United States Patent (19) 11 4,098,788 Crenshaw Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 4,098,788 Crenshaw Et Al United States Patent (19) 11 4,098,788 Crenshaw et al. 45 Jul. 4, 1978 54 PROCESS FOR PREPARING QUINAZOLINES OTHER PUBLICATIONS Elderfield, Heterocyclic Compounds, vol. 6, pp. 75 Inventors: Ronnie Ray Crenshaw, Dewitt; 328-358, pub. by Wiley & Sons, (1957). George Michael Luke, Lafayette; Richard Anthony Partyka, Primary Examiner-Paul M. Coughlan, Jr. Liverpool, all of N.Y. Attorney, Agent, or Firm-Robert H. Uloth 57 ABSTRACT 73 Assignee: Bristol-Myers Company, New York, 2-Halo-4-aminoquinazolines are produced by a two-step N.Y. process involving cyclization of 1-phenyl-3-cyanoureas or 1-phenyl-3-cyanothioureas in the presence of phos (21) Appl. No.: 807,941 phorus halides and phosphorus oxyhalides to provide a 22 Filed: Jun. 20, 1977 phosphoquinazoline intermediate which is hydrolyzed to the quinazoline. Exemplary of the process is the 51) Int. Cl.2 ............................................ CO7D 239/94 intramolecular cyclization of 1-(3,4-dimethoxyphenyl)- 52 U.S. C. .................. ... 544/293; 260/553 A 3-cyanourea in the presence of phosphorus pentachlo 58 Field of Search ..................... 260/251 Q, 256.4 Q ride and phosphorus oxychloride to a phosphoquinazo line intermediate which is subsequently hydrolyzed 56 References Cited with formic acid to 2-chloro-4-amino-6,7-dimethoxy U.S. PATENT DOCUMENTS quinazoline. The 2-halo-4-aminoquinazolines of the in stant process are particularly valuable as intermediates 2,517,824 8/1950 Appelquest ................... 260/256.4 Q in the preparation of 4-amino-2-(4-substituted-piperazin 3,511,836 5/1970 Hess .............................. 260/256.4 Q 3,669,968 6/1972 Hess .............................. 260/256.4 Q 1-yl)guinazolines useful in the treatment of cardiovascu 3,920,636 1 1/1975 Takahashi et al. ........... 260/256.4 Q lar disease, e.g. hypertension. 4,001,237 1/1977 Partyka et al. ............... 260/256.4 Q 4,001,238 1/1977 Partyka et al. ............... 260/256.4 Q 21 Claims, No Drawings 4,098,788 1. 2 DETAILED DESCRIPTION OF THE PROCESS FOR PREPARING QUINAZOLINES NVENTION FIELD OF THE INVENTION As indicated hereinabove, the instant invention is This invention is concerned with a new process for 5 concerned with a process for preparing compounds of the production of 2-halo-4-aminoquinazolines. These formula I chemical compounds are utilized as intermediates in the preparation of antihypertensive agents such as the vari (I) ous 4-amino-2-(4-substituted piperazin-1-yl)guinazolines 10 described in U.S. Pat. Nos. 3,511,836, 3,669,968, 4,001,237, 4,001,238 and the 2-(4-substituted homopiperazino)-4-amino-6,7-dimethoxyquinazolines of U.S. Pat. No. 3,920,636. 15 DESCRIPTION OF THE PRIOR ART wherein Hess U.S. Pat. No. 3,511,836 (patented May 12, 1970) X is halogen selected from the group consisting of discloses preparation of 2-chloro-4-aminoquinazolines chlorine and bromine; and by reaction of 2,4-dichloroquinoazlines with ammonia R1, R, and R are independently selected from the 20 group consisting of hydrogen, lower alkyl of 1 to 4 in a solvent such as tetrahydrofuran. carbon atoms inclusive and lower alkoxy of 1 to 4 Hess U.S. Pat. No. 3,669,968 (patented June 13, 1972) carbon atoms inclusive describes a process for preparing 2-halo-4-amino-6,7,8- which comprises the consecutive steps of trialkoxy-quinazoline by treating 2,4-dihalo-6,7,8-trialk (a) treating a compound of formula II oxyquinazolines with ammonia in a reaction-inert or 25 ganic solvent. R (II) Takahashi, et al. U.S. Pat. No. 3,920,636 (patented November 18, 1975) described preparation of 1-(4-sub Y stituted homopiperazino)-4-amino-6,7-dimethox R yguinazolines from 2-chloro-4-amino-6,7-dimethox 30 NH-C-NH-CN yguinazolines. R Partyka, et al. U.S. Pat. No. 4,001,237 and 4,001,238 (both patented January 4, 1977) employ 2-chloro-4- wherein R, R2 and Rare as above and Y is oxygen or amino-6,7-dimethoxyquinazoline as starting material in 35 sulfur with a mixture of phosphorus halides and phos the preparation of a series of 6,7-dimethoxy-4-amino-2- phorus oxyhalides selected from the group consisting of (piperazinyl)guinazolines in which the piperazinyl radi phosphorus trichloride or phosphorus pentachloride cal is incorporated as the amine fragment of oxazole, and phosphorus oxychloride, or phosphorus tribromide or phosphorus pentabromide and phosphorus oxybro isoxazole, thiazole, isothiazole and 1,2,4-oxadiazole am mide until the cyclization is essentially complete to ides. provide a quinazoline phosphoramide intermediate; SUMMARY OF THE INVENTION (b) hydrolyzing said intermediates to produce the compound of formula I. Broadly described, this invention is concerned with a Preferred embodiments of the foregoing process for new process for preparation of 2-halo-4-aminoquinazo 45 the preparation of compounds characterized by formula lines of formula I I are those wherein: in step (a) the compound of formula II is a cyanourea R NH, (I) wherein R, R2 and Rare as above and Y is oxy gen; Y N 50 in step (a) the compound of formula II is a cyanothi R ourea wherein R, R and Rare as above and Y is N eeX sulfur; in step (a) the compound of formula II is 1-(3,4-dime R thoxyphenyl)-3-cyanourea; 55 in step (a) the compound of formula II is 1-(2,3,4- wherein X is a halogen atom selected from the group trimethoxyphenyl)-3-cyanourea; consisting of chlorine and bromine; R, R are indepen in step (a) the compound of formula II is 1-(3,4-dime dently selected from the group consisting of hydrogen, thoxyphenyl)-3-cyanothiourea; lower alkyl and lower alkoxy radicals which involves in step (a) the compound of formula II is 1-(2,3,4- intramolecular cyclization of 1-phenyl-3-cyanoureas or 60 trimethoxyphenyl)-3-cyanothiourea; in step (a) a mixture of phosphorus pentachloride and 1-phenyl-3-cyanothioureas in the presence of a mixture phosphorus oxychloride is employed; of phosphorus trichloride or phosphorus pentachloride in step (a) a mixture of phosphorus pentabromide and and phosphorus oxychloride or a mixture of phosphorus phosphorus oxybromide is employed; tribromide or phosphorus pentabromide and phospho in step (a) the compound of formula II is treated with rus oxybromide to provide a quinazoline phosphorus a mixture of a molar equivalent of phosphorus intermediate that is subsequently hydrolyzed to the trichloride or phosphorus pentachloride and a sol 2-halo-4-aminoquinazoline of formula I. vent amount of phosphorus oxychloride; 4,098,788 3 in step (a), the compound of formula II is treated with a mixture of about a molar equivalent of phospho (VI) rus tribromide or phosphorus pentabromide and a CHO O solvent amount of phosphorus oxybromide; I step (a) is carried out with the aid of heat at a temper CHO O NH-C-NH-CN ature in the range of about 23-125; step (a) is carried out with the aid of heat at a temper CHO ature in the range of 85-95; with about a molar equivalent of a mixture of phospho step (a) is carried out at a temperature in the range of 10 rustrichloride or phosphorus pentachloride in a solvent 85-95 for a period of 2 to 3 hours; amount of phosphorus oxychloride until cyclization is in step (b), the phosphoramide intermediate is hydro essentially complete to provide a quinazoline phos lyzed under acidic conditions to provide a quinazo phoramide intermediate; line of formula I; (b) hydrolyzing said intermediate with formic acid to in step (b), the phosphoramide intermediate is hydro- 1 5 produce the formula V compound. lyzed with dilute alkali to provide a quinazoline of According to the general process of this invention, formula I; cyanoureas and cyanothioureas of formula II are intra in step (b) the phosphoramide intermediate is hydro molecularly cyclized to a phosphoquinazoline interme lyzed with formic acid to provide a quinazoline of diate which is then hydrolyzed to provide quinazoline formula I; 2O compounds characterized by formula I. Cyclization of a step (b) is carried out at a temperature in the range of formula II urea to the phosphoquinazoline intermediate 85-95; is conveniently carried out by reacting the urea with a step (b) is carried out at a temperature in the range of mixture of phosphorus trichloride orphosphorus penta 85-95 for a period of 5 to 15 minutes; chloride and phosphorus oxychloride. While the exact step (b) is carried out at a temperature in the range of 5 chemical identity of the cyclized organophosphorus 85-95 for a period of 5 to 15 minutes and then intermediate has not been unequivocally proved, it is cooled to a temperature in the range of 5-15'. believed to be a phosphoramido compound in which the Another preferred embodiment of the present inven 4-amino substituent of the 2-chloroquinazoline is incor tion is a process for the preparation of a quinazoline of 3 porated in the phosphoramide. Approximately equimo O lar portions of a mixture of phosphorus trichloride or formula III phosphorus pentachloride and the formula II urea with a convenient solvent amount of phosphorus oxychlo NH (III) ride relative to the amount of urea starting material are was employed. Commonly used temperatures for carrying CHO N 35 out the cyclization reaction range from about 25-125, and a particularly preferred temperature range is from CHO N 2-Cl about 85-95. As will be appreciated by those skilled in the art, the reaction time and conditions needed for the which comprises the consecutive steps of cyclization of the compounds of formula II vary ac (a) treating a cyanourea having formula IV 40 cording to several factors.
Recommended publications
  • Chemicals, Rare Chemicals, Reagents & Solvents
    Annual Procurement Plan for the Year 2021-22 Consumable List 1 Chemicals, Rare Chemicals, Reagents & Solvents Sl. No. Generic Name Specification Quantity Approx Cost (Rs.) 1. HEPES Molecular biology 1kg 80000/‐ grade 2. MES hydrate Molecular biology 1kg 34000/‐ grade 3. Imidazole Molecular biology 1kg 28000/‐ grade 4. BIS‐TRIS Molecular biology 500g 44000/‐ grade 5. Agarose Type I Molecular biology 1kg 11900/‐ grade 6. CAPS Molecular biology 100g 8000/‐ grade 7. Trizma Base Molecular biology 1kg 31000/‐ grade 8. Glycerol Molecular biology 2.5L*4 8000/‐ grade 9. Ethanol Molecular biology 500ml*10 8000/‐ grade 10. NaCl Molecular biology 1kg 6000/‐ grade 11. Tris Buffer Molecular biology 1 kg 10000/‐ grade 12. Ethyl acetate Molecular biology 500ml*5 6500/‐ grade 13. Acetic acid 25L 11000/‐ 14. Methanol 25L 8000/‐ 15. Urea Molecular biology 1kg 2000/‐ grade 16. Agar Powder, Bacteriological 500g 8000/‐ 17. Trizma Hydrochloride Molecular biology 1kg 15000/‐ grade 18. Acrylamide Molecular biology 500g 4000/‐ grade 19. Phenol Molecular biology 500ml 5000/‐ grade 20. Luria Bertani Broth 2.5kg * 4 90,000 21. Acetone 2.5L 1500/‐ 22. Ni‐NTA beads 100ml 57000/‐ 23. Ammonium persulphate Molecular biology 100g 2000/‐ grade 24. Ampicillin Sodium Molecular biology 100 g 13000/‐ grade 25. Kanaymycin Monosulfate Molecular biology 100g 60000/‐ grade 26. Choramphenicol Molecular biology 100g 40000/‐ grade 27. Isopropyl β‐ d‐1‐thiogalactopyranoside Molecular biology 100g 35000/‐ grade 28. Coomassie Brilliant Blue R‐250 Molecular biology 25g 10,000/‐ grade 29. SDS Molecular biology 100g 2500/‐ grade 30. Isopropanol 25 L 15000/‐ 31. Crystallization screen JCSG‐Plus 1 unit/box 50000/‐ 32.
    [Show full text]
  • Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling
    University of Mary Washington Eagle Scholar Student Research Submissions Spring 5-7-2018 Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Sunder Follow this and additional works at: https://scholar.umw.edu/student_research Part of the Biochemistry Commons Recommended Citation Sunder, Poornima, "Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling" (2018). Student Research Submissions. 226. https://scholar.umw.edu/student_research/226 This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please contact [email protected]. Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Rachel Sunder Thesis submitted to the faculty of University of Mary Washington in partial fulfillment of the requirements for graduation with Honors in Chemistry (2018) ABSTRACT Click reactions are a highly versatile class of reactions that produce a diverse range of products. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions require an azide and a terminal alkyne and produce a coupled product that is “clicked” through a triazole ring that can have a variety of substituents. In this work, bromo-terminated phosphonate films on copper oxide surfaces were explored as the platform for click coupling, as the terminal azide needed for the reaction can be generated through an in situ SN2 reaction with a terminal bromo group. The reactions were characterized using model reactions in solution before being conducted on modified copper oxide surfaces.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Synthesis and Antiplasmodial Activity Testing of (1)-N-(4-Methoxybenzyl)-1,10-Phenanthrolinium Bromide
    Indo. J. Chem., 2007, 7 (2), 197-201 197 SYNTHESIS AND ANTIPLASMODIAL ACTIVITY TESTING OF (1)-N-(4-METHOXYBENZYL)-1,10-PHENANTHROLINIUM BROMIDE 1,* 2 2 3 3 Ruslin Hadanu , Sabirin Mastjeh , Jumina , Mustofa , Mahardika Agus Widjayanti and Eti Nurwening Sholikhah3 1Department of Chemistry, Pattimura University, Ambon, Indonesia. 2Laboratorium of Organic Chemistry, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281. 3Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281. Received 7 April 2007; Accepted 25 May 2007 ABSTRACT Synthesis of (1)-N-(4-methoxybenzyl)-1,10-phenanthroline bromide from 1,10-phenanthroline monohydrate and 4-methoxybenzaldehyde as starting material and evaluation of its antiplasmodial activities have been carried out. The 4-methoxybenzyl alcohol was prepared from 4-methoxy-benzaldehyde using sodium borohydride (NaBH4) reagent and ethanol absolute solution. The mixture was refluxed for 3 h. To yield colorless dilution compound with 90.41 % in efficiency. Furthermore, bromination of 4-methoxybenzyl alcohol with phosphorus bromide (PBr3) was conducted by refluxing for 3 h. The product of this reaction was yellow liquid of 4-methoxybenzyl bromide, 79.03% yield and 95.34 % purity. The final step of reaction was benzylation of 1,10-phenanthroline monohydrate with 4- methoxybenzyl bromide reagent. It was conducted by refluxing in aceton for 8 h at 55 oC. The yield of the reaction was (1)-N-(4-methoxybenzyl)-1,10-phenanthroline bromide (77.63%). It is pink solid form, and its melting point is 192-193 oC. Identification of the product was carried out by means of GC-MS, IR and 1H-NMR spectrometers. The in vitro antiplasmodial activity on chloroquine-resistant Plasmodium falciparum FCR-3 strain and chloroquine sensitive P.
    [Show full text]
  • Alphabetical Index of Substances and Articles
    ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088
    [Show full text]
  • United States Patent Office Patented Jan
    3,119,666 United States Patent Office Patented Jan. 28, 1964 1. 2 solvent is immaterial, since in practical operation, I re 3,119,666 use the solvent for the reaction after the suspended phos METHOS FOR THE PREPARATION OF phorus pentabromide is removed therefrom by filtration PHOSPHORUS PENTABROMIDE or by centrifuging after the reaction is completed. There Richard C. Nametz, St. Louis, Mich., assignor to fore, upon the first use of the solvent it becomes satu Michigan Chemical Corporation, St. Louis, Mich., a rated with the small amount of phosphorus pentabromide corporation of Michigan which it will dissolve, and will dissolve no more of the No Drawing. Fied Nov. 12, 1957, Ser. No. 695,548 product upon reuse. 12 Claims. (C. 23-205) In this method, I utilize substantially equimolar quan This invention relates to an improved method for the O tities of bromide and of phosphorus tribromide, together production of phosphorus pentabromide. with an amount of the co-solvent for bromine and phos Phosphorus pentabromide (phosphoric bromide) is a phorus tribromide relative to the quantities of the re known compound having a melting point above 100 C., actants used which is within the range which will suspend at which temperature it decomposes to form phosphorus the phosphorus pentabromide as a slurry which can be tribromide with the evolution of bromine. Due to its 5 readily stirred and which at the end of the reaction can heat sensitivity, phosphorus pentabromide cannot be puri be readily filtered, but which does not provide an un wieldly bulk of material to handle.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • The Replaceonetit of Hydi*Oxyl by Bromine
    View Article Online / Journal Homepage / Table of Contents for this issue THE REPLACEMENT OF HYDROXYL BY BROMINE. 855 LXXXVIII:.- The ReplaceoneTit of Hydi*oxyl by Bromine. By WILLIAM HENRYPERKIN, jun., and JOHNLIONEL SIREONSEN. Published on 01 January 1905. Downloaded by University of Windsor 26/10/2014 01:06:14. THEmethods available for the preparation of aliphatic compounds in which several atoms of bromine are combined with different carbon atoms are few in number. It is usually assumed that a substance containing one or more hydroxyl groups may be converted into the corresponding bromo-derivatives by treatment with hydrobromic acid, or phosphorus tri- or penta-bromide, but in attempting to use this method in the preparation of bromo-derivatives for the purpose of ring synthesis unexpected difficulties were encountered. The hydroxy -groups in such polyhydric alcohols as glycerol, erythritol, mannitol, ckc., are usually only partially replaced by bromine when these alcohols are treated with hydrobroinic acid, and if, by employing higher temperatures and a large excess of the halogen acid, the attempt is made to complete the substitution, decomposition usually takes place with much charring, and the yield obtained is con- sequently very small. The same remarks apply to the use of the View Article Online 856 PERKIN AND SIMONSEN : bromides of phosphorus in such cases, the results obtained by the action of these reagents on the polyhydric alcohols being frequently most unsatisfactory." In investigating this matter, we found that a great improvement is achieved if the alcohol is first converted into the acetate and the latter is then heated with a solution of hydrogen bromide in glacial acetic acid (saturated at 0") at about 150'.
    [Show full text]
  • Halogenation Reagents
    Halogenation Reagents Halogenation is a basic and fundamental transformation in organic chemistry, and halogenated compounds are of extreme importance as building blocks in organic synthesis. The development of modern coupling reactions, such as the [P2140] Suzuki-Miyaura and Mizoroki-Heck reactions, have greatly increased the demand for halogenated compounds as starting materials. P2140 (2.3 eq.) On the other hand, introduction of fluorine into a certain position of bioactive compound such as a pharmaceutical and an agricultural chemical may remarkably reduce the toxicity of the compound, or improve the efficiency of medicine. This is due to the structurally mimic and blocking effect characterized by fluorine. P2140 (3 eq.) In response to this situation, a number of novel halogenation reagents have been developed. 4-tert-Butyl-2,6-dimethylphenylsulfur trifluoride (FLUOLEAD™) [B3664] is introduced as below: B3664 is a novel nucleophilic 1-Fluoro-3,3-dimethyl-1,2-benziodoxole [F0957] is a hypervalent fluorinating agent which was first reported by Umemoto et al.1) iodine derivative developed by Stuart et al.3) F0957 is stable to air Differing from other existing fluorinating agents, such as DAST, and moisture and used as an electrophilic fluorinating reagent for B3664 is a crystalline solid with high thermal stability and less a α-monofluorination of β-ketoesters in the presence of fuming character, which makes it easier to handle. B3664 triethylamine trihydrofluoride. fluorinates a hydroxyl or carbonyl group to afford the corresponding fluorinated compounds in good yields.1) F I O [F0957] O O Ph OEt F0957(2eq.) F O O Et3N-3HF(2.7eq.) [B3664] Ph OEt CH2Cl2 O O 40oC,24h Ph OEt F F Dibromoisocyanuric acid (DBI) [D3753] which was first reported by Gottardi, is a mild and highly effective brominating agent,4a,b,c) and has superior brominating ability when compared with N-bromosuccinimide (NBS), which is frequently used in organic IF5-Pyridine-HF (Hara Reagent) [P2140] is also a novel synthesis.
    [Show full text]
  • Safety Data Sheet
    1/6 Phosphorus tribromide,6202E-1,28/01/2021 Date of issue: 28/01/2021 Safety Data Sheet 1. Identification of the substance/mixture and of the company/undertaking Product identifier: Product name: Phosphorus tribromide SDS No. : 6202E-1 Details of the supplier of the safety data sheet Manufacturer/Supplier: KISHIDA CHEMICAL CO., LTD. Address: 3-1, Honmachibashi, Chuo-ku,Osaka ,JAPAN Division: Safety Management Dept. of Chemicals Telephone number: +81-6-6946-8061 FAX: +81-6-6946-1607 e-mail address: [email protected] 2. Hazards identification GHS classification and label elements of the product Classification of the substance or mixture HEALTH HAZARDS Skin corrosion/irritation: Category 1B Serious eye damage/eye irritation: Category 1 Specific target organ toxicity - single exposure: Category 3 (Respiratory tract irritation) (Note) GHS classification without description: Not classified/Classification not possible Label elements Signal word: Danger HAZARD STATEMENT Causes severe skin burns and eye damage Causes serious eye damage May cause respiratory irritation PRECAUTIONARY STATEMENT Prevention Do not breathe dust/fume/gas/mist/vapors/spray. Use only outdoors or in a well-ventilated area. Wash contaminated parts thoroughly after handling. Wear protective gloves, protective clothing or face protection. Wear eye protection/face protection. Response Call a POISON CENTER or doctor/physician if you feel unwell. IF INHALED: Remove person to fresh air and keep comfortable for breathing. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Hazardous Materials Safety Administration 49 CFR Parts 171, 172, 173, Et Al
    Vol. 80 Thursday, No. 5 January 8, 2015 Part II Department of Transportation Pipeline and Hazardous Materials Safety Administration 49 CFR Parts 171, 172, 173, et al. Hazardous Materials: Harmonization With International Standards (RRR); Final Rule VerDate Sep<11>2014 19:02 Jan 07, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\08JAR2.SGM 08JAR2 mstockstill on DSK4VPTVN1PROD with RULES2 1076 Federal Register / Vol. 80, No. 5 / Thursday, January 8, 2015 / Rules and Regulations DEPARTMENT OF TRANSPORTATION III. Incorporation by Reference Discussion reduces regulatory compliance costs and Under 1 CFR Part 51 helps to avoid costly frustrations of Pipeline and Hazardous Materials IV. Comment Discussion international shipments. PHMSA’s Safety Administration V. Section-by-Section Review continued leadership in maintaining VI. Regulatory Analyses and Notices A. Statutory/Legal Authority for the consistency with international 49 CFR Parts 171, 172, 173, 175, 176, Rulemaking regulations enhances the hazardous 178 and 180 B. Executive Orders 12866 and 13563 and materials safety program and assists in DOT Regulatory Policies and Procedures maintaining a favorable trade balance. [Docket Nos. PHMSA–2013–0260 (HM– C. Executive Order 13132 215M)] D. Executive Order 13175 II. Background E. Regulatory Flexibility Act, Executive RIN 2137–AF05 PHMSA published a notice of Order 13272, and DOT Policies and proposed rulemaking (NPRM) under Procedures Docket HM–215M (79 FR 50741, August Hazardous Materials: Harmonization F. Paperwork Reduction Act With International Standards (RRR) G. Regulatory Identifier Number (RIN) 25, 2014) to incorporate various H. Unfunded Mandates Reform Act amendments to harmonize the HMR AGENCY: Pipeline and Hazardous I.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]