C:\Temp\Tevis\Final Chum Burek Wordperfect 041002 1000.Wpd

Total Page:16

File Type:pdf, Size:1020Kb

C:\Temp\Tevis\Final Chum Burek Wordperfect 041002 1000.Wpd Alaska Fisheries Technical Report Number 60 Morbidity of Tagged Wild Adult Fall Chum Salmon Captured by Fish Wheel in the Yukon River, Alaska April 2002 Region 7 U.S. Fish and Wildlife Service ! Department of the Interior Morbidity of Tagged Wild Adult Fall Chum Salmon Captured by Fish Wheel in the Yukon River, Alaska Alaska Fisheries Technical Report Number 60 by Kathy Burek, D. V. M.1 and Tevis J. Underwood 2 Key words: fall chum salmon, Oncorhynchus keta, mortality, Yukon River, fish wheel, tag, necropsy, pathology, histopathology, condition factors, hematology, Loma salmonae, Icthyophonus hoferi, Parvicapsula sp, parasites 1 Alaska Veterinary Pathology Services, 23834 The Clearing Drive Eagle River, Alaska 99577 2 U.S. Fish and Wildlife Service, Fairbanks Fishery Resource Office 101 12th Ave., Box 17, Room 222, Fairbanks, Alaska, 99701 April 2002 Disclaimers The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the Federal government. The U.S. Department of the Interior prohibits discrimination in programs on the basis of race, color, national origin, religion, sex, age, or disability. If you believe that you have been discriminated against in any program, activity, or facility operated by the U.S. Fish and Wildlife Service or if you desire further information please write to: U.S. Department of the Interior Office for Equal Opportunity 1849 C. Street, NW Washington, D. C. 20240 This research was funded by the U. S. Fish and Wildlife Service under contract number 70181-8-M491 to Dr. Kathy Burek, Alaska Veterinary Pathology Services, 23834 The Clearing Drive, Eagle River, Alaska 99577 The correct citation for this report is: Burek, K., and T. J. Underwood. 2002. Morbidity of tagged wild adult fall chum salmon captured by fish wheel in the Yukon River, Alaska. U. S. Fish and Wildlife Service, Fairbanks Fishery Resource Office, Alaska Fisheries Technical Report Number 60, Fairbanks, Alaska. ii Abstract A mark-recapture study using fish wheels and spaghetti tags was conducted annually on migrating Yukon River chum salmon since 1996. A substantial decrease in the relative abundance of tagged fish was observed with increased distance upstream, potentially indicating excessive mortality of tagged fish. To evaluate causes of mortality and morbidity and describe histologic changes during migration, chum salmon were sampled and examined by full necropsies that included external lesions, weight, length, hematology, bacteriology, ELISA for bacterial kidney disease antigen, and semiquantitative histopathology. To assess body condition, Fulton’s condition factor, hepatosomatic and gonadosomatic, indices, were determined. None of these analyses indicated a definitive cause for mortality or morbidity specific to the tagged fish. Local damage at the tag site, higher neutrophil numbers, and lower total protein in tagged fish suggested further study into the possibility of infection as a cause of mortality associated with tagging. A single untagged fish had a systemic infection of Aeromonas salmonicida. These bacteriology results indicated that septicemia from tagging was not occurring during the interval examined. There was one weak positive for an antigen of the bacterial kidney disease agent indicating that this disease was not a significant factor in morbidity. Blood smears were negative for viral erythrocytic necrosis inclusion bodies. Lesions suggestive of other major infectious diseases were not evident. Lesions typical of these migrating salmon included somatic and gastrointestinal skeletal muscle degeneration, contraction band necrosis in the heart, fibrin thrombi in the heart and gills, apoptosis of the gastrointestinal epithelial cells, bone remodeling, ulcers, vacuolar change in the islets of Langerhans and zymogen granule depletion in the pancreas, and mesenteric fat atrophy. Parasites included Ichthyophonus hoferi, Loma salmonae in the gill and intra- arterial, an unidentified microsporidian in the kidney, a myxosporidian Parvicapsula sp. in the kidney and intestine, nematode larvae within the walls of the stomach and intestine, intestinal cestodes, and gastric trematodes. iii Table of Contents Abstract ................................................................. iii Table of Contents.......................................................... iv List of Tables..............................................................v List of Figures ............................................................ vi Introduction ...............................................................1 Study Area ................................................................1 Methods ..................................................................2 Capture Techniques...................................................2 Field and Laboratory Processing.........................................2 Data Analysis........................................................3 Results...................................................................4 Necropsy Findings....................................................4 Tag Site Gross and Histologic Features....................................5 Bacteriology ........................................................5 Bacterial Kidney Disease (BKD) ELISA ..................................5 Hematology.........................................................6 Histopathology ......................................................6 Discussion and Conclusions .................................................12 Acknowledgments .........................................................19 References ...............................................................20 iv List of Tables Table Page Table 1.— Grading systems of histologic lesions. ...............................23 Table 2.— External lesion scores. ...........................................30 Table 3.— Morphometrics results. ...........................................31 Table 4.— Hematology results. ..............................................32 Table 5.— Heart lesion results. ..............................................35 Table 6.— Liver lesion results. ...............................................37 Table 7.— Musculoskeletal system and subcutaneous tissue lesion results. ...........38 Table 8.— Spleen lesion results. .............................................39 Table 9.— Gill lesion results. ...............................................40 Table 10.— Gastrointestinal lesion results. .....................................41 Table 11.— Kidney lesion results. ............................................42 Table 12.— Pancreatic lesion results. ..........................................44 Table 13.— Parasite grading results. .........................................45 Table 14.— Ichthyophonus infected fish and organs affected in each (+ means present and - means absent). ......................................................47 v List of Figures Figure Page Figure 1.– Usual gross appearance of the tag site. ................................48 Figure 2.– Tag site with an ulcer at the base of the caudal aspect of the dorsal fin. ......48 Figure 3a.– Typical histologic appearance of the tag site. The continuity of the epithelium was disrupted and the tag tract was filled with necrotic debris, neutrophils and occasionally refractile material consistent with scale fragments. ............... 49 Figure 3b.– Irregularly shaped refractile material (large arrow) and necrotic debris present within the tag tract. ..................................................49 Figure 4.– Ulcer and SQ bacterial colonies from a fish with A. salmonicida cultured from the kidney (bar in insert = 20:m)...........................................49 Figure 5.– Zenker’s necrosis in the heart characterized by hypereosinophilia, and presence of dark transversely placed contraction bands. ............................49 Figure 6.– Fibrin thrombi and endocarditis. ....................................50 Figure 7.– Lymphocyte aggregates in the heart and mixed inflammatory cells in the epicardium. In the overview, there is a small aggregate of lymphocytes within the myocardium (arrow) and a sprinkling of mixed inflammatory cells within the epicardium..........................................................50 Figure 8.– Myocyte vacuolation. .............................................50 Figure 9.– A degenerated Ichthyophonus hoferi resting spore within the epicardium. It is surrounded by and infiltrated by neutrophils, macrophages and multinucleated giant cells. .............................................................50 Figure 10.– Typical features of the hepatocytes in the females (left side) versus the males (right side). ......................................................51 Figure 11.– Fibrin thrombi and apoptotic cells (arrow) in the secondary lamella ofthe gill. ..................................................................51 Figure 12a.– Microsporidia xenoma in gill tissue. ..................................................................51 vi Figure 12b.– Microsporidia xenoma in gill tissue with an immunohistochemical positive reaction to monoclonal antibody for Loma salmonae. .......................51 Figure 13a.– Intravascular Loma salmonae xenoma in the primary lamella (arrowhead) with a thrombus and vasculitis in the distal blood vessel (arrow). ..................52 Figure 13b.– Higher power view of the thrombus and associated neutrophilic vasculitis. 52 Figure 14.– Apoptosis of epithelial cells
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Fish Health Assessment of Glass Eels from Canadian Maritime Rivers
    Fish Health Assessment of Glass Eels from Canadian Maritime Rivers D. Groman, R. Threader, D. Wadowska, T. Maynard and L. Blimke Aquatic Diagnostic Services, Atlantic Veterinary College Ontario Power Generation Electron Microscopy Laboratory, Atlantic Veterinary College Kleinschimidt Associates Project Background Objective - Capture glass eels in NS/NB for stocking in Great Lakes Watershed Protocol - Transfer glass eels to quarantine Health Assessment ( G. L. F. H. C.) OTC Marking of glass eels Transfer and stocking ( Ontario & Quebec ) 1 Glass Eel / Elver Glass Eel Transport Bag 2 Glass Eel Acclimation and Transfer Boat Glass Eel Transfer 3 Glass Eel Stocking Glass Eel Stocking Data Number Purchase kg Price Stocking Stocking Number of Eels Mean Length Mean Mass Year Purchased (per kg) Date Location Stocked (mm) (g) Mallorytown 2006 102.07 $ 637 Oct. 12, 2006 166,7741 0.69 (n = 25) Landing Mallorytown 2007 151 $ 1,310 – $ 1,415 June 21, 2007 436,907 59.2 (n=49; ±0.5) Landing Mallorytown 0.17 May 15, 2008 797,475 60.9 (n=40; ±0.6) Landing (n=40; ±0.0006) 2008 370 $ 630 - $ 805 Mallorytown 0.14 May 29, 2008 518,358 60.4 (n=40; ±0.5) Landing (n=40; ±0.0004) June 11, 2008 Deseronto 685,728 56.5 (n=40; ±0.5) 0.14 (n=40; ±0.006) 651,521 June 2, 2009 Deseronto 59.14 (n=246; ±4.0) 0.18 (n=246; ±4.0) (±47,269) 2009 299 $ 630 Mallorytown 651,521 June 2, 2009 59.14 (n=246; ±4.0) 0.18 (n=246; ±0.04) Landing (±47,269) Estimated Total Number of Eels Stocked from 2006 - 2009 3,908,284 4 Health Assessment Objective - To screen subsamples of glass eel
    [Show full text]
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Group of Microorganisms at the Animal-Fungal Boundary
    16 Aug 2002 13:56 AR AR168-MI56-14.tex AR168-MI56-14.SGM LaTeX2e(2002/01/18) P1: GJC 10.1146/annurev.micro.56.012302.160950 Annu. Rev. Microbiol. 2002. 56:315–44 doi: 10.1146/annurev.micro.56.012302.160950 First published online as a Review in Advance on May 7, 2002 THE CLASS MESOMYCETOZOEA: A Heterogeneous Group of Microorganisms at the Animal-Fungal Boundary Leonel Mendoza,1 John W. Taylor,2 and Libero Ajello3 1Medical Technology Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing Michigan, 48824-1030; e-mail: [email protected] 2Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102; e-mail: [email protected] 3Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta Georgia 30333; e-mail: [email protected] Key Words Protista, Protozoa, Neomonada, DRIP, Ichthyosporea ■ Abstract When the enigmatic fish pathogen, the rosette agent, was first found to be closely related to the choanoflagellates, no one anticipated finding a new group of organisms. Subsequently, a new group of microorganisms at the boundary between an- imals and fungi was reported. Several microbes with similar phylogenetic backgrounds were soon added to the group. Interestingly, these microbes had been considered to be fungi or protists. This novel phylogenetic group has been referred to as the DRIP clade (an acronym of the original members: Dermocystidium, rosette agent, Ichthyophonus, and Psorospermium), as the class Ichthyosporea, and more recently as the class Mesomycetozoea. Two orders have been described in the mesomycetozoeans: the Der- mocystida and the Ichthyophonida. So far, all members in the order Dermocystida have been pathogens either of fish (Dermocystidium spp.
    [Show full text]
  • Report on the Workshop in Diagnosis of the Exotic Fish Diseases EHN and EUS and the 12Th Annual Meeting of the National Reference Laboratories for Fish Diseases
    Report on the Workshop in diagnosis of the exotic fish diseases EHN and EUS and the 12th Annual Meeting of the National Reference Laboratories for Fish Diseases Aarhus, Denmark June 17-20, 2008 Organised by the Community Reference Laboratory for Fish Diseases National Veterinary Institute, Technical University of Denmark Report from the 12th Annual Meeting of the National Reference Laboratories for fish diseases, 17-20 June 2008, Aarhus, Denmark Contents Introduction and short summary ............................................................................................................4 Programme .............................................................................................................................................5 Programme .............................................................................................................................................6 SESSION IA: Epizootic haematopoietic necrosis virus (EHNV)..........................................................9 Epizootic haematopoietic necrosis (EHN) disease – a review...........................................................9 Comparison of isolation procedures for ranavirus in fish organs. ...................................................10 How to detect EHNV and related ranaviruses using IHC and IFAT ..............................................11 Ranaviruses - Molecular detection and differentiation ....................................................................12 SESSION IB: Epizootic Ulcerative Syndrome (EUS).........................................................................13
    [Show full text]
  • Full Text in Pdf Format
    DISEASES OF AQUATIC ORGANISMS Vol. 34: 211-216,1998 Published November 30 Dis Aquat Org Occurrence of Loma cf. salmonae in brook, brown and rainbow trout from Buford Trout Hatchery, Georgia, USA Joel A. ad er', Emmett B. Shotts ~r~**,Walton L. Steffens3,Jiri ~om~ 'USDA, Agriculture Research Service, Fish Diseases and Parasites Research Laboratory, Auburn, Alabama 36830, USA 'National Fish Health Research Laboratory, Kearneysville. West Virginia 25430, USA 3Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens. Georgia 30601, USA 41nstitute of Parasitology, Czech Academy of Sciences. Ceske Bud6jovice. Czech Republic ABSTRACT During a 6 mo study of moribund trout from Buford hatchery, Buford, Georgia, USA, a Lon~acf. salmonae rnicrosporidian parasite was studied in the gills of brook trout Salvelinus fontinahs, brown trout Salmo trutta, and rainbow trout Oncorhynchus mykiss. This parasite was morphologically similar to L. salmonae and L, fontinalis but differed in spore size. Scanning and transmission electron microscopy demonstrated that xenomas were embedded in gill filaments. Transmission electron micro- graphs prepared from fresh tissue showed mature spores with 12 to 15 turns of their polar tube. Spore diameters for the Georgia strain from formalin-fixed gill tissues measured 3.5 (SD iO.l) by 1.8 (SD 20.1) pm. Electron micrographs of formalin-fixed, deparaffinized tissues of rainbow trout from Pennsylvania and West Virginia show spores with a diameter of 3.5 (k0.2)by 1.7 (k0.1) pm and 3.4 (i0.2)by 1.8 (iO.l) pm, respectively. Transmission electron micrographs of spores from Pennsylvania and West Virginia show that mature spores from both states hdd 13 to 15 turns of their polar tubes.
    [Show full text]
  • Parasitic Fauna of Sardinella Aurita Valenciennes, 1847 from Algerian Coast
    Zoology and Ecology, 2020, Volume 30, Number 1 Print ISSN: 2165-8005 Online ISSN: 2165-8013 https://doi.org/10.35513/21658005.2020.2.3 PARASITIC FAUNA OF SARDINELLA AURITA VALENCIENNES, 1847 FROM ALGERIAN COAST Souhila Ramdania*, Jean-Paul Trillesb and Zouhir Ramdanea aLaboratoire de la zoologie appliquée et de l’écophysiologie animale, université Abderrahmane Mira-Bejaia, Algérie; bUniversité de Montpellier, 34000 Montpellier, France *Corresponding author. Email: [email protected] Article history Abstract. The parasitic fauna of Sardinella aurita Valenciennes, 1847 from the Gulf of Bejaia (east- Received: 10 May 2020; ern coast of Algeria) was studied. The parasites collected from 400 host fish specimens, comprised accepted 18 August 2020 10 taxa including 6 species of Digenea, 1 species of Copepoda, 1 species of Nematoda, 1 larva of Cestoda and an unidentified Microsporidian species. The Nematoda Hysterothylacium sp. and the Keywords: Copepoda Clavellisa emarginata (Krøyer, 1873) are newly reported for S. aurita. The Digenean Parasites; Clupeidae fish; parasites were numerous, diverse and constituted the most dominant group (P = 33.63%). The Gulf of Bejaia checklist of all known parasite species collected from S. aurita in the Mediterranean Sea includes 13 species, among which eight are Digeneans. INTRODUCTION disease in commercially valuable fish (Yokoyama et al. 2002; Kent et al. 2014; Phelps et al. 2015; Mansour Sardinella aurita Valenciennes, 1847, is a small widely et al. 2016). distributed pelagic fish. It frequently occurs along the The aim of this study was to identify the parasitic fauna Algerian coastline as well as in Tunisia, Egypt, Greece infecting S. aurita from the eastern coast of Algeria, and and Sicily (Dieuzeide and Roland 1957; Kartas and to establish a checklist of all known parasite species Quignard 1976).
    [Show full text]
  • Canadian Aquaculture R&D Review 2015
    CANADIAN AQUACULTURE R&D REVIEW 2015 INSIDE › CAN FILTER-feeding bivALVES INGEST PLANKTONIC SEA LICE, LEADING TO REDUCED SEA LICE NUMBERS ON CULTIVATED SALMON? › DEVELOPMENT OF TECHNIQUES TO PROMOTE THE SURVIVAL AND GROWTH OF WALLEYE (SANDER VITREUS) larVAE IN INTENSIVE CULTURE › ANALYSIS OF THE INCIDENCE OF ATLANTIC SALMON DEFORMITIES IN PRODUCtion – envirONMENTAL OR GENETIcs? › PREDICTIVE MODELING FOR PARALYTIC SHELLFISH POISONING IN BAYNES SOUND, BC AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICAtion 24 Canadian Aquaculture R&D Review 2015 AAC Special Publication #24 ISBN: 978-0-9881415-5-1 © 2015 Aquaculture Association of Canada Cover Photo (Front): Juvenile California Sea Cucumber, Parastichopus californicus, perched on an oyster clump amid a forest of oyster culture strings (Photo courtesy of Dan Curtis – DFO) Photo Inside Cover (Front): New Brunswick aquaculture site (Photo: DFO) Photo Cover (Back): Shutterstock Photo Inside Cover (Back): Rainbow Trout hatchlings, New Dundee Ontario (Photo: DFO) The Canadian Aquaculture R&D Review 2015 has been published with support provided by Fisheries and Oceans Canada’s Aquaculture Collaborative Research and Development Program (ACRDP) and the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Dan McPhee, Tara Donaghy, Johannie Duhaime, and G. Jay Parsons Cited as: D McPhee, T Donaghy, J Duhaime, and GJ Parsons (eds). Canadian Aquaculture R&D Review 2015. Aquaculture Association of Canada Special Publication 24 (2015) CANADIAN AQUACULTURE R&D REVIEw 2015 TABLE OF CONTENTS ❙ FINFISH: FRESHWATER .................................... 3 ❙ FINFISH: SALMON ........................................... 15 ❙ SEA LICE ..............................................................28 ❙ FISH HEALTH .....................................................38 ❙ ENVIRONMENTAL INTERACTIONS .......
    [Show full text]
  • D070p001.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine.
    [Show full text]
  • Utrastructural and Molecular Description of a Microsporidia
    Ultrastructure and phylogeny of a microsporidian parasite infecting the big-scale sand smelt, Atherina boyeri Risso, 1810 in the Minho River, Portugal Marília Catarina dos Santos Margato Dissertation for Master in Marine Sciences and Marine Resources – Marine Biology and Ecology 2014 MARÍLIA CATARINA DOS SANTOS MARGATO Ultrastructure and phylogeny of a microsporidian parasite infecting the big-scale sand smelt, Atherina boyeri Risso, 1810 in the Minho River, Portugal Dissertation for Master’s degree in Marine Sciences and Marine Resources – Marine Biology and Ecology submitted to the Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal Supervisor – Doctor Carlos Azevedo Category – “Professor Catedrático Jubilado” Affiliation – Institute of Biomedical Sciences Abel Salazar, University of Porto Co-supervisor – Sónia Raquel Oliveira Rocha Category – Doctoral Student Affiliation – Institute of Biomedical Sciences Abel Salazar, University of Porto Agradecimentos A execução e entrega desta tese só foi possível com a ajuda e colaboração prestada por várias pessoas. A quem quero expressar os meus sinceros agradecimentos pelo apoio e motivação, nomeadamente: aos meus orientadores, Professor Doutor Carlos Azevedo e Sónia Rocha, pelos conselhos, dicas e enorme colaboração e orientação neste trabalho, sem os quais não seria possível a sua execução, à Doutora Graça Casal que, pelo trabalho desenvolvido neste filo, deu uma assistência imprescindível para o desenvolvimento desta tese, às técnicas Ângela Alves e Elsa Oliveira
    [Show full text]
  • Innate Susceptibility Differences in Chinook Salmon Oncorhynchus Tshawytscha to Loma Salmonae (Microsporidia)
    DISEASES OF AQUATIC ORGANISMS Vol. 43: 49–53, 2000 Published October 25 Dis Aquat Org Innate susceptibility differences in chinook salmon Oncorhynchus tshawytscha to Loma salmonae (Microsporidia) R. W. Shaw1,*, M. L. Kent2, M. L. Adamson3 1#9 26520 Twp Rd 512, Spruce Grove, Alberta T7Y 1G1, Canada 2Center for Salmon Disease Research, 220 Nash Hall, Oregon State University, Corvallis, Oregon 937331-3804, USA 3Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Loma salmonae (Putz, Hoffman and Dunbar, 1965) Morrison & Sprague, 1981 (Micro- sporidia) is an important gill pathogen of Pacific salmon Oncorhynchus spp. in the Pacific Northwest. Three strains of chinook salmon O. tshawytscha were infected in 2 trials with L. salmonae by feeding of macerated infected gill tissue or per os as a gill tissue slurry. Intensity of infection was significantly higher in the Northern stream (NS) strain as compared to the Southern coastal (SC) and a hybrid (H) strain derived from these 2 strains. Both wet mount and histological enumeration of intensity of infec- tion demonstrated strain differences. Survival in the NS strain was significantly lower than the other strains. The NS strain may represent a naive strain and be less able to mount an effective immune response against the parasite. KEY WORDS: Loma salmonae · Microsporidia · Innate susceptibility Resale or republication not permitted without written consent of the publisher INTRODUCTION alimentary canal a L. salmonae spore is stimulated to extrude a polar filament which pierces a host cell, Loma salmonae (Putz, Hoffman and Dunbar, 1965) injecting the infective sporoplasm.
    [Show full text]