IL-34–Dependent Intrarenal and Systemic Mechanisms Promote Lupus Nephritis in MRL-Faslpr Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Monocyte Migration to CXCR3 and CCR5 Chemokines in COPD
ERJ Express. Published on March 10, 2016 as doi: 10.1183/13993003.01642-2015 ORIGINAL ARTICLE IN PRESS | CORRECTED PROOF Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD Claudia Costa1, Suzanne L. Traves1, Susan J. Tudhope1, Peter S. Fenwick1, Kylie B.R. Belchamber1, Richard E.K. Russell2, Peter J. Barnes1 and Louise E. Donnelly1 Affiliations: 1Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK. 2Chest Clinic, King Edward King VII Hospital, Windsor, UK. Correspondence: Louise E. Donnelly, Airway Disease, National Heart and Lung Institute, Dovehouse Street, London, SW3 6LY, UK. E-mail: [email protected] ABSTRACT Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. -
Interleukin-34 Enhances the Tumor Promoting Function of Colorectal Cancer-Associated Fibroblasts
cancers Article Interleukin-34 Enhances the Tumor Promoting Function of Colorectal Cancer-Associated Fibroblasts Eleonora Franzè 1, Antonio Di Grazia 1, Giuseppe Sigismondo Sica 2, Livia Biancone 1, Federica Laudisi 1 and Giovanni Monteleone 1,* 1 Department of Systems Medicine, University of Rome “TOR VERGATA”, 00133 Rome, Italy; [email protected] (E.F.); [email protected] (A.D.G.); [email protected] (L.B.); [email protected] (F.L.) 2 Department of Surgery, University “TOR VERGATA” of Rome, 00133 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-7259-6158; Fax: +39-06-7259-6391 Received: 15 October 2020; Accepted: 24 November 2020; Published: 27 November 2020 Simple Summary: In colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) promote tumor growth and progression through the synthesis of various molecules targeting the neoplastic cells. Here, we demonstrate that IL-34, a cytokine highly expressed in CRC tissue, regulates the function of CAFs in a paracrine and autocrine manner. Specifically, IL-34 induces normal fibroblasts (NFs) to acquire a cellular phenotype resembling that of CAFs, while IL-34 knockdown in CAFs reduces their tumorigenic properties and proliferation. Moreover, IL-34 stimulates NFs to produce netrin-1 and b-FGF—two factors that enhance CRC cell growth and migration. Altogether, our data support the involvement of IL-34 in CRC. Abstract: The stromal compartment of colorectal cancer (CRC) is marked by the presence of large numbers of fibroblasts, termed cancer-associated fibroblasts (CAFs), which promote CRC growth and progression through the synthesis of various molecules targeting the neoplastic cells. -
The YY1/Mir-548T-5P/CXCL11 Signaling Axis Regulates Cell
Ge et al. Cell Death and Disease (2020) 11:294 https://doi.org/10.1038/s41419-020-2475-3 Cell Death & Disease ARTICLE Open Access The YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and metastasis in human pancreatic cancer Wan-Li Ge1,2,QunChen1,2, Ling-Dong Meng1,2,Xu-MinHuang1,2,Guo-dongShi1,2, Qing-Qing Zong1,3,PengShen1,2, Yi-Chao Lu1,2, Yi-Han Zhang1,2,YiMiao1,2,Jing-JingZhang1,2 andKui-RongJiang 1,2 Abstract Pancreatic cancer (PC) is a malignant tumor with a poor prognosis and high mortality. However, the biological role of miR-548t-5p in PC has not been reported. In this study, we found that miR-548t-5p expression was significantly decreased in PC tissues compared with adjacent tissues, and that low miR-548t-5p expression was associated with malignant PC behavior. In addition, high miR-548t-5p expression inhibited the proliferation, migration, and invasion of PC cell lines. Regarding the molecular mechanism, the luciferase reporter gene, chromatin immunoprecipitation (ChIP), and functional recovery assays revealed that YY1 binds to the miR-548t-5p promoter and positively regulates the expression and function of miR-548t-5p. miR-548t-5p also directly regulates CXCL11 to inhibit its expression. A high level of CXCL11 was associated with worse Tumor Node Metastasis (TNM) staging in patients with PC, enhancing proliferation and metastasis in PC cells. Our study shows that the YY1/miR-548t-5p/CXCL11 axis plays an important role in PC and provides a new potential candidate for the treatment of PC. -
Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases. -
Immunoregulatory Properties of the Cytokine IL-34
Cell. Mol. Life Sci. (2017) 74:2569–2586 DOI 10.1007/s00018-017-2482-4 Cellular and Molecular LifeSciences REVIEW Immunoregulatory properties of the cytokine IL-34 Carole Guillonneau1,2 · Séverine Bézie1,2 · Ignacio Anegon1,2 Received: 22 November 2016 / Revised: 10 January 2017 / Accepted: 30 January 2017 / Published online: 3 March 2017 © Springer International Publishing 2017 Abstract Interleukin-34 is a cytokine with only partially Introduction understood functions, described for the frst time in 2008. Although IL-34 shares very little homology with CSF-1 The CSF-1/CSF-1R interaction delivers a well-character- (CSF1, M-CSF), they share a common receptor CSF-1R ized signaling cascade leading in hematopoietic cells to (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) proliferation, diferentiation, and function of the mono- and CD138 (syndecan-1). To make the situation more com- cytic lineage. The discovery in 2008 of IL-34, identifed by plex, IL-34 has also been shown as pairing with CSF-1 to screening of human protein library as a protein involved in form a heterodimer. Until now, studies have demonstrated monocyte viability [1] and subsequently, as a new ligand that this cytokine is released by some tissues that difer to of CSF-1R, has opened new perspectives. IL-34 actions those where CSF-1 is expressed and is involved in the dif- have been rendered more complex by the discovery of ferentiation and survival of macrophages, monocytes, and receptors for IL-34, others than CSF-1R: the receptor-type dendritic cells in response to infammation. -
Prion Disease and the Innate Immune System
Viruses 2012, 4, 3389-3419; doi:10.3390/v4123389 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Prion Disease and the Innate Immune System Barry M. Bradford and Neil A. Mabbott * The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-131-651-9100; Fax: +44-131-651-9105. Received: 6 October 2012; in revised form: 14 November 2012 / Accepted: 22 November 2012 / Published: 28 November 2012 Abstract: Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. -
Functional Redundancy of CXCR3/CXCL10 Signaling in the Recruitment
Page 1 of 32 Diabetes Functional redundancy of CXCR3/CXCL10 signaling in the recruitment of diabetogenic CTL to pancreatic islets in a virally induced autoimmune diabetes model Ken T. Coppieters*,§, Natalie Amirian*, Philippe P. Pagni*, Carmen Baca Jones*, Anna Wiberg*, Stanley Lasch#, Edith Hintermann#, Urs Christen# and Matthias G. von Herrath*,§ *Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla CA 92037, U.S.A. §Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, U.S.A. #Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital, Frankfurt am Main, Germany Short title: CXCR3/CXCL10 signaling in type 1 diabetes Correspondence: Matthias von Herrath, Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla CA 92037, U.S.A., [email protected], Phone: (858) 752-6817; Fax: (858) 752-6993 1 Diabetes Publish Ahead of Print, published online February 22, 2013 Diabetes Page 2 of 32 Abstract Cytotoxic T lymphocytes (CTL) constitute a major effector population in pancreatic islets from patients suffering from type 1 diabetes (T1D) and thus represent attractive targets for intervention. Some studies have suggested that blocking the interaction between the chemokine CXCL10 and its receptor CXCR3 on activated CTL potently inhibits their recruitment and prevents beta cell death. Since recent studies on human pancreata from T1D patients have indicated that both ligand and receptor are abundantly present, we reevaluated whether their interaction constitutes a pivotal node within the chemokine network associated with T1D. Our present data in a viral mouse model challenge the notion that specific blockade of the CXCL10/CXCR3 chemokine axis halts T1D onset and progression. -
Endometrial Immune Dysfunction in Recurrent Pregnancy Loss
International Journal of Molecular Sciences Review Endometrial Immune Dysfunction in Recurrent Pregnancy Loss Carlo Ticconi 1,*, Adalgisa Pietropolli 1, Nicoletta Di Simone 2,3, Emilio Piccione 1 and Asgerally Fazleabas 4 1 Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; [email protected] (A.P.); [email protected] (E.P.) 2 U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Laego A. Gemelli, 8, 00168 Rome, Italy; [email protected] 3 Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy 4 Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-6-72596862 Received: 17 September 2019; Accepted: 24 October 2019; Published: 26 October 2019 Abstract: Recurrent pregnancy loss (RPL) represents an unresolved problem for contemporary gynecology and obstetrics. In fact, it is not only a relevant complication of pregnancy, but is also a significant reproductive disorder affecting around 5% of couples desiring a child. The current knowledge on RPL is largely incomplete, since nearly 50% of RPL cases are still classified as unexplained. Emerging evidence indicates that the endometrium is a key tissue involved in the correct immunologic dialogue between the mother and the conceptus, which is a condition essential for the proper establishment and maintenance of a successful pregnancy. -
Drainage of Inflammatory Macromolecules from the Brain To
RESEARCH ARTICLE Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration Linlin Yang1, Jessica A Jime´ nez1, Alison M Earley1, Victoria Hamlin1, Victoria Kwon1, Cameron T Dixon1, Celia E Shiau1,2* 1Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States; 2Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States Abstract Many brain pathologies are associated with liver damage, but a direct link has long remained elusive. Here, we establish a new paradigm for interrogating brain-periphery interactions by leveraging zebrafish for its unparalleled access to the intact whole animal for in vivo analysis in real time after triggering focal brain inflammation. Using traceable lipopolysaccharides (LPS), we reveal that drainage of these inflammatory macromolecules from the brain led to a strikingly robust peripheral infiltration of macrophages into the liver independent of Kupffer cells. We further demonstrate that this macrophage recruitment requires signaling from the cytokine IL-34 and Toll- like receptor adaptor MyD88, and occurs in coordination with neutrophils. These results highlight the possibility for circulation of brain-derived substances to serve as a rapid mode of communication from brain to the liver. Understanding how the brain engages the periphery at times of danger may offer new perspectives for detecting and treating brain pathologies. *For correspondence: [email protected] Introduction Whether a diseased or injured brain transmits signals to the periphery to activate a response is an Competing interests: The interesting prospect in understanding brain-periphery communication, but remains underexplored. authors declare that no Interestingly, liver damage and neutrophil recruitment to the liver are common features in sepsis- competing interests exist. -
CXCL4/Platelet Factor 4 Is an Agonist of CCR1 and Drives Human Monocyte Migration
This is a repository copy of CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/132464/ Version: Published Version Article: Fox, James Martin orcid.org/0000-0002-2473-7029, Kausar, Fahima, Day, Amy et al. (7 more authors) (2018) CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Scientific Reports. 9466. ISSN 2045-2322 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ www.nature.com/scientificreports OPEN CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration Received: 10 March 2016 James M. Fox 1,3, Fahima Kausar1, Amy Day1, Michael Osborne1, Khansa Hussain1, Accepted: 5 June 2018 Anja Mueller1,4, Jessica Lin1, Tomoko Tsuchiya 2, Shiro Kanegasaki2 & James E. Pease1 Published: xx xx xxxx Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. -
Human Cytokine Response Profiles
Comprehensive Understanding of the Human Cytokine Response Profiles A. Background The current project aims to collect datasets profiling gene expression patterns of human cytokine treatment response from the NCBI GEO and EBI ArrayExpress databases. The Framework for Data Curation already hosted a list of candidate datasets. You will read the study design and sample annotations to select the relevant datasets and label the sample conditions to enable automatic analysis. If you want to build a new data collection project for your topic of interest instead of working on our existing cytokine project, please read section D. We will explain the cytokine project’s configurations to give you an example on creating your curation task. A.1. Cytokine Cytokines are a broad category of small proteins mediating cell signaling. Many cell types can release cytokines and receive cytokines from other producers through receptors on the cell surface. Despite some overlap in the literature terminology, we exclude chemokines, hormones, or growth factors, which are also essential cell signaling molecules. Meanwhile, we count two cytokines in the same family as the same if they share the same receptors. In this project, we will focus on the following families and use the member symbols as standard names (Table 1). Family Members (use these symbols as standard cytokine names) Colony-stimulating factor GCSF, GMCSF, MCSF Interferon IFNA, IFNB, IFNG Interleukin IL1, IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL11, IL12, IL13, IL15, IL16, IL17, IL18, IL19, IL20, IL21, IL22, IL23, IL24, IL25, IL26, IL27, IL28, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36, IL36RA, IL37, TSLP, LIF, OSM Tumor necrosis factor TNFA, LTA, LTB, CD40L, FASL, CD27L, CD30L, 41BBL, TRAIL, OPGL, APRIL, LIGHT, TWEAK, BAFF Unassigned TGFB, MIF Table 1. -
Interleukin-34: Regulator of T Lymphocytes in Rheumatoid Arthritis
Mini Review ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.20.003458 Interleukin-34: Regulator of T Lymphocytes in Rheumatoid Arthritis Jea-Hyun Baek* Research and Development, Biogen Inc, US *Corresponding author: Jea-Hyun Baek, Biogen Inc., 225 Binney St, Cambridge, MA 02142, US ARTICLE INFO Abstract Received: August 05, 2019 Interleukin-34 (IL-34) is a pleiotropic cytokine, which is implicated in various autoimmune diseases. Interestingly, clinical studies have found that IL-34 is markedly Published: August 12, 2019 upregulated in the serum and synovium of patients with rheumatoid arthritis (RA), giving rise to a growing interest in understanding the role of IL-34 in RA. Although several studies demonstrated that IL-34 levels closely correlate with the disease severity, the function of Citation: Jea-Hyun Baek. Interleu- kin-34: Regulator of T Lymphocytes in Rheumatoid Arthritis. Biomed J as a ligand of the colony-stimulating factor-1 receptor (CSF-1R), which is crucial for the Sci & Tech Res 20(3)-2019. BJSTR. survival,circulating proliferation, and synovial and IL-34 differentiation in RA is still largelyof mononuclear elusive. IL-34 phagocytes was originally (e.g. monocytes, identified MS.ID.003458. macrophages [M] and dendritic cells [DC]). Of note, these IL-34-responsive cells are antigen-presenting cells, which bridge innate and adaptive immunity (e.g. through priming and instructing T lymphocytes). Thus, synovial IL-34 expression has been associated with the regulation of synovial M and linked to pathologic T-cell activation in RA. In this review, we discuss the current state of knowledge on the role of IL-34 in RA and, especially, translational and clinical studies.