Spring 2011 Gems & Gemology Gem News International
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Zektzerite, Nalizrsiuo,U: a Silicate with Six-Tetrahedral-Repeat Double
American Mineralogist, Volume 63, pages 304-310' 1978 Zektzerite, NaLiZrSiuO,u: a silicate with six-tetrahedral-repeatdouble chains SusnA.rnGHosn nNo Cus'Nc Wa'N Department of GeologicalSciences, Uniuersity of Washington Sealt le. Washinston98 I 95 Abstract : zektzerite, Nal-iZrSiuo,u, is orthorhombic, space group Cmca, with cell dimensions: a 14.330(2),b : 17.354(2),and c : 10.164(2)4;Z : 8.The crystal structurehas been determinedby the symbolic addition method and refinedby the method of leastsquares to an R factor of 0.040for 2389reflections, measured on an automaticsingle-crystal diffractometer. The crystal structureof zektzeriteis a three-dimensionalframework consistingof (a) edge- sharing Na-polyhedral chains, (b) octahedral-tetrahedralchains, formed by alternating Li tetrahedra andZr octahedrasharing edges, and (c) corrugateddouble-silicate chains with six- tetrahedraf repeat (Seclrser-Doppelkette)and three different four-membered rings. The Li tetrahedron,with an averageLi-O distanceof 1.959A,shows strong angular distortion. The Zr octahedronis nearly regular,with an averageZr-O distanceof 2.0'/4A.The sodium atom occurs in an irregular cavity formed by the corrugation of the silicatedouble chains; it is coordinatedto six oxygen atoms at distancesof 2.37-2.6'7A,and four more oxygenatoms at distancesof 3.12-3.23A.The averageSi-O bond lengthswithin the Si(l)' Si(2)' and Si(3) tetrahedraarel.6l4,l.6l6,andl.6l0A.TheSi-O-Si bondanglesinvolvingoxygenslyingon mirror planesaverage 155.7", whereas those within the singlesilicate chain averagel4'7.6". The larger Si-O-Si anglesare associatedwith shorter Si-O bonds. Zektzeriteis isostructural with tuhualite, (Na,K)Fer+Fe3+Si"O,u,and synthetic Na2MgrSiuo,r. -
Optical-Spectroscopy.Pdf
Reviews in Mineralogy & Geochemistry Vol. 78 pp. 371-398, 2014 9 Copyright© Mineralogical Society of America Optical Spectroscopy George R. Rossman Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500, U.S.A. grr@ gps.caltech.edu INTRODUCTION Optical spectroscopy is concerned with the measurement of the absorption, reflection and emission of light in the near-ultraviolet (-250 nm) through the mid-infrared ( -3000 nm) portions of the spectrum. The human interface to the geological and mineralogical world is primarily visual. Optical spectroscopy is, in particular, well suited to investigating the origin of color in minerals. The reflection spectroscopy of minerals has been motivated to a large extent by interest in remote sensing. Emission spectra are usually studied in reference to luminescence phenomena. Studies of mineral color, metal ion site occupancy, oxidation states and concentrations have generally been done with absorption spectroscopy. This chapter concentrates on single crystal absorption spectroscopy. Absorption of light by crystals can occur for a number of reasons. For many minerals, the presence of ions of transition elements (e.g., Ti, V, Cr, Mn, Fe, Co, Ni, Cu) in their various oxidation states is the cause of light absorption. In some minerals, the individual ions cause the light absorption while in others it is the interaction between ions such as between Fe2+ and Fe3+ that causes color. In some minerals, rare-earth elements are an important source of color. 2 Some minerals are colored by small molecular units involving metal ions (UOl+, Cr04 -) or anions (S 3- in sodalites). Many sulfide minerals such as cinnabar (HgS) and realgar (As4S4) owe their color to band gaps in the semiconducting sulfides. -
Shear Zone Initiation in the Marcy Anorthosite Massif, Adirondacks, New York, USA James Hodge University of Maine, [email protected]
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-23-2019 Fractures, Fluids, and Metamorphism: Shear Zone Initiation in the Marcy Anorthosite Massif, Adirondacks, New York, USA James Hodge University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Geochemistry Commons, Geology Commons, and the Tectonics and Structure Commons Recommended Citation Hodge, James, "Fractures, Fluids, and Metamorphism: Shear Zone Initiation in the Marcy Anorthosite Massif, Adirondacks, New York, USA" (2019). Electronic Theses and Dissertations. 3050. https://digitalcommons.library.umaine.edu/etd/3050 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. FRACTURES, FLUIDS, AND METAMORPHISM: SHEAR ZONE INITIATION IN THE MARCY ANORTHOSITE MASSIF, ADIRONDACKS, NEW YORK, USA By James Hodge B.S. College of Saint Rose, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Earth and Climate Sciences) The Graduate School The University of Maine August 2019 Advisory Committee: Scott Johnson, Professor and Director School of Earth and Climate Sciences, Advisor Chris Gerbi, Professor School of Earth and Climate Sciences, Advisor Alicia Cruz-Uribe, Professor School of Earth and Climate Sciences Martin Yates, Professor School of Earth and Climate Sciences FRACTURES, FLUIDS, AND METAMORPHISM: SHEAR ZONE INITIATION IN THE MARCY ANORTHOSITE MASSIF, ADIRONDACKS, NEW YORK, USA By James Hodge Thesis Advisors: Dr. -
Cavansite, a Calcium and Vanadium Silicate of Formula Ca(VO)(Si4o1o
.. ,., Cavansite, a calcium and vanadium silicate of formula Ca(VO)(Si4O1o).4H.P, occurs as sky-blue to greenish-blue radiating prismatic rosettes up to~mm in size associated with its dimorph, pentagonite, in a roadcut near Lake Owyhee State Park in Malheur County, Oregon. Discovery of these two minerals is attributed to Mr. and Mrs. Leslie Perrigo of Fruitland, Idaho, (at this locality in 1961), and to Dr. John Cowles at the Goble locality in 1963 (see below). Associated with the cavansite and pentagonite are abundant colorless analcime, stilbite, chabazite, thomsonite and heulandite, as well as colorless to pale yellow calcite, and rare green or colorless apophyllite. This occurence and a similar emplacement (of cavansite only) near Goble, Columbia County, Oregon (co-type localities), represent the only known deposits of these two minerals in the United States. As determined by X-ray fluorescense and crystal stfiucture analysis, cavansite is orthorhombic, conforms to space group Pcmn (D2h 6), has a unit cell with a=lO.298(4), b=l3.999(7), c=9.6O1(2) Angstroms, contains four formula units, is optically biaxial positive and strongly pleochroic. Pentagonite, the dimorph, occurs as prismatic crystals twinned to form fivelings with a star shaped cross section. Also orthorhombic, it belongs to space group 12 Ccm21(C2v ), and has a unit cell with a=lO.298(4), b=13.999(7), and c=B.891(2) Angstroms, and also contains ··four formula units. The pentagonite crystals are optically very similar to cavansite, but are biaxially negative. The cell dimensions given tend to vary· to a small degree, presumably because of varying zeolitic water content. -
Rare Earth Element Potential of the Felsite Dykes of Phulan Area, Siwana Ring Complex, Rajasthan, India
SCIENTIFIC CORRESPONDENCE Rare earth element potential of the felsite dykes of Phulan area, Siwana Ring Complex, Rajasthan, India The global demand of rare earth elements (REE) is increasing at present due to their unique magnetic, high electrical and thermal conductance, fluorescent, chemi- cal properties and their uses in high- technology applications and in the quest for green energy. China, the largest pro- ducer of REE, has largely reduced its export since 2010. As a consequence, all the other countries in the world have in- tensified their search for REE to meet their demands. The present study may lead to enhancing the REE resources of India. The Neo-proterozoic Malani Igneous Suite occurring in western Rajasthan, west of the Aravalli Range, covering an area of 20,000 sq. km, is a favourable geological province for the search of REE and rare metals (RM)1,2 (S. Majum- dar; S. K. Rastogi and T. Mukherjee un- published). The well-studied Siwana Ring Complex (SRC), Rajasthan, India comprises bimodal volcanic sequence of basaltic and rhyolitic flows intruded by different phases of plutonic rocks like peralkaline granite, microgranite, felsite and aplite dykes, which are characterized by significant abundances of REE and RM (Figure 1). Earlier studies of SRC indicated 250 ppm Nb, 500 ppm La, Figure 1. Location map of the study area in Siwana Ring Complex, Barmer district, 700 ppm Y and greater than 1000 ppm Zr Rajasthan, India. on an average (S. Majumdar, unpub- lished). Anomalous concentrations of Rb, Ba, Sr, K, Zr, Nb, REE in granites and microgranites of SRC indicate the potentiality for RM and rare earth miner- alization1. -
1 Revision 2 1 Stability Field of the Cl-Rich Scapolite Marialite 2 3 Kaleo
1 Revision 2 2 Stability field of the Cl-rich scapolite marialite 3 4 Kaleo M. F. Almeida1,2* 5 David M. Jenkins1 6 7 8 1 Department of Geological Sciences and Environmental Studies 9 Binghamton University 10 Binghamton, NY, 13902 11 2 Present address: Department of Earth and Environmental Sciences, Rutgers University, 12 Newark, NJ 07102 13 14 *Corresponding author 15 16 17 1 18 Abstract 19 Scapolites are widespread rock-forming aluminosilicates, appearing in metasomatic and igneous 20 environments, and metamorphic terrains. Marialite (Na4Al3Si9O24Cl) is the Cl-rich end member 21 of the group. Even though Cl-rich scapolite is presumably stable over a wide range of pressure 22 and temperature, little is known about its stability field. Understanding Cl-rich scapolite 23 paragenesis is important since it can help identifying subsurface fluid flow, metamorphic and 24 isotopic equilibration. Due to its metasomatic nature Cl-rich scapolite is commonly reported in 25 economic ore deposits, hence it is of critical interest to the mineral resource industries who seek 26 to better understand processes contributing to mineralization. In this experimental study two 27 reactions were investigated. The first one was the anhydrous reaction of albite + halite to form 28 marialite (3NaAlSi3O8 + NaCl = Na4Al3Si9O24Cl (1)). The second reaction was the 29 hydrothermal equivalent described by H2O + Na4Al3Si9O24Cl = 3NaAlSi3O8 + liquid (2), where 30 the liquid is assumed to be a saline-rich hydrous-silicate melt. Experiments were performed 31 using a piston-cylinder press and internally heated gas vessels. The temperature and pressure 32 conditions range from 700-1050°C and 0.5-2.0 GPa, respectively. -
New Minerals Approved Bythe Ima Commission on New
NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI. -
Optical Properties of Common Rock-Forming Minerals
AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref. -
Cavansite Ca(V O)Si4o10 ² 4H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
4+ Cavansite Ca(V O)Si4O10 ² 4H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: As prismatic crystals, to 1 mm, elongated [001]; dominant forms 110 and 101 ; as spherulitic rosettes, to 5 mm. k f g f g Physical Properties: Cleavage: Good on 010 . Tenacity: Brittle. Hardness = 3{4 D(meas.) = 2.21{2.31 D(calc.) = 2.33 f g Optical Properties: Transparent. Color: Brilliant sky-blue to greenish blue. Luster: Vitreous. Optical Class: Biaxial (+). Pleochroism: Pronounced; X = Z = colorless; Y = blue. Orientation: X = b; Y = a; Z = c. Dispersion: r < v; extreme. ® = 1.542(2) ¯ = 1.544(2) ° = 1.551(2) 2V(meas.) = 52(2)± Cell Data: Space Group: P cmn: a = 9.792(2) b = 13.644(3) c = 9.629(2) Z = 4 X-ray Powder Pattern: Owyhee Dam, Oregon, USA. 7.964 (100), 6.854 (50), 6.132 (25), 3.930 (25), 3.420 (25), 2.779 (25), 4.531 (13) Chemistry: (1) (2) SiO2 49.4 53.24 VO2 17.1 18.38 CaO 11.5 12.42 H2O [21.0] 15.96 rem: 0.8 Total [99.8] 100.00 (1) Oregon; by XRF, H2O by estimation; actual H2O content established by structure analysis. (2) Ca(VO)Si4O10 ² 4H2O: Polymorphism & Series: Dimorphous with pentagonite. Occurrence: In a brown tu® partly ¯lling a fault ¯ssure (Lake Owyhee State Park, Oregon, USA); in a vesicular basalt and red tu® breccia, as cavity ¯llings and in calcite veinlets (Chapman quarry, Oregon, USA); in pores of altered basalt breccia and tu®aceous andesite (Poona district, India). -
The Crystal Structure of Emeleusite, a Novel Example of Sechser-Doppelkettc
Zeitschrift fUr Kr>istallographie, Bd. 147, S. 2!)7-306 (1978) @ by Akademische Verlagsgesellsehaft, \Viesbaden 1978 The crystal structure of emeleusite, a novel example of sechser-doppelkettc By OLE .JOH:>iSEX Geological Museum, Copenhagen University, Oster' Voldgade 5-7, DK. t:350 Copenhagen K and Kn{'f ~H;LSE:>i and I:\(jEH SO'l'OF'I'E Structural Chemistry Group, Chemistry Dept. B, DTH 301, The Technical University of Denmark, DK-2800 Lyngby (l{eeeived 20 March 1!)78) Abstract Emeleusite, ~a2LiFeTllSi601.5, is orthorhombic, space group Aearn with a = 10.072(3) A, b = 17.3:37(fJ) A and c = 14.004(3) A, Z = 8. X.ray data were collected on a four.eircle diffractometer to give 56:3 independent reflections with 1 :3(j (1). The structure was solved by means of Patterson technique followed by Fourier syntheses and refined by least squares to Rw c= 0.04:3. The Rtrueture consists of corrugated double silicate chains with a six tetra. hedral repeat (seehser doppelkette). The double silicate chaim; are linked by chains of Na(2) polyhedra and chains of alternating Li tetrahedra and Fe octahedra. Na( 1) is located on the mirror plane coordinated by nine oxygens. Emeleusite is isostructural with tuhualite, J':ektJ':erite and NazMgzSi6015, and more distantly related to the milarite group. Introduction Emeleusite, Na2LiFeIIISi6015, IS a new mineral occurring as a minor constituent of a per alkali trachyte dyke on 19d1utalik leland in Julianchib district of South Greenland (UPTON et al., 1978). It is orthorhombic, and euhedral crystals show the forms: {lOa} {OlO} {OOl} {110} {lOl} {all}. -
The Story of Cavansite
Northwest Micro Mineral Study Group MICRO PROBE FALL, 2008 VOLUME X, Number 8 FALL MEETING . .VANCOUVER, WASHINGTON November 8, 2008 9:00 am to 5:00 pm Clark County P. U. D. Building 1200 Fort Vancouver Way Vancouver, Washington Come find out what everyone has been up to this summer. Bring your microscopes and something for the free table to share with others. There will be plenty of room and ample time to check out all the new things that people have to brag about. We will have our usual brief business meeting in the afternoon, a discussion of future articles, and our update session on the status of localities. No guest speaker has been planned, but we will N be showing pictures of the new twins from Lemolo Lake, as well as of other choice pieces from the Northern California meeting in July. If you have digitals or slides of mineral specimens or collecting localities, this would be a perfect time to share them with the group. We will have projectors and a screen waiting. I5 The kitchen area is again available and we will plan on sharing lunch together. We will provide meat, cheese, bread, lettuce, tomatoes, mayo and mustard for sand-wiches as well as coffee, PUD Mill Plain Blvd. tea, cider, and cocoa. Members need to bring some sides, ie, salads, chips, desserts and anything else that they would like to have to Park Ft. Vancouver Way munch on. Washington In the evening, many of us plan to go to a local Interstate buffet restaurant, so please plan to join us if you Bridge Columbia River can.