 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 8 8 8 0 1 2 8 2 7 2 8 4 6 7 4 4 5 2 3 4 1 1 8 1 3 2 2 4 ...... Distance Rad. Vel. HR1 (continued) 05 157 91 131 43 139 61 155 63 155 82 135 4053 149 152 34 136 44 147 50 146 51 143 63 149 80 132 56 137 73 128 3 162 53 138 52 160 09 135 8 133 61 151 38 132 138 49 154 05 139 77 161 92 115 58 128 17 128 3 155 158 ) (pc) (km s ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 2 1 1 1 − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± δ 6 9 8 6 1 5 2 ...... 23 46 93 88 42 64 00 48 64 28 56 40 79 14 07 84 81 76 95 53 96 34 26 77 91 ...... Table 4 continued 22 22 25 24 26 22 21 23 24 20 23 24 26 20 25 22 26 23 21 21 24 25 27 21 19 22 20 20 24 23 Table 4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 09 3 45 72 80 5 39 94 32 40 75 56 99 8 86 91 7 49 81 13 5 46 6 6 71 08 730 15 4 85 8 2 7 ) (mas yr ...... 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 1 1 0 0 0 1 0 2 1 1 1 δ µ − ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± cos 6 5 8 4 4 9 7 8 5 4 5 ...... 68 85 02 77 93 61 61 76 86 55 50 31 78 76 92 61 64 47 79 31 65 . . . . 7 ...... 6 . . . . 9 7 α 7 10 9 8 9 9 8 9 11 10 9 7 5 10 9 12 6 12 µ − − − − 10 10 11 13 14 12 10 14 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − (hh:mm:ss) (dd:mm:ss) (mas yr a Type Name Assoc. Spectral R.A. Decl. HD 146367HD 146366HD 146457HD 146494 USCOCD–24 12659 USCO A9V USCO F6/8V USCO USCO A5III/IV A7III (K2) 16:16:53.371 16:16:54.557 16:17:14.645 –23:06:38.07 –21:37:15.86 –22:55:20.24 16:17:26.904 16:17:54.806 –23:20:30.86 –24:43:34.00 HD 145333TYC 6213–85–1HD 145719 USCOHD 145778 USCOHD 145942 K3IV(e) F0VHD 146055 USCOHD 146330 16:12:46.805 USCO A6IV2M1616–2433 –22:13:32.10 USCO F3V 16:11:15.950 USCO A2IV –23:12:14.95 USCO USCO B9V 16:13:27.996 –27:24:13.90 F8e A5IV 16:13:47.801 16:14:20.496 –27:47:34.25 –22:08:10.09 2M1618–2005 16:15:08.069 –24:35:18.81 16:16:44.242 16:16:51.288 –25:13:45.61 –24:33:28.12 USCO K1.5e 16:18:19.963 –20:05:35.20 HD 147011 USCOHD 147283 F3/5VHD 147342CD–26 11326HD 147911 USCO 16:20:07.824TYC –22:31:08.54 6802–1158–1 USCO USCO A1IVHD USCO 148409 A5IV/VHD (G7) 148563 USCO (K1)HD 148606 A0V 16:21:57.672V2394 16:22:10.039 Oph USCO –24:29:43.89 –21:39:17.68 16:24:29.388 USCO 16:26:23.414 F6V –26:55:38.22 –27:39:00.82 USCO A1V 16:25:24.103 USCO –21:41:19.06 G0V A0/1 16:28:51.994 –26:11:55.83 16:29:55.968 –26:35:26.63 16:30:13.766 –26:33:19.86 16:31:40.673 –24:25:16.58 HD 147013HD 146974HD 147255 USCO USCO A0V USCO F8V F6V 16:20:15.024 –25:38:44.67 16:20:15.497 –28:43:01.24 16:21:47.918 –25:56:47.51 TYC 6803–994–1HD 148982 USCOHD 149598 K4IV(e) USCO 16:31:53.458 USCO –26:36:17.34 F8/G0 F8/G1 16:32:50.868 –28:20:40.21 16:36:52.877 –27:08:18.98 Rejected Candidate Members TYC 8104–898–1TYC 9341–1233–1 OCT OCT (G1) (G9) 06:38:02.156 23:09:11.244 –45:13:48.30 –72:21:12.78 27 New Young Association Members in Gaia–Tycho 29 c Ref. b Group Known Youth consitent with youth; J − ex G Nσ IR versus G − NUV NUV ) (mag) 1 − -0.15; UV: Galex ≥ Distance Rad. Vel. HR1 (continued) ) (pc) (km s 1 − δ Table 4 ) (mas yr color with the spectral type–color relations of Pecaut & Mamajek),( 2013 see also http://www.pas.rochester. 1 δ µ − J cos − α G µ . Teff.txt colors ˚ A; E: Mid-infrared excess; Lm: Luminosity class consistent with youth; Is: Young isochronal age consistent with; Ca:Ca II infrared UBVIJHK dwarf (hh:mm:ss) (dd:mm:ss) (mas yr a —(1) Pribulla et al. ;2014 (2) Holmberg et al. ;2007 (3) Jaschek et al. 1964 ; (4) Kharchenko et al. 2007 ; (5) White et al. 2007 ; (6) Nordstr¨omet al. 2004 ; Type emamajek/EEM ∼ edu/ Li: Lithium absorptiontriplet age above consistent 100 m with proposed association. (7) Kunder et al. et al. 2017 ;;1995 (8) (15) etHouk Gray al. 1978 ; et;1996 (9) al. (29) Kharchenko (22) ;2006 2001 ;HoukGray (16) & (10) Kordopatis et Smith-Moore etTorres& al. et;1988 al. Stoy 2003 ;;2013 al. (30) 1955 ; (23) (17) ;2006 Wilson SantiagoYoss (36) Houk1953 ; (11) ;1961 et Goedicke & (31) Houk (24) al. 1945 ; Swift Westerlund &1996 ;Hill1999 ; et2006 ; (37) Cowley & (18) al. da (49) (43) ;1975 Valenti Schilt ;1981 Silva & (12) Stephenson R¨oseret(55) 1952 ; (32) Fischer etGontcharov 1986b ; al. (25) UpgrenHoogerwerf 2005 ;2006 ; al. (44) etWright (19) 2011 ; (13) 2000 ;2009 ; etet al. Houk SchliederMo´oret (38) al. al. (56) 1972 ; al. (50) 1982 ; et2013 ;;2003 Skiff (33) 2009 ; (20) KrautterElliott al. (14) Fabricius (26) Soubiran2014 ;2001 ; (62) et et2010 ; et etNesterov RoeserKharchenko (39) (68) al. al. al. (45) et &Wehinger al. 2002 ;;2013 Mermilliod al. Esplin& & Bastian 1997 ; (34) (21) 2016 ;2004 ; et;1988 Hidajat et Smekhov LothRousseau (57) (63) (27) al. (51) 2002 ; al. &1973 ;HughesMer´ınet2008 ; al. Cannon Bidelman (75) 2009 ;2014 ; (40) Messina et2008 ;1998 ; & (82) ChristianWilson (46) (69) et 1920 ; (64) (35) Mayall al. Song et;1962 Kohlsch¨utter (88) Hartman;1949 Jackson Rizzuto (47) al. 1993 ; et al. (76) Slettebak (28) et etCannon2010 ;2001 ; al. (58) 1963 ;SchliederAbt al. al. & (41) et (89) ;2011 2012 ;1981 ; etGlaspey (52) ;2010 Pickering GaidosSchlaufman (65) al. al. (83) 1972 ;Makarov1993 ; & (70) etKraus2012 ;Mamajek2001 ; & (59) (101) (48) Casey et al. Kraft (77) et;2014 al. Alcal´aetZuckerman (95) Patterer;2014 Urban 1967 ; al. Hoffleit2014 ; (90) & al. (42) etMelis2000 ; (71) Collaboration et (66) Desidera Song 2002 ;L´opez- al. et etStaufferJohnson et (53) al. 2012 ; (84) 1993 ; & al. al. al. et1970 ;Pecaut (102) 1989 ;Dahm Mitchell 2015 ;;2017 (60) (78) al. ;2010 &1958 ;de et (113) (91) (108) CheethamEvans 2007 ; (67) (96) Adams Mamajek Zeeuw al. Stephenson King1967 ; et(119) Cayrel (72) et et;1986a van2012 ; et2016 ; (79) deStauffer al. al. Mendoza (109) al. Leeuwen (85) StrobelChen al. 1935 ; et (54) 2015 ; V Endl1969 ;1999 ; et etK¨ohleret et;2003 (92) al. (61) al. Slawson et1956 ; al. (126) (103) al. al. Galli (114) al. 1991 ;2000 ;Viana et (73) RebullGahm et2011 ;1986 ;(132) 2006 ;Zuckerman (120) (86) Almeida al. etMagazz`uet al. et (80) Garrison (110) & (97) al. Luhman2017 ;Gratton al. al. &Upgren 1992 ; Chubak Song (93) Wichmann;1997 &1939 ;1998 ; 2011 ; Gray 1989 ;1962 ; &Hoogerwerf;2004 et1994 ; (74) Mamajek (138) (121) (127) (81) (104) Marcy & (133) (115) Tokovinin Rizzuto al. 2012 ;RandichBouy;2011 1980 ;MermilliodBertiau Aguilar 2012 ;Lod´en Zuckerman et et (111) (134) (87) et;;2000 1999 et1958 ; (145) etSpencerAmmler-von al. al. (94) Preibisch al. al. (105) (98) Luhman Eiff JonesMontes al. 2015 ;1995 ; &2015 ;Walter et Osawa & & (139) 2001 ; (128) et Zinnecker (122) al. 1959 ; Jackson Guenther 1969 ;Garrison ; 1999 Lod´en (116) al. 2009 ;1939 ;Soderblom2009 ; (129) (99) 1967 ;1994 ;McCarthy (135) (146) (112) etKraus (140) WalterStephenson (106) &KeenanBell al. & &Struve & &Shkolnik White et1993 ; Hillenbrand & Sanduleak Boyd McNeil et al. 2012 ;2007 ; (123) 1975 ; Straka ;1991 al. 2017 ; (117) (136) 1962 ; (130) Bourg´eset2017 ; (147) (100) al. Murphy Binnendijk (141) CasewellSilaj (107) etAbt2014 ;1946 ; etCarpenter al. Gaia & & (124) al. et (118) 2015 ; Landstreet 2006 ; al. Feigelson Morrell Li (137) 2014 ; et2006 ; (131) Preibisch &1995 ; (148) et al. (142) Odenkirchen Hu Mamajek al. et;1987 Lindblad 1998 ; et al. 1922 ; (125) al. ; 1998 (143) Eggen 2000 . Joy 1949 ; (144) Nguyen et al. References for: (1) spectral type, (2) radial velocity, (3)Spectral lithium binary detection ( Torres and et (4) al. membership2006 ). candidacy in a young association. Spectral types in parentheses were estimated using the Signs of youth compiled from the literature. See Section 4 for more detail. X: X-ray emission with HR1 c d References a b Name Assoc. Spectral R.A. Decl. 30 Gagne´ et al.

We thank the anonymous referee for useful com- Institut f¨urAstronomie, Heidelberg. This work has ments. We thank Dustin Lang for providing the TGAS– made use of data from the European Space Agency 2MASS cross-match data, David Rodriguez from pro- (ESA) mission Gaia (http://www.cosmos.esa.int/gaia), viding part of the data used to build the field se- processed by the Gaia Data Processing and Analysis quence in Figure8, and Eric E. Mamajek for use- Consortium (DPAC, http://www.cosmos.esa.int/web/ ful comments. This research made use of: the SIM- gaia/dpac/consortium). Funding for the DPAC has BAD database and VizieR catalog access tool, oper- been provided by national institutions, in particular ated at the Centre de Donn´eesastronomiques de Stras- the institutions participating in the Gaia Multilateral bourg, France (Ochsenbein et al. 2000); data prod- Agreement. We note that 46 of the 254 new candi- ucts from the Two Micron All Sky Survey (2MASS; date members presented in this paper were also inde- Skrutskie et al. 2006), which is a joint project of the pendently uncovered in Faherty et al. (submitted to University of Massachusetts and the Infrared Process- ApJ). ing and Analysis Center (IPAC)/California Institute of JG wrote the codes, manuscript, generated figures Technology (Caltech), funded by the National Aeronau- and led all analyses; ORL performed parts of the litera- tics and Space Administration (NASA) and the Na- ture cross-matches and interpretation, and helped gen- tional Science Foundation (Skrutskie et al. 2006); data erate lists of new candidate members; JKF helped pars- products from the Wide-field Infrared Survey Explorer ing young association literature data and provided gen- (WISE; and Wright et al. 2010), which is a joint project eral comments; RD shared comments and supervized of the University of California, Los Angeles, and the ORL; and LM helped with the construction of color- Jet Propulsion Laboratory (JPL)/Caltech, funded by magnitude sequences. NASA. This project was developed in part at the 2017 Software: BANYAN Σ (Gagn´eet al. 2018a). Heidelberg Gaia Sprint, hosted by the Max-Planck-

REFERENCES

Abt, H. A. 1981, Astrophysical Journal Supplement Series, Boucher, A., Lafreni`ere,D., Gagn´e,J., et al. 2016, The 45, 437 Astrophysical Journal, 832, 50 Abt, H. A., & Morrell, N. I. 1995, Astrophysical Journal Bourg´es,L., Lafrasse, S., Mella, G., et al. 2014, in Supplement v.99, 99, 135 Astronomical Data Analysis Software and Systems Adams, W. S., Joy, A. H., Humason, M. L., & Brayton, XXIII. Proceedings of a meeting held 29 September - 3 A. M. 1935, The Astrophysical Journal, 81, 187 October 2013 at Waikoloa Beach Marriott, 223– Alcal´a,J. M., Terranegra, L., Wichmann, R., et al. 1996, Bouy, H., Bertin, E., Sarro, L. M., et al. 2015, Astronomy Astronomy and Astrophysics Supplement, 119, 7 and Astrophysics, 577, A148 Ammler-von Eiff, M., & Guenther, E. W. 2009, Astronomy Brandt, T. D., & Huang, C. X. 2015, The Astrophysical & Astrophysics, 508, 677 Journal, 807, 24 Barrado y Navascu´es,D., Stauffer, J. R., & Jayawardhana, Cannon, A. J., & Mayall, M. W. 1949, Annals of Harvard R. 2004, The Astrophysical Journal, 614, 386 College Observatory, 112, 1 Bell, C. P. M., Mamajek, E. E., & Naylor, T. 2015, Monthly Cannon, A. J., & Pickering, E. C. 1993, VizieR On-line Notices of the Royal Astronomical Society, 454, 593 Data Catalog, 3135 Bell, C. P. M., Murphy, S. J., & Mamajek, E. E. 2017, Carpenter, J. M., Mamajek, E. E., Hillenbrand, L. A., & Monthly Notices of the Royal Astronomical Society, 468, Meyer, M. R. 2006, The Astrophysical Journal, 651, L49 1198 Bertiau, F. C. 1958, The Astrophysical Journal, 128, 533 Casewell, S. L., Jameson, R. F., & Dobbie, P. D. 2006, Binnendijk, L. 1946, Annalen van de Sterrewacht te Leiden, Monthly Notices of the Royal Astronomical Society, 365, 19, B1 447 Bochanski, J. J., Hawley, S. L., Covey, K. R., et al. 2010, Cayrel de Strobel, G., Soubiran, C., & Ralite, N. 2001, The Astronomical Journal, 139, 2679 Astronomy and Astrophysics, 373, 159 Bochanski, J. J., Hawley, S. L., & West, A. A. 2011, The Chabrier, G. 2005, The Initial Mass Function 50 Astronomical Journal, 141, 98 later. Edited by E. Corbelli and F. Palle, 327, 41 Boller, T., Freyberg, M. J., Tr¨umper, J., et al. 2016, Cheetham, A. C., Kraus, A. L., Ireland, M. J., et al. 2015, Astronomy & Astrophysics, 588, A103 The Astrophysical Journal, 813, 83 New Young Association Members in Gaia–Tycho 31

Chen, C. H., Mamajek, E. E., Bitner, M. A., et al. 2011, Gagn´e,J., Faherty, J. K., Burgasser, A. J., et al. 2017b, The Astrophysical Journal, 738, 122 The Astrophysical Journal Letters, 841, L1 Choi, J., Dotter, A., Conroy, C., et al. 2016, The Gagn´e,J., Mamajek, E. E., Malo, L., et al. 2018a, Astrophysical Journal, 823, 102 BANYAN Σ (IDL) v1.1, Zenodo, Christian, D. J., Craig, N., Dupuis, J., Roberts, B. A., & doi:10.5281/zenodo.1165086 Malina, R. F. 2001, The Astronomical Journal, 122, 378 —. 2018b, BANYAN Σ (Python) v1.1, Zenodo, Chubak, C., & Marcy, G. 2011, American Astronomical doi:10.5281/zenodo.1165085 Society, 217, 434.12 Gagn´e,J., Mamajek, E. E., Malo, L., et al. 2018a, The Cieza, L. A., Padgett, D. L., Allen, L. E., et al. 2009, The Astrophysical Journal, 856, 23 Astrophysical Journal Letters, 696, L84 —. 2018b, arXiv.org, arXiv:1801.09051 da Silva, L., Torres, C. A. O., de La Reza, R., et al. 2009, Gahm, G. F., Fischerstrom, C., Lindroos, K. P., & Liseau, Astronomy and Astrophysics, 508, 833 R. 1989, Astronomy and Astrophysics (ISSN 0004-6361), Dahm, S. E. 2015, The Astrophysical Journal, 813, 108 211, 115 Dahm, S. E., Slesnick, C. L., & White, R. J. 2012, The Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. Astrophysical Journal, 745, 56 2016a, Astronomy and Astrophysics, 595, A2 de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. Brown, A. G. A., & Blaauw, A. 1999, The Astronomical 2016b, Astronomy and Astrophysics, 595, A1 Journal, 117, 354 Gaia Collaboration, van Leeuwen, F., Vallenari, A., et al. 2017, Astronomy and Astrophysics, 601, A19 Delorme, P., Gagn´e,J., Girard, J. H., et al. 2013, Gaidos, E., Mann, A. W., L´epine,S., et al. 2014, Monthly Astronomy and Astrophysics, 553, L5 Notices of the Royal Astronomical Society, 443, 2561 Desidera, S., Covino, E., Messina, S., et al. 2015, Galli, P. A. B., Moraux, E., Bouy, H., et al. 2017, Astronomy & Astrophysics, 573, A126 Astronomy & Astrophysics, 598, A48 Dobbie, P. D., Lodieu, N., & Sharp, R. G. 2010, Monthly Garrison, R. F. 1967, The Astrophysical Journal, 147, 1003 Notices of the Royal Astronomical Society, 409, 1002 Garrison, R. F., & Gray, R. O. 1994, The Astronomical Eggen, O. J. 1969, The Astrophysical Journal, 158, 1109 Journal, 107, 1556 Elliott, P., Bayo, A., Melo, C. H. F., et al. 2016, Astronomy G´asp´ar,A., Rieke, G. H., & Ballering, N. 2016, The & Astrophysics, 590, A13 Astrophysical Journal, 826, 171 Endl, M., Cochran, W. D., Kuerster, M., et al. 2006, Gennaro, M., Prada Moroni, P. G., & Tognelli, E. 2012, arXiv.org, 436 Monthly Notices of the Royal Astronomical Society, 420, Esplin, T. L., Luhman, K. L., & Mamajek, E. E. 2014, The 986 Astrophysical Journal, 784, 126 Glaspey, J. W. 1972, Astronomical Journal, 77, 474 Evans, D. S. 1967, Determination of Radial Velocities and Goedicke, V. 1945, Astronomical Journal, 51, 187 their Applications, 30, 57 Gontcharov, G. A. 2006, Astronomy Letters, 32, 759 Evans, N. J. I., Allen, L. E., Blake, G. A., et al. 2003, The Gratton, L. 1939, Stockholms Observatoriums Annaler, 13, Publications of the Astronomical Society of the Pacific, 3.1 115, 965 Gray, R. O., Corbally, C. J., Garrison, R. F., et al. 2006, Fabricius, C., Makarov, V. V., Knude, J., & Wycoff, G. L. The Astronomical Journal, 132, 161 2002, Astronomy and Astrophysics, 386, 709 Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, Faherty, J. K., Riedel, A. R., Cruz, K. K., et al. 2016, The M. T., & Robinson, P. E. 2003, The Astronomical Astrophysical Journal Supplement Series, 225, 10 Journal, 126, 2048 Feigelson, E. D., Jackson, J. M., Mathieu, R. D., Myers, P. Hartman, J. D., Bakos, G. A.,´ Kov´acs,G., & Noyes, R. W. C., & Walter, F. M. 1987, Astronomical Journal, 94, 1251 2010, Monthly Notices of the Royal Astronomical Gagn´e,J., Lafreni`ere,D., Doyon, R., Malo, L., & Artigau, Society, 408, 475 E.´ 2014, The Astrophysical Journal, 783, 121 Hill, S. J., & Schilt, J. 1952, Contributions from the —. 2015a, The Astrophysical Journal, 798, 73 Rutherford Observatory of Columbia University New Gagn´e,J., Faherty, J. K., Cruz, K. L., et al. 2015b, The York, 32, 1 Astrophysical Journal Supplement Series, 219, 33 Hoffleit, D., Eckert, D., L¨u,P., & Paranya, K. 1970, Gagn´e,J., Faherty, J. K., Mamajek, E. E., et al. 2017a, Transactions of the Astronomical Observatory of Yale The Astrophysical Journal Supplement Series, 228, 18 University, 30, 1 32 Gagne´ et al.

Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, K¨ohler,R., Kunkel, M., Leinert, C., & Zinnecker, H. 2000, Astronomy and Astrophysics, 355, L27 Astronomy and Astrophysics, 356, 541 Holmberg, J., Nordstr¨om,B., & Andersen, J. 2007, Kohlsch¨utter, A. 1920, Astronomische Nachrichten, 211, 289 Astronomy & Astrophysics, 475, 519 Kordopatis, G., Gilmore, G., Steinmetz, M., et al. 2013, Hoogerwerf, R. 2000, Monthly Notices of the Royal The Astronomical Journal, 146, 134 Astronomical Society, 313, 43 Kraft, R. P. 1967, The Astrophysical Journal, 150, 551 Hoogerwerf, R., & Aguilar, L. A. 1999, Monthly Notices of Kraus, A. L., & Hillenbrand, L. A. 2007, The Astronomical the Royal Astronomical Society, 306, 394 Journal, 134, 2340 Houk, N. 1978, Ann Arbor : Dept. of Astronomy Kraus, A. L., Ireland, M. J., Hillenbrand, L. A., & —. 1982, Michigan Catalogue of Two-dimensional Spectral Martinache, F. 2012, The Astrophysical Journal, 745, 19 Types for the HD stars. Volume 3. -40 to Kraus, A. L., Shkolnik, E. L., Allers, K. N., & Liu, M. C. -26. 2014, The Astronomical Journal, 147, 146 Houk, N., & Cowley, A. P. 1975, University of Michigan Krautter, J., Wichmann, R., Schmitt, J. H. M. M., et al. Catalogue of two-dimensional spectral types for the HD 1997, A & A Supplement series, 123, 329 stars. Volume I. Declinations -90 to -53., I Kunder, A., Kordopatis, G., Steinmetz, M., et al. 2017, The Houk, N., & Smith-Moore, M. 1988, Michigan Catalogue of Astronomical Journal, 153, 75 Two-dimensional Spectral Types for the HD Stars. Lannier, J., Lagrange, A.-M., Bonavita, M., et al. 2017, Volume 4, 4 Astronomy and Astrophysics, 603, A54 Houk, N., & Swift, C. 1999, Michigan Spectral Survey, 05, 0 Li, J. Z., & Hu, J. Y. 1998, Astronomy and Astrophysics Hughes, J., Hartigan, P., & Clampitt, L. 1993, Supplement, 132, 173 Astronomical Journal, 105, 571 Lindblad, B. 1922, The Astrophysical Journal, 55, 85 Jackson, J., & Stoy, R. H. 1955, Ann. Cape Obs., 18, 0 Liu, M. C., Magnier, E. A., Deacon, N. R., et al. 2013, The Jaschek, C., Conde, H., & de Sierra, A. C. 1964, Serie Astrophysical Journal Letters, 777, L20 Astronomica, 28 Lod´en,L. O. 1969, Arkiv f¨orAstronomii, 5, 149 Jeffries, R. D. 2012, Low-Mass Stars and the Transition —. 1980, Astronomy & Astrophysics Supplement Series, 41, Stars/Brown Dwarfs - EES2011, 57, 45 173 Johnson, H. L., & Mitchell, R. I. 1958, The Astrophysical L´opez-Santiago, J., Montes, D., Crespo-Chac´on,I., & Journal, 128, 31 Fern´andez-Figueroa,M. J. 2006, The Astrophysical Jones, J., White, R. J., Boyajian, T. S., et al. 2015, Journal, 643, 1160 American Astronomical Society, 225, 112.03 Loth, A. L., & Bidelman, W. P. 1998, The Publications of Joy, A. H. 1949, The Astrophysical Journal, 110, 424 the Astronomical Society of the Pacific, 110, 268 Kastner, J. H., Crigger, L., Rich, M., & Weintraub, D. A. Luhman, K. L. 2007, The Astrophysical Journal 2003, The Astrophysical Journal, 585, 878 Supplement Series, 173, 104 Keenan, P. C., & McNeil, R. C. 1989, Astrophysical Luhman, K. L., & Mamajek, E. E. 2012, The Astrophysical Journal Supplement Series (ISSN 0067-0049), 71, 245 Journal, 758, 31 Kenyon, S. J., & Hartmann, L. 1995, Astrophysical Journal Luhman, K. L., Mamajek, E. E., Allen, P. R., & Cruz, Supplement v.101, 101, 117 K. L. 2009, The Astrophysical Journal, 703, 399 Kharchenko, N. V. 2001, Kinematika i Fizika Nebesnykh Macintosh, B., Graham, J. R., Barman, T., et al. 2015, Tel, 17, 409 Science, 350, 64 Kharchenko, N. V., Piskunov, A. E., R¨oser,S., Schilbach, Magazz`u,A., Mart´ın,E. L., Sterzik, M. F., et al. 1997, A & E., & Scholz, R. D. 2004, Astronomische Nachrichten, A Supplement series, 124, 449 325, 740 Makarov, V. V., & Urban, S. 2000, Monthly Notices of the Kharchenko, N. V., Scholz, R. D., Piskunov, A. E., R¨oser, Royal Astronomical Society, 317, 289 S., & Schilbach, E. 2007, Astronomische Nachrichten, Malo, L., Artigau, E.,´ Doyon, R., et al. 2014, The 328, 889 Astrophysical Journal, 788, 81 King, J. R., Soderblom, D. R., Fischer, D., & Jones, B. F. Malo, L., Doyon, R., Lafreni`ere,D., et al. 2013, The 2000, The Astrophysical Journal, 533, 944 Astrophysical Journal, 762, 88 King, J. R., Villarreal, A. R., Soderblom, D. R., Gulliver, Mamajek, E. 2016, A New Candidate Young Stellar Group A. F., & Adelman, S. J. 2003, The Astronomical Journal, at d=121 pc Associated with 118 Tauri, 125, 1980 doi:10.6084/m9.figshare.3122689.v1 New Young Association Members in Gaia–Tycho 33

Mamajek, E. E. 2005, The Astrophysical Journal, 634, 1385 Nguyen, D. C., Brandeker, A., van Kerkwijk, M. H., & —. 2015, Young Stars & Planets Near the Sun, 314, 21 Jayawardhana, R. 2012, The Astrophysical Journal, 745, Mamajek, E. E., Lawson, W. A., & Feigelson, E. D. 2000, 119 The Astrophysical Journal, 544, 356 Nordstr¨om,B., Mayor, M., Andersen, J., et al. 2004, Mamajek, E. E., Meyer, M. R., & Liebert, J. 2002, The Astronomy & Astrophysics, 418, 989 Astronomical Journal, 124, 1670 Ochsenbein, F., Bauer, P., & Marcout, J. 2000, Astronomy Marois, C., Macintosh, B., Barman, T. S., et al. 2008, and Astrophysics Supplement, 143, 23 Science, 322, 1348 Odenkirchen, M., Soubiran, C., & Colin, J. 1998, New Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, Astronomy, 3, 583 The Astrophysical Journal, 619, L1 Oh, S., Price-Whelan, A. M., Hogg, D. W., Morton, T. D., McCarthy, K., & White, R. J. 2012, The Astronomical & Spergel, D. N. 2017, The Astronomical Journal, 153, Journal, 143, 134 257 McDonald, I., Zijlstra, A. A., & Watson, R. A. 2017, Osawa, K. 1959, The Astrophysical Journal, 130, 159 Monthly Notices of the Royal Astronomical Society, 471, Patterer, R. J., Ramsey, L., Huenemoerder, D. P., & Welty, 770 A. D. 1993, Astronomical Journal, 105, 1519 Melis, C., Zuckerman, B., Rhee, J. H., & Song, I. 2010, The Pecaut, M. J., & Mamajek, E. E. 2013, The Astrophysical Astrophysical Journal Letters, 717, L57 Journal Supplement, 208, 9 Melis, C., Zuckerman, B., Rhee, J. H., et al. 2013, The —. 2016, Monthly Notices of the Royal Astronomical Astrophysical Journal, 778, 12 Society, 461, 794 Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. Mendoza V, E. E. 1956, The Astrophysical Journal, 123, 54 1997, Astronomy and Astrophysics 323, 323, L49 Mer´ın,B., Jørgensen, J., Spezzi, L., et al. 2008, The Platais, I., Kozhurina-Platais, V., & van Leeuwen, F. 1998, Astrophysical Journal Supplement Series, 177, 551 The Astronomical Journal, 116, 2423 Mermilliod, J. C., Grenon, M., & Mayor, M. 2008, P¨ohnl,H., & Paunzen, E. 2010, Astronomy & Astrophysics, Astronomy and Astrophysics, 491, 951 514, A81 Mermilliod, J. C., Mayor, M., & Udry, S. 2009, Astronomy Preibisch, T., Guenther, E., Zinnecker, H., et al. 1998, and Astrophysics, 498, 949 Astronomy and Astrophysics, 333, 619 Messina, S., Desidera, S., Turatto, M., Lanzafame, A. C., & Preibisch, T., & Zinnecker, H. 1999, The Astronomical Guinan, E. F. 2010, Astronomy and Astrophysics, 520, Journal, 117, 2381 A15 Pribulla, T., Sebastian, D., Ammler-von Eiff, M., et al. Montes, D., L´opez-Santiago, J., G´alvez, M. C., et al. 2001, 2014, Monthly Notices of the Royal Astronomical Monthly Notices of the Royal Astronomical Society, 328, Society, 443, 2815 45 Randich, S., Schmitt, J. H. M. M., Prosser, C. F., & Mo´or,A., Szab´o,G. M., Kiss, L. L., et al. 2013, Monthly Stauffer, J. R. 1995, Astronomy and Astrophysics, 300, Notices of the Royal Astronomical Society, 435, 1376 134 Murphy, S. J., & Lawson, W. A. 2015, Monthly Notices of Rebull, L. M., Koenig, X. P., Padgett, D. L., et al. 2011, the Royal Astronomical Society, 447, 1267 The Astrophysical Journal Supplement, 196, 4 Murphy, S. J., Lawson, W. A., & Bessell, M. S. 2013, Riedel, A. R., Blunt, S. C., Lambrides, E. L., et al. 2017, Monthly Notices of the Royal Astronomical Society, 435, The Astronomical Journal, 153, 95 1325 Rizzuto, A. C., Ireland, M. J., & Kraus, A. L. 2015, Murphy, S. J., Mamajek, E. E., & Bell, C. P. M. 2018, Monthly Notices of the Royal Astronomical Society, 448, Monthly Notices of the Royal Astronomical Society, 476, 2737 3290 Rizzuto, A. C., Ireland, M. J., & Robertson, J. G. 2011, Murphy, S. J., Corbally, C. J., Gray, R. O., et al. 2015, Monthly Notices of the Royal Astronomical Society, 416, Publications of the Astronomical Society of Australia, 32, 3108 e036 Rodriguez, D., Bessell, M. S., Zuckerman, B., & Kastner, ` ´ Naud, M.-E., Artigau, E., Malo, L., et al. 2014, The J. H. 2011, The Astrophysical Journal, 727, 62 Astrophysical Journal, 787, 5 Roeser, S., & Bastian, U. 1988, Astronomy and Nesterov, V. V., Kuzmin, A. V., Ashimbaeva, N. T., et al. Astrophysics Supplement Series (ISSN 0365-0138), 74, 1995, Astronomy and Astrophysics, 110 449 34 Gagne´ et al.

R¨oser,S., Schilbach, E., Piskunov, A. E., Kharchenko, Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, N. V., & Scholz, R. D. 2011, Astronomy and Astronomy and Astrophysics, 460, 695 Astrophysics, 531, A92 Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, Rousseau, J. M., Perie, J. P., & Gachard, M. T. 1996, M. F. 2008, Handbook of Star Forming Regions, I, 757 Astronomy and Astrophysics Supplement, 116, 301 Upgren, A. R. 1962, Astronomical Journal, 67, 37 Schlaufman, K. C., & Casey, A. R. 2014, The Astrophysical Upgren, A. R., Grossenbacher, R., Penhallow, W. S., Journal, 797, 13 MacConnell, D. J., & Frye, R. L. 1972, Astronomical Schlieder, J. E., L´epine,S., & Simon, M. 2010, The Journal, 77, 486 Astronomical Journal, 140, 119 Valenti, J. A., & Fischer, D. A. 2005, The Astrophysical —. 2012, The Astronomical Journal, 143, 80 Journal Supplement Series, 159, 141 Schuler, S. C., King, J. R., Terndrup, D. M., et al. 2006, van Leeuwen, F., Alphenaar, P., & Brand, J. 1986, The Astrophysical Journal, 636, 432 Shkolnik, E. L., Allers, K. N., Kraus, A. L., Liu, M. C., & Astronomy and Astrophysics Supplement Series (ISSN Flagg, L. 2017, The Astronomical Journal, 154, 69 0365-0138), 65, 309 Silaj, J., & Landstreet, J. D. 2014, Astronomy and Viana Almeida, P., Santos, N. C., Melo, C., et al. 2009, Astrophysics, 566, A132 Astronomy and Astrophysics, 501, 965 Silverberg, S. M., Kuchner, M. J., Wisniewski, J. P., et al. Walter, F. M., & Boyd, W. T. 1991, The Astrophysical 2016, The Astrophysical Journal Letters, 830, L28 Journal, 370, 318 Skiff, B. A. 2014, VizieR On-line Data Catalog, 1 Walter, F. M., Vrba, F. J., Mathieu, R. D., Brown, A., & Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, Myers, P. C. 1994, Astronomical Journal, 107, 692 The Astronomical Journal, 131, 1163 Wehinger, P. A., & Hidajat, B. 1973, Astronomical Journal, Slawson, R. W., Hill, R. J., & Landstreet, J. D. 1992, 78, 401 Astrophysical Journal Supplement Series, 82, 117 Westerlund, B. E., Olander, N., & Hedin, B. 1981, Slettebak, A. 1963, The Astrophysical Journal, 138, 118 Astronomy and Astrophysics Supplement, 43, 267 Smart, R. L., Marocco, F., Caballero, J. A., et al. 2017, White, R. J., Gabor, J. M., & Hillenbrand, L. A. 2007, The Monthly Notices of the Royal Astronomical Society, 469, Astronomical Journal, 133, 2524 401 Wichmann, R., Torres, G., Melo, C. H. F., et al. 2000, Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Astronomy and Astrophysics, 359, 181 Mamajek, E. E., & Naylor, T. 2014, Protostars and Wilking, B. A., Gagn´e,M., & Allen, L. E. 2008, Handbook Planets VI, 219 Soderblom, D. R., Stauffer, J. R., Hudon, J. D., & Jones, of Star Forming Regions, I, 351 B. F. 1993, Astrophysical Journal Supplement Series, 85, Wilson, O. C. 1962, The Astrophysical Journal, 136, 793 315 Wilson, R. E. 1953, Washington, 0 Song, I., Zuckerman, B., & Bessell, M. S. 2012, The Wright, C. O., Egan, M. P., Kraemer, K. E., & Price, S. D. Astronomical Journal, 144, 8 2003, The Astronomical Journal, 125, 359 Soubiran, C., Jasniewicz, G., Chemin, L., et al. 2013, Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. Astronomy & Astrophysics, 552, A64 2010, The Astronomical Journal, 140, 1868 Spencer Jones, H., & Jackson, J. 1939, London: Her XMM-SSC. 2018, VizieR On-line Data Catalog: IX/53. Majesty’s Stationary Office (HMSO) Originally published in: XMM-SSC, 9053 Stauffer, J., Klemola, A., Prosser, C., & Probst, R. 1991, Yoss, K. M. 1961, The Astrophysical Journal, 134, 809 Astronomical Journal, 101, 980 Zerjal,ˇ M., Zwitter, T., Matijeviˇc,G., et al. 2017, The Stauffer, J. R., Hartmann, L. W., Fazio, G. G., et al. 2007, Astrophysical Journal, 835, 61 The Astrophysical Journal Supplement Series, 172, 663 Zuckerman, B., Bessell, M. S., Song, I., & Kim, S. 2006, Stephenson, C. B. 1986a, Astronomical Journal, 92, 139 The Astrophysical Journal, 649, L115 —. 1986b, Astronomical Journal, 91, 144 Zuckerman, B., & Song, I. 2004, Annual Review of Stephenson, C. B., & Sanduleak, N. 1975, Astronomical Journal, 80, 972 Astronomy &Astrophysics, 42, 685 Struve, O., & Straka, W. C. 1962, Publications of the —. 2012, The Astrophysical Journal, 758, 77 Astronomical Society of the Pacific, 74, 474 Zuckerman, B., Song, I., & Webb, R. A. 2001, The Tokovinin, A. A., & Smekhov, M. G. 2002, Astronomy and Astrophysical Journal, 559, 388 Astrophysics, 382, 118