The Oceans (Ocea-01)

Total Page:16

File Type:pdf, Size:1020Kb

The Oceans (Ocea-01) THE OCEANS (OCEA-01) Fall 2007 Introduction to THE OCEANS Welcome to THE OCEANS! Instructor: Dr. Raphael Kudela Biological oceanographer algal ecology and physiology, harmful algal blooms, satellite oceanography, physical-biological coupling Teaching Assistants: Jenny Lane ([email protected]) Sherry Palacios ([email protected]) Ryan Paerl ([email protected]) Website: http://ic.ucsc.edu/~kudela/ocea1/ 2 Ocea 1--The Oceans CClalassss FFoorrmmaatt Lectures MWF 9:30-10:40 Discussion Sections, 1 h 10 min. 2 Exams Grade based on: Exams 20/25% Problem Sets* 25 Field Trip 15 In-class quizzes 10 Participation/Attendance 5 *Best 6 of 7 section assignments/problem sets. (Must pass this portion to pass this class.) Ocea 1--The Oceans DDiissccuussssiioonn SSeeccttiioonnss Mandatory In Earth and Marine Science Building D266. To switch sections: in the first week of the quarter go to both the section you are enrolled in as well as the one you want to switch to and talk to the TAs. In some cases switching can be arranged, but is not guaranteed. If you are NOT enrolled yet and want a permission code, go to the section you want to be in. The TAs will let you know if there is room. Ocea 1--The Oceans DDiissccuussssiioonn SSeeccttiioonnss Each assignment (7 in section) Most consist of a portion that you do in section, and a portion that you finish at home will be handed out in section, and due the following week at the beginning of section Late Policy: 10% of grade on assignment will be deducted for every day it is late DDiissccuussssiioonn SSeeccttiioonnss Each problem set (7 in section + 1 field trip) will contain quantitative problems requiring critical thinking and calculations- but no advanced math. must be downloaded in advance is due the following week at the beginning of section Bring a calculator, pen/pencil and paper each week. Late Policy: 10% of grade on assignment will be deducted for every day it is late DDiissccuussssiioonn SSeeccttiioonnss No make-ups, but your grade will be based on top 6 of 7 scores. If you miss a section assignment for any reason, you will drop that score. Missing a second section requires a documented medical explanation. Working with others is encouraged, but plagiarism will not be tolerated. Bring a copy of the problem set to section (find it on class web page under Course Materials)-- we’ll print out copies for next week. Ocea 1--The Oceans CClalassss RReessoouurrcceess Textbook: Exploring the World Ocean (Chamberlin and Dickey) Websites: http://ic.ucsc.edu/~kudela/ocea1/ http://highered.mcgraw-hill.com/sites/0073016543/ Ocea 1--The Oceans CClalassss RReessoouurrcceess CPS “Clicker” We WILL be using this, and you SHOULD have one. Not being used for attendance without warning. To register, the class code is: F33995H549 GGeettttiinngg HHeelplp TAs will present example problems to help with quantitative questions. Instructors and TAs have regular office hours. Set up appointments with instructor or TA if needed. Do NOT simply rely on copying the answers from your friend! You can’t take the tests together… Ocea 1--The Oceans OOcceeaannooggrraapphhyy Marine Biology is the study of marine organisms with respect to their biology. Oceanography is the study of the marine environment, or ecosystems. Geological Oceanography Physical Oceanography Chemical Oceanography Biological Oceanography Fisheries Oceanography WWhhyy SSttuuddyy tthhee OOcceeaannss?? WWhhyy SSttuuddyy tthhee OOcceeaannss?? We live on a “blue marble” WWhhyy SSttuuddyy tthhee OOcceeaannss?? ••71% of Earth's surface area is water (140 million square miles; 361 million km2) ••Average depth of 3795 m (2.5 miles) (~ 11,000 feet, 2 miles) –Average height of land is 840 m. Deepest spot is 11,000 m – (36,163 ft, ~ 6.8 miles) ••Ocean Volume: 1.4 billion cubic kilometers (km3) of water (0.4 billion cubic miles) ••Average temperature 3.9°C (39°F) – most of the ocean is very COLD! Ocea 1--The Oceans OOcceeaannooggrraapphhyy Oceanography is the study of the marine environment, or ecosystems. “ An interdisciplinary science focusing on understanding how the ocean works (“fundamental processes”). But what IS Oceanography? What does an oceanographer do? OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele September 2006, Monterey Bay OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele There’s a HUGE red tide! • Is it dangerous? -what organism (BIOLOGY) OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele There’s a HUGE red tide! • Is it dangerous? • Plants need light and nutrients--how is it growing? (CHEMISTRY) OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele There’s a HUGE red tide! • Is it dangerous? • How is it growing? • Why is it only in some parts of the Bay? (PHYSICS) OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele There’s a HUGE red tide! • Is it dangerous? • How is it growing? • Why is it only in some parts of the Bay? • What effect does the canyon have? (GEOLOGY) OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele BIOLOGY CHEMISTRY PHYSICS GEOLOGY Processes/Platforms: Time and Space Scales OOcceeaannooggrraapphhyy:: AAnn EExxaammpplele http://www.youtube.com/watch?v=yjTbPtv88sI Why do we have oceans? Where did the ocean basins come from? Are they changing? What’s on the bottom? And what is Seawater, anyway? What creates the waves and tides? Who lives in what parts of the ocean, and why? © 1999-2005 ianskipworth.com Today and the future: what effects are humans having on the oceans and our climate? Observed Sea Level Change: 1850 to 2000 SSoommee HHiissttoorryy Herodotus’ View of the World (~450 BC) • Distinct continents (3), but still has the “ocean river” • About 325 BC, Pytheas proved that the earth was round, and extended beyond the oceans as known…. Pytheas Applies Geometry…. • By measuring the difference in the angle of the sun, Pytheas could exactly calculate the Earth’s circumference • It was also obvious that the Earth was round! Latitude • First defined by Pytheas, 325 BC • Fairly easy to determine based on your angle from the North Pole (determined by taking a sighting on the North Star or something similar) Longitude • Very difficult to determine! There is no astronomical way to calculate longitude (although many, many people have tried to find one) Ptolemy’s Atlas (~150 A.D.) • Ptolemy developed a “conic” projection (latitude and longitude are accounted for), so the earth is round. • North is on top, East is on Right, but the circumference is only 29,000 km! Non-Western Travels Columbus, Cabot, Magellan Captain Cook’s Voyages HMS Beagle (1831-1836) 1872-1876: The Challenger Expedition At each station: - depth, bottom water temperature, and meteorological information was recorded - Bottom sample was collected, as well as a sample of bottom water - direction and rate of surface currents was determined At many stations: - vertical profiles of chemistry, temperature, and currents were determined - bottom flora, fauna were collected - nets were used to sample intermediate depths The Journey to the Depths NavigationNavigation Where are we? Maps and charts will be covered in Discussion section! Navigation Develop x-y coordinate system (spherical) Latitude (“Y”) = Angle along axis that cuts through the center of the earth; further north from the equator = higher latitude (latus = wide) REFERENCE: •Axis of Rotation (natural phenomenon) RESULT: Set of parallel lines running around Earth “Parallels” of latitude Greeks: Pytheas Developed simple way to determine latitude Polaris * θ Longitude (“X”) = Angle along axis that cuts Earth in half in north-south direction (“X” plane from center to equator) REFERENCE: •Arbitrary spot = Greenwich England (Prime Meridian) RESULT: Set of Converging lines running from pole to pole. These lines are closer together at the poles than at the equator. “Meridians” of longitude LONGUS = long Longitude So how do you figure out longitude? Time! 1 rotation of Earth is 24 hrs, which is 360 deg. (15 deg / hr) A “nautical mile” = one minute of latitude (i.e. 1 degree of latitude = 60 nautical miles) This distance is defined by size of Earth! NOT same as “statute” mile – 1 nautical mile = 1.2 statute miles. So we can tell where we are on a map… what’s missing? DEPTH! .
Recommended publications
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Marine Microbiology at Scripps
    81832_Ocean 8/28/03 7:18 PM Page 67 Special Issue—Scripps Centennial Marine Microbiology at Scripps A. Aristides Yayanos Scripps Institution of Oceanography, University of California, • San Diego, California USA Marine microbiology is the study of the smallest isolated marine bioluminescent bacteria, isolated and organisms found in the oceans—bacteria and archaea, characterized sulfate-reducing bacteria, and showed many eukaryotes (among the protozoa, fungi, and denitrifying bacteria could both produce and consume plants), and viruses. Most microorganisms can be seen nitrous oxide, now known to be an important green- only with a microscope. Microbes pervade the oceans, house gas. Beijerinck also founded the field of virology its sediments, and some hydrothermal fluids and through his work on plant viruses (van Iterson et al., exhibit solitary life styles as well as complex relation- 1983). Mills (1989) describes the significance of the ships with animals, other microorganisms, and each work of Beijerink and Winogradsky to plankton other. The skeletal remains of microorganisms form the research and marine chemistry. largest component of sedimentary fossils whose study Around 1903, bacteriology in California was reveals Earth’s history. The enormous morphological, emerging in the areas of medicine and public health physiological, and taxonomic diversity of marine and accordingly was developing into an academic dis- microorganisms remains far from adequately cipline in medical schools (McClung and Meyer, 1974). described and studied. Because the sea receives terres- Whereas the branch of microbiology dealing with bac- trial microorganisms from rivers, sewage outfalls, and teria and viruses was just beginning, the branch con- other sources, marine microbiology also includes the cerning protozoa and algae was a relatively more estab- study of alien microorganisms.
    [Show full text]
  • Biological Oceanography
    MEETINGS & WORKSHOPS BOOKS & VIDEOS COMPARISON OF BIOLOGICALOCEANOGRAPHY: TERRES ,C AN EARLY I--hSTOR¥, 1870 TO 1960 MARINE ECOLOGICAL SYSTEMS By Eric L. Mills A WORKSHOP on this subject 1989,378 pp., $42.50, Cloth, Cornell University Press, Ithaca, NY. was held in 1989 with partial National Reviewed by David J. Carlson Science Foundation support. The re- In the mid-nineteenth century, biologists dence), the initial biological oceanographers port (copies available from J. Steele) studying the oceans were mostly interested were male (Sheina Marshall of the Scottish discusses the various problems, lo- in discovering deep-sea organisms. Today Marine Biological Association laboratory gistic and conceptual, in making such biological oceanographers pay most atten- and Penelope Jenkin and Marie Lebour of the comparisons, but its main conclu- tion to processes in the surface ocean. In his Plymouth Laboratoryare notable exceptions). sion is that we should have work- latest volume of oceanographic history, Mills introduces us first to Victor Hensen, a shops or summer schools that focus published by Cornell University Press in its German biochemist, anatomist and physi- on specific topics where interactions History of Science Series, Eric Mills de- ologist who turned his attention to marine between the different sectors would scribes the period from 1870 to 1960 during subjects when nascent Germany formed a be most fruitful. A recent meeting of which focus shifted from deep-sea natural commission for the study of its seas. Hensen the Steering Committee (J. Cohen, P. history to upper ocean plankton dynamics recognized that small planktonic organisms Dayton, T. Kratz, S. Levin, R. and when, as a result, biological oceanogra- were important components of marine sys- Ricklefs and J.
    [Show full text]
  • Biological Oceanography in Canada (With Special Reference to Federal Government Science)
    PROC. N.S. INST. SCI. (2006) Volume 43, Part 2, pp. 129-158 BIOLOGICAL OCEANOGRAPHY IN CANADA (WITH SPECIAL REFERENCE TO FEDERAL GOVERNMENT SCIENCE) W. G. HARRISON Ecosystem Research Division, Science Branch Department of Fisheries and Oceans, Maritimes Region Bedford Institute of Oceanography PO Box 1006 Dartmouth, Nova Scotia B2Y 4A2 This is a personal account of the history, accomplishments and future of biological oceanography in Canada with emphasis on Canadian government research. Canadian biological oceanographers have a rich history pre-dating the formal beginning of marine scientific research in the country with the establishment of the St Andrews and Nanaimo field stations in the early 1900s. Over the years, they have distinguished themselves by being leaders in the early developments of the discipline, including methodologies, concepts and understanding of both the pelagic and benthic ecosystems. In more recent years, Canadian biological oceanographers have led in the conceptualization, planning and implementation of major interdisciplinary/international research initiatives on climate change and ecosystem dynamics. Additionally, they are making important contributions to ecosystem and climate monitoring, research aimed at understanding the influence of ecosystems on harvestable living resource variability and on climate change, and development and application of ecosystem and climate models. Canadian biological oceanographers have made and continue to make significant contributions to the understanding of the biology of the oceans and its interactions with the physical, chemical and geological world. The challenge of solving the complex scientific and societal problems of the future will require better planning, coordination and stronger commitment to the ocean sciences by universities and government than is currently in place.
    [Show full text]
  • Biological Oceanography (3 Credits) Class Number: 26773 Section: 1003 MWF Period 2 8:30Am-9:20Am Larsen Hall 0310
    SYLLABUS: BSC4930 Special Topics in Biology: Biological Oceanography (3 credits) Class number: 26773 Section: 1003 MWF Period 2 8:30am-9:20am Larsen Hall 0310 INSTRUCTOR: Bryndan P. Durham (she/her) Office Hours: by appointment Office: Cancer and Genetics Research Complex Rm 404 Phone: (352) 294-6312 (office) Email: [email protected] COURSE DESCRIPTION: Biological oceanography is the study of marine organisms, their quantitative distributions in time and space, and their interactions with each other and their ocean environment. In this course, we cover the basics of biological, physical, and chemical dynamics in the oceans with a particular emphasis on life in different ocean environments. Specific topics include primary production by phytoplankton, secondary production by zooplankton, bacterial production and remineralization, distributions of pelagic and benthic organisms, and the energy and nutrient cycles driven by these organisms. In the final portion of the course, we explore the impacts of human perturbations and global climate change on ocean ecosystems and their inhabitants. Pre-requisites: BSC 2010, BSC2011, and BSC 2010L/2011L COURSE GOALS & STUDENT LEARNING OUTCOMES: Through reading, watching, and/or listening to assigned materials, attending in-class lectures, completing written and oral assignments, and participating in group discussions, you will gain experience toward the following broad university curricular goals: 1. The ability to think logically, analytically, and independently; 2. The ability to communicate clearly and effectively, both orally and in writing; and 3. The ability to learn on one’s own and as part of a group. More specific to topics in Biological Oceanography, you will achieve the following learning outcomes: 1.
    [Show full text]
  • A Data Assimilative Marine Ecosystem Model of the Central Equatorial Pacific
    Journalof MarineResearch, 59, 859– 894,2001 Adataassimilative marineecosystem modelof the central equatorialPaci c: Numerical twinexperiments byMarjorieA. M.Friedrichs 1 ABSTRACT Ave-component,data assimilative marine ecosystem model is developed for the high-nutrient low-chlorophyllregion of thecentral equatorial Paci c (0N,140W). Identical twin experiments, in whichmodel-generated synthetic ‘ data’are assimilated into the model, are employed to determine thefeasibility of improving simulation skill by assimilating in situ cruisedata (plankton, nutrients andprimary production) and remotely-sensed ocean color data. Simple data assimilative schemes suchas data insertion or nudging may be insuf cient for lower trophic level marine ecosystem models,since they require long time-series of daily to weekly plankton and nutrient data as wellas adequateknowledge of the governing ecosystem parameters. In contrast, the variational adjoint technique,which minimizes model-data mis ts byoptimizingtunable ecosystem parameters, holds muchpromise for assimilating biological data into marine ecosystem models. Using sampling strategiestypical of those employed during the U.S. JointGlobal Flux Study (JGOFS) equatorial Pacic processstudy and the remotely-sensed ocean color data available from the Sea-viewing Wide Field-of-viewSensor (SeaWiFS), parameters that characterize processes such as growth, grazing, mortality,and recycling can be estimated. Simulation skill is improved even if synthetic data associatedwith 40% random noise are assimilated; however, the presence of biases of 10 – 20% provesto be more detrimental to the assimilation results. Although increasing the length of the assimilatedtime series improves simulation skill if randomerrors are present in the data, simulation skillmay deterior ateas more biased data are assimilat ed.As biologic aldatasets, includin g in situ, satelliteand acoustic sources, continue to grow, data assimilat ivebiologic al-physical modelswill play an increasin glycrucial role in large interdis ciplinaryoceanogr aphicobserva- tionalprograms .
    [Show full text]
  • Oceanography, the Study of All Aspects of the Oceans, Is a Very Complex Discipline, and Many Terms Have Been Applied to Describe Its Components
    Statement on Educational Backgrounds of Marine Science Faculty Oceanography, the study of all aspects of the oceans, is a very complex discipline, and many terms have been applied to describe its components. Marine Science is considered a synonym for Oceanography, and so our college is called the USF College of Marine Science, or CMS. The fundamental concepts of Oceanography have been divided into four groups that, taken together, apply to or cover all of the major processes within the oceans. Not surprisingly, the four groups are aligned with four major academic sciences: physics, chemistry, biology, and geology. Physical oceanography emphasizes the circulation of ocean water at all depths and all time-and- space scales. It is concerned with the distribution of the Sun’s heat, the effects of prevailing and occasional winds, the impact of tides, and frictional and other interactions at the ocean’s boundaries. Ocean-atmosphere interaction and dynamics also play a major role in the study of ocean physics, and theoretical principles of fluid dynamics are readily transformed to the study of the ocean, the most massive accumulation of fluid on the Earth’s surface. Chemical Oceanography, sometimes called Marine Chemistry, considers all of the dissolved and particulate components in the ocean that might become involved in chemical reactions, both biologically influenced and biologically independent, on virtually all time scales from nanoseconds to millions of years. Some of these components are: inorganic ions like magnesium or chloride that exist in high concentrations, minor or trace substances like nitrate or iron that are quite reactive on short time scales, various particles like biological organic debris or minerals, dissolved atmospheric gases like oxygen or carbon dioxide, and stable and radioactive isotopes like carbon-13 or tritium that provide time clocks for or details of chemical processes.
    [Show full text]
  • Zooplankton Mortality Effects on the Plankton Community of the Northern
    https://doi.org/10.5194/bg-2020-417 Preprint. Discussion started: 9 December 2020 c Author(s) 2020. CC BY 4.0 License. Zooplankton mortality effects on the plankton community of the Northern Humboldt Current System: Sensitivity of a regional biogeochemical model Mariana Hill Cruz1, Iris Kriest1, Yonss Saranga José1, Rainer Kiko2, Helena Hauss1,3, and Andreas Oschlies1,3 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2Sorbonne Université, Laboratoire d’Océanographie de Villefranche-sur-mer, France 3Christian-Albrechts-University Kiel, Germany Correspondence: Mariana Hill Cruz ([email protected]) Abstract. Small pelagic fish off the coast of Peru in the Eastern Tropical South Pacific (ETSP) support around 10% of the global fish catches. Their stocks fluctuate interannually due to environmental variability which can be exacerbated by fishing pressure. Because these fish are planktivorous, any change in fish abundance may directly affect the plankton and the biogeochemical 5 system. To investigate the potential effects of variability in small pelagic fish populations on lower trophic levels, we used a coupled physical-biogeochemical model to build scenarios for the ETSP and compare these against an already published reference simulation. The scenarios mimic changes in fish predation by either increasing or decreasing mortality of the model’s large and small zooplankton compartments. 10 The results revealed that large zooplankton was the main driver of the response of the community. Its concentration increased under low mortality conditions and its prey, small zooplankton and large phytoplankton, decreased. The response was opposite, but weaker, in the high mortality scenarios. This asymmetric behaviour can be explained by the different ecological roles of large, omnivorous zooplankton, and small zooplankton, which in the model is strictly herbivorous.
    [Show full text]
  • 6.0 Biological Oceanography 7.0 Chemical Oceanography 8.0 Oceans and Climate Change 9.0 Conclusion
    OCEANOGRAPHY – AN OUTLINE BY PROF.A.BALASUBRAMANIAN Oceanography – an outline Table of Contents 1.0 Introduction 2.0 Scientific Curiosity 3.0 Oceanography -An inter-disciplinary subject 4.0 Geological Oceanography 5.0 Physical Oceanography 6.0 Biological Oceanography 7.0 Chemical Oceanography 8.0 Oceans and Climate change 9.0 Conclusion OBJECTIVES After attending this lesson, the user would be able to understand, basics of oceanography and the wide spectrum of studies carried out in the subject of oceanography. In addition, the concepts, methods, and developments of oceanography and its branches will also be understood. The role of oceanographers and the trends of research activities in the subject of oceanography will be known to progress further in this subject. 1.0 Introduction Oceanography is a science concerned with the physico-chemical characteristics of oceanic water, its depth, temperature, salinity, movements like tides, waves and currents, flora and fauna found at various zones of seas and oceans. As it deals with the distribution and processes of these water bodies, it comes under earth sciences in general. The subject deals with the physical, chemical and biological conditions of oceans. It is an inter-disciplinary subject and an emerging area for marine engineering. It is the science of seas and oceans. Ever since people started sailing the oceans, attempts have been made to map them. Ptolemy’s oldest map is an example. Ocean exploration began around 5000 B.C. with the first ocean diving and the first sailing vessels. Many advances that were made in the subject of oceanography, were all through the great ocean expeditions and explorations.
    [Show full text]
  • Simulating the Ocean's Chlorophyll Dynamic Range from Coastal Upwelling to Oligotrophy
    Progress in Oceanography 168 (2018) 232–247 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Simulating the ocean’s chlorophyll dynamic range from coastal upwelling to T oligotrophy ⁎ N. Van Oostendea, , R. Dussinb, C.A. Stockc, A.D. Bartond, E. Curchitserb, J.P. Dunnec, B.B. Warda a Department of Geosciences, Princeton University, NJ, USA b Department of Environmental Sciences, Rutgers University, NJ, USA c Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA d Scripps Institution of Oceanography and Section of Ecology, Behavior and Evolution, University of California San Diego, USA ARTICLE INFO ABSTRACT Keywords: The measured concentration of chlorophyll a in the surface ocean spans four orders of magnitude, from Chlorophyll ∼0.01 mg m−3 in the oligotrophic gyres to > 10 mg m−3 in coastal zones. Productive regions encompass only a Coastal upwelling small fraction of the global ocean area yet they contribute disproportionately to marine resources and biogeo- Diatom chemical processes, such as fish catch and coastal hypoxia. These regions and/or the full observed rangeof Coastal hypoxia chlorophyll concentration, however, are often poorly represented in global earth system models (ESMs) used to Phytoplankton community size-structure project climate change impacts on marine ecosystems. Furthermore, recent high resolution (∼10 km) global California Current earth system simulations suggest that this shortfall is not solely due to coarse resolution (∼100 km) of most global ESMs. By integrating a global biogeochemical model that includes two phytoplankton size classes (typical of many ESMs) into a regional simulation of the California Current System (CCS) we test the hypothesis that a combination of higher spatial resolution and enhanced resolution of phytoplankton size classes and grazer linkages may enable global ESMs to better capture the full range of observed chlorophyll.
    [Show full text]
  • The Official Magazine of The
    OceTHE OFFICIALa MAGAZINEnog OF THE OCEANOGRAPHYra SOCIETYphy CITATION Ruzicka, J.J., J.H. Steele, S.K. Gaichas, T. Ballerini, D.J. Gifford, R.D. Brodeur, and E.E. Hofmann. 2013. Analysis of energy flow in US GLOBEC ecosystems using end-to-end models. Oceanography 26(4):82–97, http://dx.doi.org/10.5670/oceanog.2013.77. DOI http://dx.doi.org/10.5670/oceanog.2013.77 COPYRIGHT This article has been published inOceanography , Volume 26, Number 4, a quarterly journal of The Oceanography Society. Copyright 2013 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://WWW.TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON US GLOBEC: UNDERSTANDING CLIMATE IMPACTS ON MARINE ECOSYSTEMS Analysis of Energy Flow in US GLOBEC Ecosystems Using End-to-End Models BY JAMES J. RUZICKA, JOHN H. STEELE, SARAH K. GAICHAS, TOSCA BALLERINI, DIAN J. GIFFORD, RICHARD D. BRODEUR, AND EILEEN E. HOFMANN Krill and anchovies photos credit: NOAA-NWFSC, FE Division. Jellyfish photo credit: R. Brodeur. Albatross photo credit: J. Ruzicka. 82 Oceanography | Vol. 26, No. 4 ABSTRACT. End-to-end models were constructed to examine and compare the relationships within four US GLOBEC trophic structure and energy flow in coastal shelf ecosystems of four US Global Ocean ecosystems.
    [Show full text]
  • Oceanography CAS NS 221 (3 Credits)
    SEA Semester®: Ocean Exploration Oceanography CAS NS 221 (3 credits) Course Catalog Description (max. 40 words): Explore how interconnected ocean characteristics (bathymetry, seawater chemistry, biological diversity) and processes (plate tectonics, surface and deep-water circulation, biological production) shape global patterns across multiple scales. Discuss destination-specific environmental issues and hot topics in marine research. Instructor(s): Sea Education Association Oceanography Faculty Location: SEA campus in Woods Hole, MA. Prerequisites: Admission to SEA Semester. Course Philosophy and Approach: Oceanography is a six-week course designed to provide students with an understanding of the fundamentals of chemical, physical, biological and geological oceanography. Because field research is vital to the study of oceanography, students will also learn to develop research questions and proposals in preparation for their sea component. As a class, we will determine the scientific agenda of our subsequent research cruise aboard one of SEA’s sailing school vessels. Oceanography thus serves as a precursor to Oceanographic Field Methods and the electives Practical Oceanographic Research and Directed Oceanographic Research, all of which occur during the sea component. This three-credit course consists of 47 contact hours of official instruction, through lectures, labs, research group meetings, visits to local oceanographic institutions and one field trip. The course calendar below provides preliminary details. Learning Outcomes: 1. Gain knowledge of the fundamentals of chemical, physical, biological and geological oceanography, as well as their cross-disciplinary interactions. 2. Understand, from a scientific perspective, anthropogenic pressures on ocean ecosystems. 3. Utilize the scientific method to develop hypotheses and propose experimental methods to describe, explain, and predict natural phenomena; formulate and develop an oceanographic project proposal for research to be undertaken during the subsequent sea component.
    [Show full text]