Endothelial Cells Microvascular Secretion from Human Dermal

Total Page:16

File Type:pdf, Size:1020Kb

Endothelial Cells Microvascular Secretion from Human Dermal Eotaxin/CCL11 Suppresses IL-8/CXCL8 Secretion from Human Dermal Microvascular Endothelial Cells This information is current as Sara S. Cheng, Nicholas W. Lukacs and Steven L. Kunkel of October 2, 2021. J Immunol 2002; 168:2887-2894; ; doi: 10.4049/jimmunol.168.6.2887 http://www.jimmunol.org/content/168/6/2887 Downloaded from References This article cites 60 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/168/6/2887.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Eotaxin/CCL11 Suppresses IL-8/CXCL8 Secretion from Human Dermal Microvascular Endothelial Cells1 Sara S. Cheng,* Nicholas W. Lukacs,† and Steven L. Kunkel2*† The CC chemokine eotaxin/CCL11 is known to bind to the receptor CCR3 on eosinophils and Th2-type lymphocytes. In this study, we demonstrate that CCR3 is expressed on a subpopulation of primary human dermal microvascular endothelial cells and is up-regulated by TNF-␣. We found that incubation of human dermal microvascular endothelial cells with recombinant eotaxin/ CCL11 suppresses TNF-␣-induced production of the neutrophil-specific chemokine IL-8/CXCL8. The eotaxin/CCL11-suppressive effect on endothelial cells was not seen on IL-1␤-induced IL-8/CXCL8 release. Eotaxin/CCL11 showed no effect on TNF-␣-induced up-regulation of growth-related oncogene-␣ or IFN-␥-inducible protein-10, two other CXC chemokines tested, and did not affect production of the CC chemokines monocyte chemoattractant protein-1/CCL2 and RANTES/CCL5, or the adhesion molecules ICAM-1 and E-selectin. These results suggest that eotaxin/CXCL11 is not effecting a general suppression of TNF-␣R levels or signal transduction. Suppression of IL-8/CXCL8 was abrogated in the presence of anti-CCR3 mAb, pertussis toxin, and wort- Downloaded from mannin, indicating it was mediated by the CCR3 receptor, Gi proteins, and phosphatidylinositol 3-kinase signaling. Eotaxin/ CCL11 decreased steady state levels of IL-8/CXCL8 mRNA in TNF-␣-stimulated cells, an effect mediated in part by an accel- eration of IL-8 mRNA decay. Eotaxin/CCL11 may down-regulate production of the neutrophil chemoattractant IL-8/CXCL8 by endothelial cells in vivo, acting as a negative regulator of neutrophil recruitment. This may play an important biological role in the prevention of overzealous inflammatory responses, aiding in the resolution of acute inflammation or transition from neutro- philic to mononuclear/eosinophilic inflammation. The Journal of Immunology, 2002, 168: 2887–2894. http://www.jimmunol.org/ hemokines are a large family of small, basic peptides that eases possessing an eosinophilic component, such as allergic have mainly been characterized as leukocyte chemoat- asthma (20, 21), chronic sinusitis (22), and allergic rhinitis (23), C tractants. They are divided into four subfamilies based on and is thought to be a key player in the pathogenesis of these the number and spacing of conserved cysteines within the amino conditions. In addition, eotaxin/CCL11 mRNA is up-regulated in terminus of each peptide, with each subfamily having a limited the lesions of patients with inflammatory bowel disease (24) and specificity for different leukocyte subsets. Chemokines from the within lymphomas from patients with Hodgkin’s disease (25), sug- CXC family, in which the first two conserved cysteines are sepa- gesting that eotaxin/CCL11 may play a role in these diseases as well. rated by a nonconserved amino acid, are chemoattractants for poly- Early reports characterizing the tissue expression patterns of by guest on October 2, 2021 morphonuclear phagocytes, some T lymphocyte subsets, and NK eotaxin/CCL11 in human, guinea pig, and mouse tissues demon- cells (1). Members of the CC family, in which the cysteines are strate that eotaxin/CCL11 mRNA is constitutively expressed in a adjacent to one another, have a broader spectrum of action that wide array of tissues, including the gut mucosa, lung, heart, testes, includes monocytes, eosinophils, basophils, NK cells, and T lym- and endometrium (15, 26–28). Relatively few chemokines are ex- phocytes (2). Lymphotactin/XCL1 and fractalkine/CX3CL1 are pressed in a constitutive fashion. The constitutive expression of the sole members of the C and CX3C families, respectively. Lym- eotaxin/CCL11 in a wide variety of tissues, often in the absence of photactin is chemotactic for T lymphocytes (3), while fractalkine a significant eosinophil infiltrate, suggests that it may play a role in acts on both lymphoid cells and neutrophils (4). While chemokines maintaining homeostasis in these tissues. Eotaxin/CCL11 exerts its are widely recognized as important chemotactic factors, some of chemotactic activity primarily through the chemokine receptor these proteins have other varied functions, including immunoregu- CCR3, a seven-transmembrane receptor coupled to heterotrimeric lation (5–7), lymphocyte activation (8, 9), embryonic development G proteins. The CCR3 has been found on human brain endothelial (10, 11), and angiogenesis (12–14). cells (29, 30), and recent studies indicate it may be involved in Eotaxin/CCL11 is a member of the CC chemokine family that angiogenesis (31). To further study CCR3 function in endothelial has potent chemotactic activity for eosinophils (15, 16), basophils cells in vitro, we investigated whether primary cultures of endothelial (17), mast cells (18), and Th2-type lymphocytes (19). Eotaxin/ cells express CCR3, and we uncovered a novel regulatory role for eotaxin and CCR3 on endothelial cell chemokine production. CCL11 protein is up-regulated in a variety of inflammatory dis- Materials and Methods *Graduate Program in Cellular and Molecular Biology and †Department of Pathology, Cytokines and other reagents University of Michigan Medical Center, Ann Arbor, MI 48109 Recombinant human IL-1␤, TNF-␣, eotaxin/CCL11, RANTES/CCL5, and Received for publication September 21, 2001. Accepted for publication January monocyte chemoattractant protein-1 (MCP-1)3/CCL2 were purchased from 7, 2002. R&D Systems (Minneapolis, MN). Abs against E-selectin, ICAM-1, IL- The costs of publication of this article were defrayed in part by the payment of page 8/CXCL8, MCP-1/CCL2, RANTES/CCL5, and CCR3 were purchased charges. This article must therefore be hereby marked advertisement in accordance from R&D Systems. Actinomycin D, pertussis toxin, and wortmannin with 18 U.S.C. Section 1734 solely to indicate this fact. were purchased from Sigma-Aldrich (St. Louis, MO) and stored at a 1 This work was supported by National Institutes of Health Grants HL35276 (to S.L.K.), NIGMS T32GM0786 (to S.S.C.), and GM07315 (to S.S.C.). 2 Address correspondence and reprint requests to Dr. Steven L. Kunkel, Department 3 Abbreviations used in this paper: MCP-1, monocyte chemoattractant protein-1; of Pathology, University of Michigan Medical Center, 1301 Catherine Street, Ann Gro␣, growth-related oncogene-␣; HDMEC, human dermal microvascular endothe- Arbor, MI 48109-0602. E-mail address: [email protected] lial cell; IP-10, IFN-␥-inducible protein-10; PI3K, phosphatidylinositol 3-kinase. Copyright © 2002 by The American Association of Immunologists 0022-1767/02/$02.00 2888 EOTAXIN REGULATES IL-8 PRODUCTION IN ECs concentration of 2.5 mg/ml, 100 ng/␮l, and 10 mM, respectively, in ICAM-1 expression occurred after 24 h. At appropriate time points, culture DMSO at Ϫ20°C. medium was removed and the adherent monolayers were washed three times with 200 ␮l PBS containing Ca2ϩ/Mg2ϩ and 0.1% BSA (PBS/BSA). Cell culture A total of 100 ␮l saturating concentration of biotinylated primary Ab Human dermal microvascular endothelial cells (HDMEC) were obtained in against E-selectin, ICAM-1, or goat IgG (diluted in endothelial cell growth medium) was added. Plates were incubated for 45 min at 37°C. Primary Ab single donor ampules from Clonetics. Cells were passaged by trypsiniza- ␮ ␮ tion and seeding at 1 ϫ 105 cells/ml in endothelial cell growth medium-2 was removed by washing twice with 200 l PBS/BSA. A total of 100 l (Clonetics, Walkersville, MD) medium on plates or flasks (Costar, Corn- 1/5000 dilution of streptavidin-HRP (BD PharMingen) diluted in PBS/ BSA was added, and plates were incubated for 30 min at 37°C. Plates were ing, NY) coated with 2% gelatin (Sigma-Aldrich). Cells were used at pas- ␮ ␮ sages 2–6 for all experiments. washed twice with 200 l PBS/BSA, and 100 l o-phenylenediamine sub- strate (DAKO, Glostup, Denmark) was added to wells. Plates were allowed RNase protection assay to develop at room temperature for 2–20 min. Fifty microliters of 3 M sulfuric acid were added to stop reaction, and chromophore development Total RNA was isolated using TRIzol reagent (Life Technologies, Rock- was determined by measuring OD490 using microplate reader. OD readings ville, MD), according to manufacturer’s instructions, and used in the stan- from samples stained with goat IgG were consistently indistinguishable dard BD PharMingen (San Diego, CA) RNase protection protocol, as fol- from readings taken from unstained samples, indicating no nonspecific lows. The multiprobe template sets hCR5 (containing DNA templates for binding of the Ab was occurring. CCR1, CCR3, CCR4, CCR5, CCR8, CCR2aϩb, CCR2a, CCR2b, L32, and GAPDH) and hCR6 (containing DNA templates for CXCR1, CXCR2, RNA isolation and cDNA synthesis CXCR3, CXCR4, CXCR5, CX3CR1, L32, and GAPDH) were purchased from BD PharMingen.
Recommended publications
  • Enhanced Monocyte Migration to CXCR3 and CCR5 Chemokines in COPD
    ERJ Express. Published on March 10, 2016 as doi: 10.1183/13993003.01642-2015 ORIGINAL ARTICLE IN PRESS | CORRECTED PROOF Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD Claudia Costa1, Suzanne L. Traves1, Susan J. Tudhope1, Peter S. Fenwick1, Kylie B.R. Belchamber1, Richard E.K. Russell2, Peter J. Barnes1 and Louise E. Donnelly1 Affiliations: 1Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK. 2Chest Clinic, King Edward King VII Hospital, Windsor, UK. Correspondence: Louise E. Donnelly, Airway Disease, National Heart and Lung Institute, Dovehouse Street, London, SW3 6LY, UK. E-mail: [email protected] ABSTRACT Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression.
    [Show full text]
  • S41467-017-02610-0.Pdf
    ARTICLE DOI: 10.1038/s41467-017-02610-0 OPEN Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours Adama Sidibe 1,4, Patricia Ropraz1, Stéphane Jemelin1, Yalin Emre 1, Marine Poittevin1, Marc Pocard2,3, Paul F. Bradfield1 & Beat A. Imhof1 1234567890():,; Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ inter- mediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies. 1 Department of Pathology and Immunology, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. 2 Department of Oncologic and Digestive Surgery, AP-HP, Hospital Lariboisière, 2 rue Ambroise Paré, F-75475 Paris cedex 10, France. 3 Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965, 49 boulevard de la Chapelle, F-75475 Paris cedex 10, France. 4Present address: Department of Physiology and Metabolism, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
    [Show full text]
  • Lung Adenocarcinoma-Intrinsic GBE1 Signaling Inhibits Anti-Tumor Immunity
    Li et al. Molecular Cancer (2019) 18:108 https://doi.org/10.1186/s12943-019-1027-x RESEARCH Open Access Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity Lifeng Li1,3,4,5†, Li Yang1,3,4†, Shiqi Cheng1,3,4†, Zhirui Fan3, Zhibo Shen1,3,4, Wenhua Xue2, Yujia Zheng1,3,4, Feng Li1,3,4, Dong Wang1,3,4, Kai Zhang1,3,4, Jingyao Lian1,3,4, Dan Wang1,3,4, Zijia Zhu2, Jie Zhao2,5,6* and Yi Zhang1,3,4* Abstract Background: Changes in glycogen metabolism is an essential feature among the various metabolic adaptations used by cancer cells to adjust to the conditions imposed by the tumor microenvironment. Our previous study showed that glycogen branching enzyme (GBE1) is downstream of the HIF1 pathway in hypoxia-conditioned lung cancer cells. In the present study, we investigated whether GBE1 is involved in the immune regulation of the tumor microenvironment in lung adenocarcinoma (LUAD). Methods: We used RNA-sequencing analysis and the multiplex assay to determine changes in GBE1 knockdown cells. The role of GBE1 in LUAD was evaluated both in vitro and in vivo. Results: GBE1 knockdown increased the expression of chemokines CCL5 and CXCL10 in A549 cells. CD8 expression correlated positively with CCL5 and CXCL10 expression in LUAD. The supernatants from the GBE1 knockdown cells increased recruitment of CD8+ T lymphocytes. However, the neutralizing antibodies of CCL5 or CXCL10 significantly inhibited cell migration induced by shGBE1 cell supernatants. STING/IFN-I pathway mediated the effect of GBE1 knockdown for CCL5 and CXCL10 upregulation. Moreover, PD-L1 increased significantly in shGBE1 A549 cells compared to those in control cells.
    [Show full text]
  • Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
    International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates.
    [Show full text]
  • Chemokine Receptor CXCR3 Promotes Colon Cancer Metastasis to Lymph Nodes
    Oncogene (2007) 26, 4679–4688 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes K Kawada1,2,5, H Hosogi1,2,5, M Sonoshita1, H Sakashita3, T Manabe3, Y Shimahara2, Y Sakai2, A Takabayashi4, M Oshima1 and MM Taketo1 1Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 2Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 3Department of Clinical Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan and 4Kitano Hospital Medical Institute, Osaka, Japan Chemokines and their receptors are essential for leuko- inflammatory cytokines, growth factors and/or patho- cyte trafficking, and also implicated in cancer metastasis genic stimuli. Important roles of chemokines and their to specific organs. We have recently demonstrated that receptors have been demonstrated in inflammation, CXCR3 plays a critical role in metastasis of mouse infection, tissue injury, allergy and cardiovascular melanoma cells to lymph nodes. Here, we show that some diseases as well as in malignant tumors. Chemokine human colon cancer cell lines express CXCR3 constitu- receptor CXCR3 is essential for the physiologic and tively. We constructed cells that expressed CXCR3 cDNA pathologic recruitment of plasmacytoid dendritic cell (‘DLD-1-CXCR3’), and compared with nonexpressing precursors, monocytes and natural killer cells to controls by rectal transplantation in nude mice. Although inflamed lymph nodes (LNs) (Cella et al., 1999; both cell lines disseminated to lymph nodes at similar Janatpour et al., 2001; Martin-Fontecha et al., 2004), frequencies at 2 weeks, DLD-1-CXCR3 expanded more and for retention of Th1 lymphocytes within LNs rapidly than the control in 4 weeks.
    [Show full text]
  • IL-34–Dependent Intrarenal and Systemic Mechanisms Promote Lupus Nephritis in MRL-Faslpr Mice
    BASIC RESEARCH www.jasn.org IL-34–Dependent Intrarenal and Systemic Mechanisms Promote Lupus Nephritis in MRL-Faslpr Mice Yukihiro Wada,1 Hilda M. Gonzalez-Sanchez,1 Julia Weinmann-Menke,2 Yasunori Iwata,1 Amrendra K. Ajay,1 Myriam Meineck,2 and Vicki R. Kelley1 1Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and 2Department of Nephrology and Rheumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ABSTRACT lpr Background In people with SLE and in the MRL-Fas lupus mouse model, macrophages and autoanti- bodies are central to lupus nephritis. IL-34 mediates macrophage survival and proliferation, is expressed by tubular epithelial cells (TECs), and binds to the cFMS receptor on macrophages and to a newly identified second receptor, PTPRZ. Methods To investigate whether IL-34–dependent intrarenal and systemic mechanisms promote lupus lpr nephritis, we compared lupus nephritis and systemic illness in MRL-Fas mice expressing IL-34 and IL-34 lpr knockout (KO) MRL-Fas mice. We also assessed expression of IL-34 and the cFMS and PTPRZ receptors in patients with lupus nephritis. lpr Results Intrarenal IL-34 and its two receptors increase during lupus nephritis in MRL-Fas mice. In knock- out mice lacking IL-34, nephritis and systemic illness are suppressed. IL-34 fosters intrarenal macrophage accumulation via monocyte proliferation in bone marrow (which increases circulating monocytes that are recruited by chemokines into the kidney) and via intrarenal macrophage proliferation. This accumulation leads to macrophage-mediated TEC apoptosis. We also found suppression of circulating autoantibodies and glomerular antibody deposits in the knockout mice.
    [Show full text]
  • Recruitment of Eosinophils in Vivo Enhances CCL11/Eotaxin
    The Journal of Immunology Inhibition of CD26/Dipeptidyl Peptidase IV Enhances CCL11/Eotaxin-Mediated Recruitment of Eosinophils In Vivo1 Ulf Forssmann,2,3* Carsten Stoetzer,† Michael Stephan,† Carsten Kruschinski,† Thomas Skripuletz,† Jutta Schade,† Andreas Schmiedl,† Reinhard Pabst,† Leona Wagner,‡ Torsten Hoffmann,‡ Astrid Kehlen,‡ Sylvia E. Escher,* Wolf-Georg Forssmann,* Jo¨rn Elsner,§ and Stephan von Ho¨rsten3†¶ Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic re- actions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11(3–74). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils.
    [Show full text]
  • The YY1/Mir-548T-5P/CXCL11 Signaling Axis Regulates Cell
    Ge et al. Cell Death and Disease (2020) 11:294 https://doi.org/10.1038/s41419-020-2475-3 Cell Death & Disease ARTICLE Open Access The YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and metastasis in human pancreatic cancer Wan-Li Ge1,2,QunChen1,2, Ling-Dong Meng1,2,Xu-MinHuang1,2,Guo-dongShi1,2, Qing-Qing Zong1,3,PengShen1,2, Yi-Chao Lu1,2, Yi-Han Zhang1,2,YiMiao1,2,Jing-JingZhang1,2 andKui-RongJiang 1,2 Abstract Pancreatic cancer (PC) is a malignant tumor with a poor prognosis and high mortality. However, the biological role of miR-548t-5p in PC has not been reported. In this study, we found that miR-548t-5p expression was significantly decreased in PC tissues compared with adjacent tissues, and that low miR-548t-5p expression was associated with malignant PC behavior. In addition, high miR-548t-5p expression inhibited the proliferation, migration, and invasion of PC cell lines. Regarding the molecular mechanism, the luciferase reporter gene, chromatin immunoprecipitation (ChIP), and functional recovery assays revealed that YY1 binds to the miR-548t-5p promoter and positively regulates the expression and function of miR-548t-5p. miR-548t-5p also directly regulates CXCL11 to inhibit its expression. A high level of CXCL11 was associated with worse Tumor Node Metastasis (TNM) staging in patients with PC, enhancing proliferation and metastasis in PC cells. Our study shows that the YY1/miR-548t-5p/CXCL11 axis plays an important role in PC and provides a new potential candidate for the treatment of PC.
    [Show full text]
  • Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
    Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases.
    [Show full text]
  • Fas Ligand Elicits a Caspase-Independent Proinflammatory Response in Human Keratinocytes: Implications for Dermatitis Sherry M
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois ORIGINAL ARTICLE See related commentary on pg 2364 Fas Ligand Elicits a Caspase-Independent Proinflammatory Response in Human Keratinocytes: Implications for Dermatitis Sherry M. Farley1, Anjali D. Dotson1, David E. Purdy1, Aaron J. Sundholm1, Pascal Schneider2, Bruce E. Magun1 and Mihail S. Iordanov1 Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells and in reconstructed human epidermis (RHE), FasL triggered a NF-kB-dependent mRNA accumulation of inflammatory cytokines (tumor necrosis factor-a, IL-6, and IL-1b), chemokines (CCL2/MCP-1, CXCL1/GROa, CXCL3/GROg, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis; however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas. Journal of Investigative Dermatology (2006) 126, 2438–2451. doi:10.1038/sj.jid.5700477; published online 20 July 2006 INTRODUCTION increased local concentration of procaspase 8 allows for Apoptosis (Kerr et al., 1972), the principal mechanism for its spontaneous autocatalytic cleavage and activation by elimination of damaged cells in metazoan organisms (Edinger ‘‘induced proximity’’ (Muzio et al., 1998).
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • Hiv Coreceptors: from Discovery and Designation to New Paradigms and Promise
    October 15, 2007 EU RO PE AN JOUR NAL OF MED I CAL RE SEARCH 375 Eur J Med Res (2007) 12: 375-384 © I. Holzapfel Publishers 2007 HIV CORECEPTORS: FROM DISCOVERY AND DESIGNATION TO NEW PARADIGMS AND PROMISE Ghalib Alkhatib1 and Edward A. Berger2 1Department of Microbiology and Immunology and the Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN, 2Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA Abstract which engages target cell receptors, and the gp41 sub- Just over a decade ago, the specific chemokine recep- unit, which promotes the membrane fusion reaction tors CXCR4 and CCR5 were identified as the essential [5, 6]. coreceptors that function along with CD4 to enable Despite the rapid identification of CD4 as the “pri- human immunodeficiency virus (HIV) entry into tar- mary receptor” for HIV, it soon became clear that the get cells. The coreceptor discoveries immediately pro- complexities of virus entry and tropism could not be vided a molecular explanation for the distinct tropisms explained by CD4 expression alone; several lines of of different HIV-1 isolates for different CD4-positive evidence suggested that additional molecular compo- target cell types, and revealed fundamentally new in- nents of the entry process were yet to be uncovered. sights into host and viral factors influencing HIV For one, expression of recombinant human CD4 on transmission and disease. The sequential 2-step mech- otherwise CD4-negative human cell types rendered anism by which the HIV envelope glycoprotein (Env) them permissive for HIV infection; however efficient interacts first with CD4, then with coreceptor, re- human CD4 expression on murine cells failed to con- vealed a major mechanism by which conserved Env fer infection permissiveness, apparently due to a block epitopes are protected from antibody-mediated neu- at a very early step in the replication cycle [7].
    [Show full text]