204427Orig1s000
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microneedle Device and Transdermal Administration Device Provided with Microneedles
(19) & (11) EP 2 005 990 A9 (12) CORRECTED EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 A1) A61M 37/00 (2006.01) A61B 17/20 (2006.01) Corrections, see A61K 9/00 (2006.01) A61K 47/34 (2006.01) Search report Search Report replaced or added (86) International application number: PCT/JP2007/057737 (48) Corrigendum issued on: 29.07.2009 Bulletin 2009/31 (87) International publication number: WO 2007/116959 (18.10.2007 Gazette 2007/42) (43) Date of publication: 24.12.2008 Bulletin 2008/52 (21) Application number: 07741173.4 (22) Date of filing: 06.04.2007 (84) Designated Contracting States: • MATSUDO, Toshiyuki AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tsukuba-shi Ibaraki 305-0856 (JP) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • KUWAHARA, Tetsuji SI SK TR Tsukuba-shi Ibaraki 305-0856 (JP) (30) Priority: 07.04.2006 JP 2006106995 (74) Representative: Westendorp, Michael Oliver Splanemann Reitzner (71) Applicant: Hisamitsu Pharmaceutical Co., Inc. Baronetzky Westendorp Tosu-shi, Saga 841 (JP) Rumfordstrasse 7 D-80469 München (DE) (72) Inventors: • TOKUMOTO, Seiji Tsukuba-shi Ibaraki 305-0856 (JP) (54) MICRONEEDLE DEVICE AND TRANSDERMAL ADMINISTRATION DEVICE PROVIDED WITH MICRONEEDLES (57) The present invention provides a microneedle device having a coating, which is effective even with a low molecular weight active compound and can sustain the effect of the drug for a long period of time, and a transdermal drug administration apparatus with micro- needles. -
Drug Induced QT Prolongation and Torsades De Pointes (Tdp)
Drug induced QT prolongation and Torsades de Pointes (TdP) Mark Friesen, PharmD March 13, 2013 Conflict of Interest None TdP: Learning objectives To review the pathophysiology of QT prolongation and TdP To become aware of the risk factors (including medication- related) for QT prolongation and TdP To understand and apply a systematic approach for dealing with drug interactions that may cause prolonged QT and TdP Clinical Scenario You receive an order for a patient: Levofloxacin 500 mg PO daily Fluconazole 400 mg PO daily Your drug interaction program flags this as a major interaction due to QT prolonging effect of both drugs increasing risk for TdP. What do you do? TdP: History Quinidine associated syncope since 1920’s Congenital syndromes with prolonged QT and syncope or sudden death described in 1950’s, and early 1960’s. 1966 Francois Dessertenne described a specific EKG form of polymorphic VT he termed “torsades de pointes” Over past decade single most common cause of drug withdrawal/restriction from market 9 structurally unrelated non-cardiac drugs: terfenadine, astemizole, grepafloxicin, terodiline, droperidol, terodiline, droperidol, lidoflazaine, sertindole, levomethadyl, cisapride TdP: Definition Polymorphic VT with a preexistant prolonged QT interval Ventricular Action Potential Ca++ Na+ IKr IKs IKr Channel: hERG controlled Delayed repolarization=prolonged QT interval Mechanism of Torsades de Pointes Early afterdepolarizations (extra beat) Transmural reentry (Unusual pathway) Mechanisms Of Drug - Induced QT Prolongation -
The In¯Uence of Medication on Erectile Function
International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted. -
Affinity Profiles of Hexahydro-Sila-Difenidol Analogues at Muscarinic Receptor Subtypes
European Journal of Pharmacology, 168 (1989) 71-80 71 Elsevier EJP 50940 Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes 1 Günter Lambrecht *,Roland Feifel, Monika Wagner-Röder, Carsten Strohmann , 1 1 2 2 Harald Zilch , Reinhold Tacke , Magali Waelbroeck , Jean Christophe , Hendrikus Boddeke 3 and Ernst Mutschier Department of Pharmacology, University of Frankfurt, D-6000 Frankfurt/ M, F.R.G., 1 Institute of Jnorganic Chemistry, University of Karlsruhe, D-7500 Karlsruhe, F.R.G., 1 Department of Biochemistry and Nutrition, Medica/ Schoo/, Free University of Brussels, B-1000 Brussels, Belgium, and 1 Preclinical Research, Sandoz Ltd., CH-4002 Basel, Switzerland Received 20 Apri11989, accepted 13 June 1989 In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1- (rabbit vas deferens), Mr (guinea-pig atria) and Mr (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the observed receptor selectivities were not associated with high affinity. The pyrrolidino and hexamethyleneimino analogues, compounds substituted in the phenylring with a methoxy group or a chlorine atom as weil as p-fluoro-hexahydro-difenidol displayed the same affinity profile as the parent compound, hexahydro-sila-difen idol: M1 =M 3 > M 2 • A different selectivity patternwas observed for p-fluoro-hexahydro-sila-difenidol: M3 > M1 > M 2 • This compound exhibited its highest affinity for M3-receptors in guinea-pig ileum (pA 2 = 7.84), intermediate affinity for M1-receptors in rabbit vas deferens (pA 2 = 6.68) and lowest affinity for the Mrreceptors in guinea-pig atria (pA 2 = 6.01). -
Concentration Dependent Cardiotoxicity of Terodiline in Patients Treated for Urinary Incontinence
Br HeartJ7 1995;74:53-56 53 Concentration dependent cardiotoxicity of terodiline in patients treated for urinary incontinence Simon H L Thomas, P Daniel Higham, Kenneth Hartigan-Go, Farhad Kamali, Peter Wood, Ronald W F Campbell, Gary A Ford Abstract Terodiline hydrochloride is an antimuscarinic Objective-Terodiline, an antimuscarinic drug with calcium antagonist properties' and calcium antagonist drug, was used to which was used for treating urinary inconti- treat detrusor instability but was with- nence caused by detrusor instability.2 The drawn in 1991 after provoking serious drug was withdrawn in 1991 after reports of ventricular arrhythmias associated with cardiac dysrhythmia including bradycardia, increases in the corrected QT interval heart block, ventricular fibrillation, and ven- (QTc). This research was performed to tricular tachycardia, usually of the torsade de relate drug induced electrocardiographic pointes-type34 and associated with QT pro- changes in asymptomatic recipients to longation. Plasma terodiline concentrations plasma concentrations of the R( +) and were very high in one affected patient. S(-) terodiline enantiomers. Predisposing factors for terodiline associated Setting-Urological and geriatric clinics torsade de pointes were old age, coexisting and wards. ischaemic heart disease, co-prescription of Subjects-Asymptomatic patients taking other cardioactive drugs, and hypokalaemia. terodiline in stable dose. Torsade de pointes is associated with Methods-Electrocardiograms (50 mm/s) abnormal prolongation of the ventricular were collected from patients while they refractory period which results in a long QT were taking terodiline and compared with interval on the electrocardiogram and is often ECGs obtained before or after terodiline. drug induced.5 Increased dispersion of ven- QT interval, heart rate corrected QT tricular recovery may be important in the interval (QTc), and QT dispersion (QTd) development of this arrhythmia and indirect were measured. -
Pharmacokinetics of Oral Pridinol: Results of a Randomized, Crossover Bioequivalence Trial in Healthy Subjects
International Journal of Clinical Pharmacology and Therapeutics, Vol. 59 – No. 6/2021 (471-477) Pharmacokinetics of oral pridinol: Results of a randomized, crossover bioequivalence trial in healthy subjects Original Maren Richter1, Frank Donath1, Ralph-Steven Wedemeyer2, André Warnke1, 3 3 ©2021 Dustri-Verlag Dr. K. Feistle Andreas Horstmann , and Claudia Peschel ISSN 0946-1965 DOI 10.5414/CP203900 1SocraTec R&D GmbH, Oberursel/Erfurt, 2SocraMetrics GmbH, Erfurt, and e-pub: April 9, 2021 3Strathmann GmbH & Co. KG, Hamburg, Germany Key words Abstract. Objectives: To establish the What is known about this subject bioavailability – bio- relative bioavailability and to assess bio- equivalence – immedi- equivalence of oral, immediate-release tab- – The anticholinergic agent pridinol has ate-release tablet – lets containing pridinol and to determine been used as a muscle relaxant for de- pharmacokinetics the pharmacokinetic properties of the com- cades. – pridinol pound. Methods and materials: In this single- – However, the published literature on the center, open-label, randomized, crossover pharmacology of pridinol is sparse. trial, healthy male and female adult subjects received single doses of the test and refer- – More accessible information on the cha- ence product containing 4 mg pridinol me- racteristics of pridinol, e.g., its pharma- sylate (equivalent to 3 mg pridinol) each cokinetics in humans, is needed. under fasting conditions. For pharmacoki- netic evaluation, blood samples were with- What this study adds drawn until 72 hours post dose. Pridinol in plasma was quantified by validated liquid – This is the first detailed report on the chromatography-mass spectrometry/mass pharmacokinetic properties of pridinol in spectrometry (LC-MS/MS). Adverse events humans, assisting the prescriber to make (AEs) were analyzed descriptively. -
Prohibited Substances List
Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). -
Effect of Oxybutynin on the Qtc Interval in Elderly Patients with Urinary Incontinence
Br J Clin Pharmaco/1996; 41: 73-75 Effect of oxybutynin on the QTc interval in elderly patients with urinary incontinence R. M. HUSSAIW, K. HARTIGAN-G02, S. H. L. THOMAS2 & G. A. FORDL2 Departments of 1 Medicine (Geriatrics) and 2Pharmacological Sciences, University of Newcastle upon Tyne, UK. I Terodiline, an anticholinergic drug with calcium antagonist properties, is associated with QT prolongation and ventricular arrhythmias. It is not known if oxybutynin, a drug with a similar pharmacological profile, causes QT prolongation. ECGs were obtained before and at least 4 weeks after commencement of oxybutynin (mean daily dose 7.6, range 2.5-10 mg), in 21 elderly (mean age 75, range 58-88 years) patients treated for urinary incontinence. Heart rate, (mean±s.d.) 74± 11 vs 69± 11 beats min- 1, -6 (-13,2), before vs during oxybutynin therapy, mean difference (95% confidence intervals); PR interval, 168±27 vs 156±27 ms, -11 (-26,3); QTc 454±27 vs 447±31 ms 112, -9 (-23,5), and QTc dispersion, QTc max-QTc min, 68±24 vs 63±26 ms 112, -1 (-15,14) were all unaltered by oxybutynin therapy. The lack of an effect on resting heart rate suggests that oxybutynin has little anticholinergic action at cardiac M2 receptors at usually administered doses. Oxybutynin therapy is not associated with QTc interval prolongation and is unlikely to produce ventricular arrhythmias. Keywords QT interval oxybutynin agemg Introduction prevalence of cardiovascular disease and are therefore at particular risk of cardiovascular adverse drug reac Urinary incontinence is a common disability in the tions. -
Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic -
Solubilization of the Muscarinic Acetylcholine Receptor by I Sodium Cholate: Stabilization of the Receptor by Muscarinic Hgands
\ i Biomedical Research 3 (6) 695-698, 1982 Solubilization of the muscarinic acetylcholine receptor by I sodium cholate: Stabilization of the receptor by muscarinic Hgands TATSUYA HAGA, TOSHIHIDE NUKADA and KAZUKO HAGA Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-31, Japan ABSTRACT Forty to fifty percent of the muscarinic receptor in membrane preparations of porcine caudate nucleus was solubilized by sodium cholate in its active form when the mem- branes were pretreated with carbamylcholine or other muscarinic ligands. The binding activity of solubilized receptors was assayed by using [3H]quinuclidinylben- zylate ([3H]QNB) after removal of cholate and carbamylcholine. Without the pre- treatment, sodium cholate abolished most of the binding activity. The solubilized receptor had a high afiinity for [3H]QNB with a dissociation constant of 58 pM and an affinity for muscarinic ligands similar to that of the membrane receptor. The muscarinic receptor has been studied in —80°C until use. In the standard procedure of detail with respect to its binding with muscarinic solubilization, the microsomal preparation ligands by using [3H]-labeled ligands (3, 12) and (about 5 mg protein per ml) was incubated with several subclasses with different affinities for l0 mM carbamylcholine in 50 mM Tris-HCI agonists (2) or selective antagonists (8) have buffer (pH 7.5) at 30°C for 10 min, then a half been reported. It is not known, however, volume of 3 ‘X, sodium cholate in the Tris buffer whether these subclasses represent several types was added and the incubation continued for 5 of receptors which differ as chemical entities, or min at 30°C. -
Predicting Therapeutic and Aggravating Drugs for Hepatocellular Carcinoma Based on Tissue- Specific Pathways
Predicting therapeutic and aggravating drugs for hepatocellular carcinoma based on tissue- specific pathways Liang Yu1*, Fengdan Xu1, Lin Gao1 1School of Computer Science and Technology, Xidian University, Xi’an, PR China Associate Editor: Liang Yu *Corresponding author E-mail: [email protected](LY) Abstract Motivation: Hepatocellular carcinoma (HCC) is a significant health problem worldwide and annual number of cases are nearly more than 700,000. However,there are few safe and effective therapeutic options for HCC patients.Here, we propose a new approach for predicting therapeutic and aggravating drugs for HCCbased ontissue-specificpathways, which considersnot onlyliver tissueand functional in- formationof pathways, but also the changes of single gene in pathways. Results: Firstly, we map genes related to HCC to the liver-specific protein interaction network and get anextended tissue-specific gene set of HCC. Then, based on the extended gene set, 12 enriched KEGGfunctional pathways are extracted.Using Kolmogorov–Smirnov statistic, we calculate the thera- peutic scores of drugs based on the 12 tissue-specific pathways. Finally, after filtering by Comparative Toxicogenomics Database (CTD) benchmark,we get 3 therapeutic drugs and 3 aggravating drugs for HCC. Furthermore, we validate the6potentially related drugs of HCC by analyzingtheiroverlaps with drug indications reported in PubMed literatures, and also making CMapprofile similarity analysis and KEGG enrichment analysis based on their targets. All analysis results suggest thatour approach is effective and accurate for discovering novel therapeutic options for HCC and it can be easily extended to other diseases.More importantly, our method can clearly distinguish therapeutic and aggravating drugsforHCC, which also can be used to indicateunmarked drug-disease associations in CTD as pos- itive or negative. -
Appendix 1 BNF Codes of Drugs Lists Used to Define Exposure Groups
Appendix 1 BNF Codes of drugs lists used to define exposure groups. Anticholinergic antipsychotics d411. Chlorpromazine d412. Chlorpromazine d413. Chlorpromazine d414. Chlorpromazine d415. Chlorpromazine d41a. Chlorpromazine d41b. Chlorpromazine d41c. Chlorpromazine d41d. Chlorpromazine d4b1. Perphenazine d4e1. PROMAZINE d4ex. PROMAZINE d4g.. Thioridazine d4g1. Thioridazine d4g2. Thioridazine d4g3. Thioridazine d4g5. Thioridazine d4g7. Thioridazine d4gp. Thioridazine d4gt. Thioridazine d4gu. Thioridazine d4gv. Thioridazine d4gw. Thioridazine d4gz. Thioridazine d4h.. Trifluoperazine d4h1. Trifluoperazine d4h2. Trifluoperazine d4h3. Trifluoperazine d4h4. Trifluoperazine d4hs. Trifluoperazine d4ht. Trifluoperazine d4hu. Trifluoperazine d4hx. Trifluoperazine d4l2. CLOZAPINE d4r1. OLANZAPINE d4r3. OLANZAPINE d4r7. OLANZAPINE d4s1. QUETIAPINE d4s2. QUETIAPINE d4s3. QUETIAPINE d4s5. QUETIAPINE d4ss. QUETIAPINE d4sx. QUETIAPINE Tricyclic antidepressants d7... d71.. Amitriptyline d711. Amitriptyline d712. Amitriptyline d713. Amitriptyline d719. Amitriptyline d71a. Amitriptyline d71b. Amitriptyline d71c. Amitriptyline d71d. Amitriptyline d71e. Amitriptyline d71f. Amitriptyline d71u. Amitriptyline d71v. Amitriptyline d71w. Amitriptyline d71y. Amitriptyline d71z. Amitriptyline d73.. Clomipramine d731. Clomipramine d732. Clomipramine d733. Clomipramine d736. Clomipramine d73s. Clomipramine d73t. Clomipramine d73u. Clomipramine d73v. Clomipramine d73w. Clomipramine d73z. Clomipramine d75.. DOSULEPIN d751. DOSULEPIN d752. DOSULEPIN d755. DOSULEPIN d756.