Concentration Dependent Cardiotoxicity of Terodiline in Patients Treated for Urinary Incontinence Br Heart J: First Published As 10.1136/Hrt.74.1.53 on 1 July 1995

Total Page:16

File Type:pdf, Size:1020Kb

Concentration Dependent Cardiotoxicity of Terodiline in Patients Treated for Urinary Incontinence Br Heart J: First Published As 10.1136/Hrt.74.1.53 on 1 July 1995 Br HeartJ7 1995;74:53-56 53 Concentration dependent cardiotoxicity of terodiline in patients treated for urinary incontinence Br Heart J: first published as 10.1136/hrt.74.1.53 on 1 July 1995. Downloaded from Simon H L Thomas, P Daniel Higham, Kenneth Hartigan-Go, Farhad Kamali, Peter Wood, Ronald W F Campbell, Gary A Ford Abstract Terodiline hydrochloride is an antimuscarinic Objective-Terodiline, an antimuscarinic drug with calcium antagonist properties' and calcium antagonist drug, was used to which was used for treating urinary inconti- treat detrusor instability but was with- nence caused by detrusor instability.2 The drawn in 1991 after provoking serious drug was withdrawn in 1991 after reports of ventricular arrhythmias associated with cardiac dysrhythmia including bradycardia, increases in the corrected QT interval heart block, ventricular fibrillation, and ven- (QTc). This research was performed to tricular tachycardia, usually of the torsade de relate drug induced electrocardiographic pointes-type34 and associated with QT pro- changes in asymptomatic recipients to longation. Plasma terodiline concentrations plasma concentrations of the R( +) and were very high in one affected patient. S(-) terodiline enantiomers. Predisposing factors for terodiline associated Setting-Urological and geriatric clinics torsade de pointes were old age, coexisting and wards. ischaemic heart disease, co-prescription of Subjects-Asymptomatic patients taking other cardioactive drugs, and hypokalaemia. terodiline in stable dose. Torsade de pointes is associated with Methods-Electrocardiograms (50 mm/s) abnormal prolongation of the ventricular were collected from patients while they refractory period which results in a long QT were taking terodiline and compared with interval on the electrocardiogram and is often ECGs obtained before or after terodiline. drug induced.5 Increased dispersion of ven- QT interval, heart rate corrected QT tricular recovery may be important in the interval (QTc), and QT dispersion (QTd) development of this arrhythmia and indirect were measured. Drug induced electro- evidence indicates that this is reflected by http://heart.bmj.com/ cardiographic changes were related to increased dispersion of QT interval durations plasma concentrations of R(+) and S(-) across the standard 12 lead electrocardio- terodiline. gram.67 The relation between torsade de Results-During terodiline treatment pointes and plasma drug concentrations is mean QTc and QTd were prolonged uncertain: while torsade may result from over- (491(43) and 84 (35) ms1l2) compared with dose of several drugs,5 many patients develop- measurements made offtherapy (443 (33) ing drug induced torsade do not have and 42 (17) ms'12, paired t tests, P < 0-002 excessive plasma drug concentrations and on October 4, 2021 by guest. Protected copyright. and P < 0 01 respectively) in the 12 some consider the arrhythmia to be an idio- patients in sinus rhythm. The mean (95% synchratic phenomenon.8 confidence interval) drug induced The effects of terodiline were therefore increases were 48 (23 to 74) Ms112 for QTc investigated by collecting electrocardiograms Wolfson Dept of Clinical and 42 (13 to 70) ms'12 for QTd. These from asymptomatic patients receiving the Pharmacology, increases correlated with total plasma drug for treatment of urinary incontinence, University of terodiline (QTc: r = 0-77, P < 0-006, comparing them with those taken before or Newcastle, Newcastle QTd: r = P < and with after and the terodi- upon Tyne 0*68, 0.025) drug treatment, relating S H L Thomas plasma concentrations of both terodiline line induced electrocardiographic changes K Hartigan-Go enantiomers. with plasma concentrations of each terodiline F Kamali Conclusions-Terodiline increases enantiomer. P Wood QTc G A Ford and QTd in a concentration dependent Academic manner. It is not clear whether this is a Department of stereoselective effect and, if so, which Patients and methods Cardiology, enantiomer is responsible. The results Electrocardiograms (50 mm/s) and plasma University of Newcastle, Newcastle suggest that drug induced torsade de samples were collected from patients who were upon Tyne pointes is a type A (concentration depen- taking terodiline in stable dose between 4 and P D Higham dent) adverse drug reaction. 24 h after the last dose. This process started R W F Campbell in June 1991, when reports of dysrhythmia Correspondence to: first appeared, and ended in September 1991 Dr S H L Thomas, Wolfson (Br HeartJ7 1995;74:53-56) Department of Clinical when the drug was withdrawn. Copies of elec- Pharmacology, Claremont Place, Newcastle NE1 7RU. trocardiograms predating terodiline treatment Accepted for publication Keywords: terodiline; cardiotoxicity; electrocardio- were also collected, when available, and, if 11 January 1995 graphy possible, electrocardiography was repeated at 54 Thomas, Higham, Hartigan-Go, Kamali, Wood, Campbell, Ford Table 1 Characteristics ofpatients in sinus rhythm FO ioo0 100- / taking terodiline 0 C 50 * . 50 * Mean (range) 0 Age (years) 73 (46-92) C'0 Height (cm) 161 (150-193) R= 0.78, P < 0.005 R 0.76, P<0.008 u -50 - -50- Weight (kg) 61 (44-90) 0 100 200 300 400 500 0 100 200 300 400 500 Daily dose (mg)* 38 (12-5-50) Br Heart J: first published as 10.1136/hrt.74.1.53 on 1 July 1995. Downloaded from Duration of treatment (days) 231 (8-1050) 150 150 Sodium (mmol/l) 139 (136-142) 100 100- Potassium (mmol/l) 4-1 (3 4-4 8) .C Creatinine (umol/l) 110 (89-116) D 50 . *. 50 0 Ionised calcium (mmol/l) 1-30 (1-25-1-32) Magnesium (mmolIl) 0-8 (0 7-0 9) CO0 01 Albumin (g/l) 41 (37-46) -5 00. R 0-69, P < 002 R 0.67, P < 0.03 0 100 200 300 400 500 0 100 200 300 400 500 Values are mean (range). *Median daily dose was 25 mg. R(+)-terodiline (ng/ml) S(-)-terodiline (ng/ml) Figure 2 Relation between plasma concentrations of terodiline enantiomers and the extent ofdrug induced least 2 months after terodiline had been dis- prolongation in corrected QT intervals (QTc) and QT continued. Each patient's medical details dispersion (QTd). were recorded and the blood sample analysed for plasma drug concentrations, electrolytes, and creatinine. Electrocardiograms were analysed blind by patients with atrial fibrillation were not used an independent observer. RR, PR, and QT as this condition has major effects on QTd. intervals were measured using a digitiser For the 15 patients in sinus rhythm (table 1) (Calcomp 9000, Scottsdale, AZ, USA). The electrocardiograms were available before QT interval was measured from onset of the terodiline was started in two patients and after QRS complex to the end of the T wave, terodiline had been stopped in 11, although defined as a return to the TP baseline. In the one of these had developed atrial fibrillation. presence of U waves, the end of the T wave Electrocardiograms in sinus rhythm were was taken at the TU nadir. Three representa- therefore available during and before or after tive complexes were analysed for those leads treatment in 12 patients, of whom 11 agreed of the standard 12 lead electrocardiogram to give a blood sample. Of these, one had where the T wave could be clearly defined right bundle branch block and four were taking and a mean taken. When the end of the T other drugs which might affect QT interval wave could not be reliably identified the lead (dothiepin, imipramine, thioridazine, sotalol), was excluded from analysis. The largest QT the doses of which were not altered during the interval on the 12 lead electrocardiogram study, and five had cardiovascular disease (QTmax) was used to derive the corrected (cerebrovascular disease (three), coronary QT interval (QTc), which was calculated for artery disease (one), and hypertension (one)). http://heart.bmj.com/ each lead using Bazett's formula (QTc = QT/ Electrocardiograms of two patients receiving V (RR interval)). QT dispersion (QTd) was terodiline were collected after only 8 and 16 determined as the longest minus the shortest days of treatment, possibly before steady state QTc on the 12 lead electrocardiogram. concentrations and the maximal electrocar- Plasma concentrations of R( + )- and diographic effects of the drug would be S(-)- terodiline enantiomers were measured achieved. simultaneously by high performance liquid A total of 17 patients gave a blood sample. on October 4, 2021 by guest. Protected copyright. chromatography using a chiral column and an Plasma concentrations of the two terodiline ultraviolet detector. The limit of detection of enantiomers correlated closely (r = 0 99, the method is 25 ng/ml for each enantiomer P < 0 0001) with a mean (SD) R(+)-/S(-)- 600_ p < 0.002 and coefficients of variation are 5-5% for the ratio of 1 03 (0 14). No significant correla- ^550 S R(+)-enantiomer at 271 ng/ml and 7-6% for tions were observed between daily terodiline Ch dose and the plasma concentration of either 500 - the S(-)-enantiomer at 173 ng/ml. All { samples were analysed in duplicate and with- terodiline enantiomer. Apparent terodiline Q450 I 7 measured as dose divided C) 400 out knowledge of the electrocardiographic clearance, daily by - changes observed in each patient. plasma concentration, varied widely between 350 ' patients and did not correlate significantly P < 0.01 with age in this small group (data not shown). 150 Results Terodiline did not affect the PR interval or Nineteen patients taking terodiline took part heart rate but prolonged QTc and QTd 100 in this study. The electrocardiograms of four (fig 1, table 2) compared with measurements 50 0 On Off Table 2 Electrocardiographic effect of terodiline in 12 patients in sinus rhythmn Figure 1 Corrected QT Heart rate PR interval QTmax QTc QTd intervals (QTc) and QT (beatslmin) (ms) (ms) (msll2) (ms) dispersion (QTd) in 12 patients in sinus rhythm on Patients not receiving treatment 73 (16) 166 (22) 405 (49) 443 (33) 42 (17) Patients receiving treatment 72 (14) 178 (26) 456 (64) 491 (43) 84 (35) and offterodiline, together Mean difference -2 12 51 48 42 with means (SD).
Recommended publications
  • Drug Induced QT Prolongation and Torsades De Pointes (Tdp)
    Drug induced QT prolongation and Torsades de Pointes (TdP) Mark Friesen, PharmD March 13, 2013 Conflict of Interest None TdP: Learning objectives To review the pathophysiology of QT prolongation and TdP To become aware of the risk factors (including medication- related) for QT prolongation and TdP To understand and apply a systematic approach for dealing with drug interactions that may cause prolonged QT and TdP Clinical Scenario You receive an order for a patient: Levofloxacin 500 mg PO daily Fluconazole 400 mg PO daily Your drug interaction program flags this as a major interaction due to QT prolonging effect of both drugs increasing risk for TdP. What do you do? TdP: History Quinidine associated syncope since 1920’s Congenital syndromes with prolonged QT and syncope or sudden death described in 1950’s, and early 1960’s. 1966 Francois Dessertenne described a specific EKG form of polymorphic VT he termed “torsades de pointes” Over past decade single most common cause of drug withdrawal/restriction from market 9 structurally unrelated non-cardiac drugs: terfenadine, astemizole, grepafloxicin, terodiline, droperidol, terodiline, droperidol, lidoflazaine, sertindole, levomethadyl, cisapride TdP: Definition Polymorphic VT with a preexistant prolonged QT interval Ventricular Action Potential Ca++ Na+ IKr IKs IKr Channel: hERG controlled Delayed repolarization=prolonged QT interval Mechanism of Torsades de Pointes Early afterdepolarizations (extra beat) Transmural reentry (Unusual pathway) Mechanisms Of Drug - Induced QT Prolongation
    [Show full text]
  • Concentration Dependent Cardiotoxicity of Terodiline in Patients Treated for Urinary Incontinence
    Br HeartJ7 1995;74:53-56 53 Concentration dependent cardiotoxicity of terodiline in patients treated for urinary incontinence Simon H L Thomas, P Daniel Higham, Kenneth Hartigan-Go, Farhad Kamali, Peter Wood, Ronald W F Campbell, Gary A Ford Abstract Terodiline hydrochloride is an antimuscarinic Objective-Terodiline, an antimuscarinic drug with calcium antagonist properties' and calcium antagonist drug, was used to which was used for treating urinary inconti- treat detrusor instability but was with- nence caused by detrusor instability.2 The drawn in 1991 after provoking serious drug was withdrawn in 1991 after reports of ventricular arrhythmias associated with cardiac dysrhythmia including bradycardia, increases in the corrected QT interval heart block, ventricular fibrillation, and ven- (QTc). This research was performed to tricular tachycardia, usually of the torsade de relate drug induced electrocardiographic pointes-type34 and associated with QT pro- changes in asymptomatic recipients to longation. Plasma terodiline concentrations plasma concentrations of the R( +) and were very high in one affected patient. S(-) terodiline enantiomers. Predisposing factors for terodiline associated Setting-Urological and geriatric clinics torsade de pointes were old age, coexisting and wards. ischaemic heart disease, co-prescription of Subjects-Asymptomatic patients taking other cardioactive drugs, and hypokalaemia. terodiline in stable dose. Torsade de pointes is associated with Methods-Electrocardiograms (50 mm/s) abnormal prolongation of the ventricular were collected from patients while they refractory period which results in a long QT were taking terodiline and compared with interval on the electrocardiogram and is often ECGs obtained before or after terodiline. drug induced.5 Increased dispersion of ven- QT interval, heart rate corrected QT tricular recovery may be important in the interval (QTc), and QT dispersion (QTd) development of this arrhythmia and indirect were measured.
    [Show full text]
  • Effect of Oxybutynin on the Qtc Interval in Elderly Patients with Urinary Incontinence
    Br J Clin Pharmaco/1996; 41: 73-75 Effect of oxybutynin on the QTc interval in elderly patients with urinary incontinence R. M. HUSSAIW, K. HARTIGAN-G02, S. H. L. THOMAS2 & G. A. FORDL2 Departments of 1 Medicine (Geriatrics) and 2Pharmacological Sciences, University of Newcastle upon Tyne, UK. I Terodiline, an anticholinergic drug with calcium antagonist properties, is associated with QT prolongation and ventricular arrhythmias. It is not known if oxybutynin, a drug with a similar pharmacological profile, causes QT prolongation. ECGs were obtained before and at least 4 weeks after commencement of oxybutynin (mean daily dose 7.6, range 2.5-10 mg), in 21 elderly (mean age 75, range 58-88 years) patients treated for urinary incontinence. Heart rate, (mean±s.d.) 74± 11 vs 69± 11 beats min- 1, -6 (-13,2), before vs during oxybutynin therapy, mean difference (95% confidence intervals); PR interval, 168±27 vs 156±27 ms, -11 (-26,3); QTc 454±27 vs 447±31 ms 112, -9 (-23,5), and QTc dispersion, QTc max-QTc min, 68±24 vs 63±26 ms 112, -1 (-15,14) were all unaltered by oxybutynin therapy. The lack of an effect on resting heart rate suggests that oxybutynin has little anticholinergic action at cardiac M2 receptors at usually administered doses. Oxybutynin therapy is not associated with QTc interval prolongation and is unlikely to produce ventricular arrhythmias. Keywords QT interval oxybutynin agemg Introduction prevalence of cardiovascular disease and are therefore at particular risk of cardiovascular adverse drug reac­ Urinary incontinence is a common disability in the tions.
    [Show full text]
  • Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
    Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic
    [Show full text]
  • Appendix 1 BNF Codes of Drugs Lists Used to Define Exposure Groups
    Appendix 1 BNF Codes of drugs lists used to define exposure groups. Anticholinergic antipsychotics d411. Chlorpromazine d412. Chlorpromazine d413. Chlorpromazine d414. Chlorpromazine d415. Chlorpromazine d41a. Chlorpromazine d41b. Chlorpromazine d41c. Chlorpromazine d41d. Chlorpromazine d4b1. Perphenazine d4e1. PROMAZINE d4ex. PROMAZINE d4g.. Thioridazine d4g1. Thioridazine d4g2. Thioridazine d4g3. Thioridazine d4g5. Thioridazine d4g7. Thioridazine d4gp. Thioridazine d4gt. Thioridazine d4gu. Thioridazine d4gv. Thioridazine d4gw. Thioridazine d4gz. Thioridazine d4h.. Trifluoperazine d4h1. Trifluoperazine d4h2. Trifluoperazine d4h3. Trifluoperazine d4h4. Trifluoperazine d4hs. Trifluoperazine d4ht. Trifluoperazine d4hu. Trifluoperazine d4hx. Trifluoperazine d4l2. CLOZAPINE d4r1. OLANZAPINE d4r3. OLANZAPINE d4r7. OLANZAPINE d4s1. QUETIAPINE d4s2. QUETIAPINE d4s3. QUETIAPINE d4s5. QUETIAPINE d4ss. QUETIAPINE d4sx. QUETIAPINE Tricyclic antidepressants d7... d71.. Amitriptyline d711. Amitriptyline d712. Amitriptyline d713. Amitriptyline d719. Amitriptyline d71a. Amitriptyline d71b. Amitriptyline d71c. Amitriptyline d71d. Amitriptyline d71e. Amitriptyline d71f. Amitriptyline d71u. Amitriptyline d71v. Amitriptyline d71w. Amitriptyline d71y. Amitriptyline d71z. Amitriptyline d73.. Clomipramine d731. Clomipramine d732. Clomipramine d733. Clomipramine d736. Clomipramine d73s. Clomipramine d73t. Clomipramine d73u. Clomipramine d73v. Clomipramine d73w. Clomipramine d73z. Clomipramine d75.. DOSULEPIN d751. DOSULEPIN d752. DOSULEPIN d755. DOSULEPIN d756.
    [Show full text]
  • Drug Misuse and Dependence : UK Guidelines on Clinical Management
    Drug misuse and dependence UK guidelines on clinical management Title: Drug misuse and dependence: UK guidelines on clinical management Recommended citation: Clinical Guidelines on Drug Misuse and Dependence Update 2017 Independent Expert Working Group (2017) Drug misuse and dependence: UK guidelines on clinical management. London: Department of Health Author: Clinical Guidelines on Drug Misuse and Dependence Update 2017 Independent Expert Working Group Publisher: Global and Public Health / Population Health / Healthy Behaviours / 25460 Document purpose: Guidance Publication date: July 2017 Target audience: Healthcare professionals Providers and commissioners of treatment for people who misuse or are dependent on drugs Professional and regulatory bodies Service users and carers Contact details: Alcohol, Drugs & Tobacco Division Public Health England [email protected] You may re-use the text of this document (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/ doc/open-government-licence/ © Crown copyright Published to gov.uk www.gov.uk/dh Drug misuse and dependence UK guidelines on clinical management Prepared by Clinical Guidelines on Drug Misuse and Dependence Update 2017 Independent Expert Working Group Contents 1 Contents Preface 5 Professor Sir John Strang 5 Chapter 1: Introduction 9 Chapter 2: Essential elements of treatment provision 15 2.1 Key points 15 2.2 Assessment, planning care and treatment 15 2.3 Delivery
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Genetic and Molecular Aspects of Drug-Induced QT Interval Prolongation
    International Journal of Molecular Sciences Review Genetic and Molecular Aspects of Drug-Induced QT Interval Prolongation Daniela Baracaldo-Santamaría 1 , Kevin Llinás-Caballero 2,3 , Julián Miguel Corso-Ramirez 1 , Carlos Martín Restrepo 2 , Camilo Alberto Dominguez-Dominguez 1 , Dora Janeth Fonseca-Mendoza 2 and Carlos Alberto Calderon-Ospina 2,* 1 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; [email protected] (D.B.-S.); [email protected] (J.M.C.-R.); [email protected] (C.A.D.-D.) 2 GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; [email protected] (K.L.-C.); [email protected] (C.M.R.); [email protected] (D.J.F.-M.) 3 Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia * Correspondence: [email protected]; Tel.: +57-1-2970200 (ext. 3318) Abstract: Long QT syndromes can be either acquired or congenital. Drugs are one of the many etiologies that may induce acquired long QT syndrome. In fact, many drugs frequently used in the clinical setting are a known risk factor for a prolonged QT interval, thus increasing the chances of developing torsade de pointes. The molecular mechanisms involved in the prolongation of the QT interval are common to most medications. However, there is considerable inter-individual variability Citation: Baracaldo-Santamaría, D.; Llinás-Caballero, K.; Corso-Ramirez, in drug response, thus making the application of personalized medicine a relevant aspect in long QT J.M.; Restrepo, C.M.; syndrome, in order to evaluate the risk of every individual from a pharmacogenetic standpoint.
    [Show full text]
  • Sudden Death in a Patient Taking Antipsychotic Drugs
    Adverse drug reactions 445 Sudden death in a patient taking antipsychotic Postgrad Med J: first published as 10.1136/pgmj.74.873.445 on 1 July 1998. Downloaded from drugs S H L Thomas, P N Cooper Cardiac arrhythmias are sometimes caused by disease. Thioridazine was considered as a pos- drugs. One mechanism for drug-induced sible contributing factor and a Yellow Card was pro-arrhythmia is delayed ventricular repolari- sent to the Committee on Safety of Medicines sation, reflected on the surface electrocardio- (CSM). gram (ECG) as prolongation of the QT interval, which is associated with a number of Discussion drugs (box 1). Patients with drug-induced QT prolongation are at risk of the polymorphic Spontaneous reporting schemes, such as the ventricular tachycardia torsade de pointes. While Yellow Card scheme in the UK, are of value in usually self-limiting, this may degenerate into detecting serious adverse reactions to drugs, ventricular fibrillation.' but one limitation of these schemes, even for fatal adverse events, is under-reporting. It has Case summary been estimated that only 15% of fatal episodes of thromboembolism in women taking com- A 68-year-old man with a 5-year history of bined oral contraceptives,2 and 11% of fatal Alzheimer's disease and cervical spondylosis blood dyscrasias associated with phenylbuta- was admitted to a psychogeriatric ward be- zone or oxyphenbutazone,' were reported by cause of a deterioration in his mental state. He doctors or coroners. One possible reason for had no history of heart disease or epilepsy. this is that a cause and effect relationship may Because of violent outbursts he was treated be uncertain.
    [Show full text]
  • Cardioid: Whole Human Heart Modeling and Simulation
    Cardioid: Whole Human Heart Modeling and Simulation a collaboration between IBM and Lawrence Livermore National Laboratory Dr. Frederick Streitz Director, HPC Innovation Center Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 LLNL-PRES-603112 Partnership Overview • LLNL partnering with U.S. industry to promote U.S. competitiveness • Creates Livermore Valley Open Campus and the HPC Innovation Center • IBM partnering with LLNL to form Deep Computing Solutions in the HPCIC • Working together, IBM and LLNL create Cardioid code: aimed at accelerating cures for heart disease and aiding in drug screening and the development of new medical devices and patient-specific therapies. • Seeking partners for application and commercialization of Cardioid, as well as other projects Partnering with Lawrence Livermore National Laboratory • Livermore Valley Open Campus: research park environment with collaborative space • Ready access for all partners to world-renowned facilities and resources • HPCIC delivers computing solutions with access to computing and expertise HPCIC • Coming Soon: Institute for Translational Biomedicine • 25 year plan to develop 2.5M sq.ft. hosting 3,000 researchers HPCIC and Deep Computing Solutions • Innovation ecosystem focused on HPC solutions for industry problems Partnering with industry to develop, prove, • HPCIC offers access to world-class and deploy HPC solutions computing resources
    [Show full text]
  • Pharmaceuticals (Monocomponent Products) ………………………..………… 31 Pharmaceuticals (Combination and Group Products) ………………….……
    DESA The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global and policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. Note Symbols of United Nations documents are composed of the capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. Applications for the right to reproduce this work or parts thereof are welcomed and should be sent to the Secretary, United Nations Publications Board, United Nations Headquarters, New York, NY 10017, United States of America. Governments and governmental institutions may reproduce this work or parts thereof without permission, but are requested to inform the United Nations of such reproduction. UNITED NATIONS PUBLICATION Copyright @ United Nations, 2005 All rights reserved TABLE OF CONTENTS Introduction …………………………………………………………..……..……..….. 4 Alphabetical Listing of products ……..………………………………..….….…..….... 8 Classified Listing of products ………………………………………………………… 20 List of codes for countries, territories and areas ………………………...…….……… 30 PART I. REGULATORY INFORMATION Pharmaceuticals (monocomponent products) ………………………..………… 31 Pharmaceuticals (combination and group products) ………………….……........
    [Show full text]
  • Practitioners' Section
    427 428 SAFER MOLECULES THROUGH CHIRALITY PRACTITIONERS’ SECTION development of safer alternatives to existing racemates. DEVELOPMENT OF SAFER MOLECULES THROUGH CHIRALITY Basics of chirality[1-4] Compounds can be chiral or achiral (non-chiral). P. A. PATIL*, M. A. KOTHEKAR** Chiral compounds possess the property of handedness, i.e., they may be right-handed or Figure 1: Chiral structure of ibuprofen ABSTRACT left-handed. These two - left- and right-handed nomenclature are mutually exclusive. R - forms of a chiral compound are identical in Many of the drugs currently used in medical practice are mixtures of enantiomers enantiomer of one compound may be their structural formulas but differ in spatial (racemates). Many a times, the two enantiomers differ in their pharmacokinetic and dextrorotatory, while another compound may arrangement so that one form is exactly a mirror pharmacodynamic properties. Replacing existing racemates with single isomers has have its S enantiomer as dextrorotatory. resulted in improved safety and/or efficacy profile of various racemates. In this review, image of the other but the two forms are not superimposable on one another. This is akin to pharmacokinetic and pharmacodynamic implications of chirality are discussed in brief, A collection containing only one enantiomeric pair of gloves, socks or hands. An achiral followed by an overview of some important chiral switches that have yielded safer form of a chiral molecule is called an optically alternatives. These include levosalbutamol, S-ketamine, levobupivacaine, S-zopiclone, object exists only in one form and there is no pure, chirally pure or enantiomerically pure levocetirizine, S-amlodipine, S-atenolol, S-metoprolol, S-omeprazole, S-pantoprazole possibility of left- or right-handedness.
    [Show full text]