FROM the GROUNDUP September 2004 CAPABILITIES BROCHURE

Total Page:16

File Type:pdf, Size:1020Kb

FROM the GROUNDUP September 2004 CAPABILITIES BROCHURE Vought Aircraft Industries, Inc. www.voughtaircraft.com INTEGRATED AEROSTRUCTURES FROM THE GROUNDUP September 2004 CAPABILITIES BROCHURE Airbus A330/A340 In 1988, we became the Boeing 747 We’ve built panels for the main first major U.S. structural assemblies supplier to fuselage, doors and the empennage section for more Airbus with the award of wing components for than 1,350 Boeing 747 aircraft since the program the A330/A340 long-range aircraft. Deliveries began in 1968. began in 1990, exceeding the 500 shipset mark in 2002. 2 PROVEN Lockheed Martin C-130J Hercules Northrop Grumman B-2 Spirit Our company has delivered more than 2,200 We were one of three team members on the empennage sections to Lockheed Martin B-2 program, with responsibility for more since becoming a supplier on the C-130 structure than any other team member. program in the 1950s. Through our heritage companies, we have been a premier supplier to the aerospace industry for nearly nine decades. Vought is a proven leader in providing aerostructures of superior quality to our customers. We’ve helped shape many major aircraft programs over the years – from small business jets to jumbo airplanes, and tactical fighters to cargo aircraft. From the ground up, Vought creates quality structures that help our customers take flight. 3 Boeing C-17 Globemaster III Robotic Tack Cell Machine We have consistently driven down the price of the Our new robotic tack cell transforms a six-step C-17 components we build through continuous process into a single operation. The six-axis producibility improvements. Cost reduction robot carries out pre-programmed tack fastener initiatives included the redesign of the engine installation and spray dot application on various nacelles and horizontal tail. skin panel assemblies. 4 INNOVATIVE Lockheed Martin C-5 Galaxy Boeing Dreamliner As the only independent For the C-5 Galaxy, Vought converted legacy 2-D U.S.-based structures supplier on the Dreamliner drawings to a 3-D database, resulting in a digital design team, we are researching and developing new package being used to build new wing flaps, designs, materials and manufacturing slats and elevators. The outcome: improved fit processes for this airplane program. and longevity for these parts. At Vought, we help redefine the way aerostructures are made by incorporating technology and creative solutions in every aspect of our business. A fundamental differentiator at Vought is our ability to form and lead “enterprise” teams. We collaborate with premier suppliers to offer exactly what customers need for a specific program. Together, we help solve the technological and business challenges our customers face. From the ground up, Vought finds innovative ways to get the job done. 5 Airbus Wings We’ve delivered more than 1,000 Boeing Technologies To support sets of wing components to Airbus for the A320 and Boeing’s new commercial airplane program, the A330/A340 families of aircraft. The company’s Vought established an Enterprise Team of work on these Airbus products fostered technical world-class companies with superior technical innovations in manufacturing, such as automated capabilities to help develop an integrated drill cells for composites. solution for the Dreamliner. 6 PARTNER Market Risk Sharing Under a revenue- Global Supply Management and risk-sharing agreement with Gulfstream Vought is recognized as an industry leader in Aerospace Corporation, Vought builds the strategic sourcing and market access. Our integrated wing for the G550 and G500 network of global suppliers is supported with ultra-long-range business jets. e-commerce capabilities, supplier development and a preferred supplier certification program. Vought excels as a support partner to prime manufacturers of commercial and military aircraft. We’re at our best when we’re part of the team at its inception, contributing to all aspects of the airplane design and development. Our established global supplier network enables competitive pricing and support of our customers’ foreign sales objectives. As an independent company, we also have the ability to invest in our customers’ products when there’s a business case to do so. From the ground up, Vought aims to be the partner of choice to the world’s prime aircraft manufacturers. 7 WE ARE We are a team of innovative thinkers and exceptional performers with a shared vision. We are an expanded team that includes world-class employees, suppliers and customers in defining solutions. We have a proven track record of designing and manufacturing aerostructures of superior quality and value for military and commercial use worldwide. We apply leading-edge technology to our manufacturing and business solutions. We focus on providing our industry partners with a competitive advantage in every aspect of their business. We are proud of our rich heritage and enthusiastic about our future within the aerospace industry. We are Vought. 8 A TEAM 9 WE CREATE integrated aerostructures, from the ground up. KEY CAPABILITIES Our business is designing and manufacturing major integrated aerostructures. We excel at large-scale component integration — for wings, empennages, fuselages and other aircraft structures. Vought has progressively moved up the value chain — assuming a greater work scope for our customers than traditional build-to-print suppliers. Our investments in the company, from employee training programs to automated machinery, have positioned us well for future growth. Whether it’s design, tooling, machines, materials selection or assembly processes — we’ll work to redefine the way structures are made for our customers. Our work often includes the design and delivery of complete, fully integrated or “stuffed” aircraft structures with electrical harnesses, hydraulic lines and power supplies — installed and ready to join with the adjacent structures and systems. 10 INDEPENDENT RESEARCH AND DEVELOPMENT Vought conducts independent research and development to enhance our customers’ products. We’re making focused investments in build package development and manufacturing technology to achieve the most cost-effective airframe products. Vought also is investing in streamlined processes to manufacture prototype or small-quantity products for initiatives that demonstrate concept feasibility or have limited production. Vought is participating with prime aircraft manufacturers to invent aerospace products that will emerge in the next decade. This includes advanced assembly techniques such as friction-stir joining and advanced structural adhesives, as well as developing large, integrated composite structures. We are analyzing high- temperature structures to support higher speed airplanes and spacecraft. And we’re studying more fully integrated structures with embedded antennas and combined loadings. 11 DESIGN AND TOOLING We become part of our customer’s design team, maintaining a proficiency in all of the latest model-based definition design and analysis software. As an alternative, our extensive experience in product data definition translation gives us the ability to support customers using other computer-aided design software packages. Our primary design focus is always on producibility. We design it, so that we can build it for our customer. Vought has a complete tool box for new product development. We use digital mockup tools to validate “manufacturability” and advanced tooling concepts, including fixtureless, digitally determinant assembly and laser alignment of large, integrated structures. In addition, we have unique engineering expertise on legacy programs to convert from conventional drawings to determinant assembly. 12 MANUFACTURING Our efforts are focused on the delivery of quality, market-priced structures. We are enhancing our operations with new machines and processes that speed production and improve efficiencies. Vought engages the industry’s best fabrication and machining companies to help define new manufacturing technologies and tools. We see this as an imperative investment, augmenting our expenditures in the best assembly capabilities. As a world-class assembly operation, we provide automated fastening and digitally determinant assembly of large structures. Vought has complete in-house capabilities to support machining, sheet metal fabrication, bonding, processing and painting. 13 TESTING We have on-site systems test labs to validate all installations so that our structures are delivered to customers ready for final assembly. Our competency is backed by more than 60 years of experience in aircraft systems design, installation and testing. These capabilities are available to the rest of the industry for independent testing as well. In fact, we have one of the few facilities in the United States that can test full-scale aircraft for carrier landings. Vought will leverage this expertise on newly developed programs — conducting a variety of static, durability and drop tests for our customers. 14 OUR GOAL is to be an integral part of our customers’ design and manufacturing teams. Throughout the development process, we work to understand each customer’s distinct set of requirements. We’ll design, manufacture and deliver large, fully integrated structures, ready for our customer’s final assembly. Continuous improvement is part of our corporate culture. We leverage robust, repeatable processes with an experienced workforce to ensure first-time quality in every aspect of our business. That is why we’ve taken a leadership role in creating the quality specifications that guide our industry. VOUGHT MAKES THE
Recommended publications
  • Remote Pilot – Small Unmanned Aircraft Systems Study Guide
    F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................
    [Show full text]
  • Easy Access Rules for Auxiliary Power Units (CS-APU)
    APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document.
    [Show full text]
  • Wing-Folding Mechanism of the Grumman Wildcat
    WING-FOLDING MECHANISM OF THE GRUMMAN WILDCAT An American Society of Mechanical Engineers Historic Mechanical Engineering Landmark DESIGNATION CEREMONY AT THE KALAMAZOO AVIATION HISTORY MUSEUM KALAMAZOO, MICHIGAN May 15, 2006 A Mechanical Engineering Landmark The innovative wing folding mechanism (STO-Wing), developed by Leroy Grumman in early 1941 and first applied to the XF4F-4 Wildcat, manufactured by the Grumman Aircraft Engineering Corporation, is designated an ASME Historic Mechanical Engineering Landmark. (See Plaque text on page 6) Grumman People Three friends were the principal founders of the Grumman Aircraft Engineering Corporation (Now known as Northrop Grumman Corporation), in January 1930, in a garage in Baldwin, Long Island, New York. (See photo of Leon Swirbul, William Schwendler, and Leroy Grumman on page 7) Leroy Randle (Roy) Grumman (1895-1982) earned a Bachelor of Science degree in mechanical engineering from Cornell University in 1916. He then joined the U. S. Navy and earned his pilot’s license in 1918. He was later the Managing Director of Loening Engineering Corporation, but when Loening merged with Keystone Aircraft Corporation, he and two of his friends left Loening and started their own firm — Grumman Aircraft Engineering Corporation. William T. Schwendler (1904-1978) earned a Bachelor of Science degree in mechanical engineering from New York University in 1924. He was reluctant to leave Long Island, so he chose to join Grumman and Swirbul in forming the new company. Leon A. (Jake) Swirbul (1898-1960) studied two years at Cornell University but then left to join the U.S. Marine Corps. Instrumental in the founding and early growth of Grumman, he soon became its president.
    [Show full text]
  • Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering Mcgil
    Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering McGill University, Montreal August 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering ACKNOWLEDGEMENTS I would like to thank my supervisor, Prof. Michael Kokkolaras, for his support and guidance throughout my time as his student. I am honored to have worked along a supervisor that always helped me in my work and even my personal life. I am grateful to members of Bombardier’s Advanced Product Development department for their insights on aircraft design and optimization. Special acknowledgment is given to the Thermodynamics department at Bombardier Product Development Engineering, namely Sebastien Beaulac, Hongzhi Wang, Jean-Francois Reis, and Emmanuel Germaine, who provided expertise that greatly assisted this research. I would also like to thank Jean Brousseau for sharing his knowledge on air systems design. I am very grateful to John Ferneley, Susan Liscouët-Hanke, Pat Piperni, and Fassi Kafyeke who were supportive of my career goals and provided me the means to pursue these goals. Finally, I am grateful to my friends and family for their constant support and encouragement throughout the ups and downs of my studies. ABSTRACT The strong interactions between aircraft and air systems necessitate the integration of the latter to multidisciplinary design optimization (MDO) considerations of the former. This research presents such a methodology considering environmental control and ice protection systems. These systems consume pressurized bleed air from the aircraft’s engines to perform their respective functions. We first describe the models used to predict the behavior of these systems and then propose different approaches to their integration into an existing aircraft MDO environment.
    [Show full text]
  • The Years of Change
    The Years of Change In early January of 1993 all the B-2 structural tests were successfully completed. The static load tests were taken to failure to 161% of maximum stress, and the durability test completed more than 2 lifetimes, which represented 20,000 design flight hours. January 1993 confidence was high for the $4-billion PAMPA Program as the company prepared to complete its first flight evaluation aircraft. However, the realities of the “post-cold war” era forced management to gear up for a tough year as the battle of the defense budget continued in Washington. The ailing commercial aviation industry presented additional challenges for the company. Boeing cut production on all their programs, and 1993 looked very gloomy. The company announced plans for down-sizing up to 1,500 people by the end of the year. Vought president Gordon Williams streamlined the management team to help the company ride out the business downturn, and still continue to meet its customer requirements. He stated that “business will be smaller but stronger.” In March 1993 Vought shipped its last engine nacelle for the Canadair business jet while continuing production on the regional jet nacelles. The 500th horizontal stabilizer for the Boeing 767 was shipped during March, and 141 employees elected to retire. In the meantime, Loral Corporation formed a new missiles group by combining Loral Vought Systems and Loral Aeronutronic during the month. At the end of April, 104 employees elected to retire. McDonnell Douglas certified Vought’s business processes in early May, which was another milestone on the way to becoming a preferred supplier for McDonnell Douglas.
    [Show full text]
  • Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges
    Paper ID #11232 Systems Engineering Approach in Aircraft Design Education; Techniques and Challenges Prof. Mohammad Sadraey, Daniel Webster College Mohammad H. Sadraey is an Associate Professor in the Engineering School at the Daniel Webster Col- lege, Nashua, New Hampshire, USA. Dr. Sadraey’s main research interests are in aircraft design tech- niques, and design and automatic control of unmanned aircraft. He received his MSc. in Aerospace Engineering in 1995 from RMIT, Melbourne, Australia, and his Ph.D. in Aerospace Engineering from the University of Kansas, Kansas, USA. Dr. Sadraey is a senior member of the American Institute of Aeronautics and Astronautics (AIAA), and a member of American Society for Engineering Education (ASEE). Prof. Nicholas Bertozzi, Daniel Webster College Nick Bertozzi is a Professor of Engineering at Daniel Webster College (DWC) and Dean of the School of Engineering and Computer Science (SECS). His major interest over the past 18 years has been the concurrent engineering design process, an interest that was fanned into flame by attending an NSF faculty development workshop in 1996 led by Ron Barr and Davor Juricic. Nick has a particular interest in help- ing engineering students develop good communications skills and has made this a SECS priority. Over the past ten years he and other engineering and humanities faculty colleagues have mentored a number of undergraduate student teams who have co-authored and presented papers and posters at Engineering Design Graphics Division (EDGD) and other ASEE, CDIO (www.cdio.org), and American Institute of Aeronautics and Astronautics (AIAA) meetings as well. Nick was delighted to serve as the EDGD pro- gram chair for the 2008 ASEE Summer Conference and as program co-chair with Kathy Holliday-Darr for the 68th EDGD Midyear meeting at WPI in October 2013.
    [Show full text]
  • Aviation Activity Forecasts BOWERS FIELD AIRPORT AIRPORT MASTER PLAN
    Chapter 3 – Aviation Activity Forecasts BOWERS FIELD AIRPORT AIRPORT MASTER PLAN Chapter 3 – Aviation Activity Forecasts The overall goal of aviation activity forecasting is to prepare forecasts that accurately reflect current conditions, relevant historic trends, and provide reasonable projections of future activity, which can be translated into specific airport facility needs anticipated during the next twenty years and beyond. Introduction This chapter provides updated forecasts of aviation activity for Kittitas County Airport – Bowers Field (ELN) for the twenty-year master plan horizon (2015-2035). The most recent FAA-approved aviation activity forecasts for Bowers Field were prepared in 2011 for the Airfield Needs Assessment project. Those forecasts evaluated changes in local conditions and activity that occurred since the previous master plan forecasts were prepared in 2000, and re-established base line conditions. The Needs Assessment forecasts provide the “accepted” airport-specific projections that are most relevant for comparison with the new master plan forecasts prepared for this chapter. The forecasts presented in this chapter are consistent with Bowers Field’s current and historic role as a community/regional general aviation airport. Bowers Field is the only airport in Kittitas County capable of accommodating a full range of general aviation activity, including business class turboprops and business jets. This level of capability expands the airport’s role to serve the entire county and the local Ellensburg community. The intent is to provide an updated set of aviation demand projections for Bowers Field that will permit airport management to make the decisions necessary to maintain a viable, efficient, and cost-effective facility that meets the area’s air transportation needs.
    [Show full text]
  • Northrop XFT
    Was Sie schon immer mal wissen wollten – oder die letzten Geheimnisse der Luftfahrt Eine lose Folge von Dokumentationen vom Luftfahrtmuseum Hannover-Laatzen Stand Winter 2017 - Seite 1 Diese Dokumentationen werden Interessenten auf Wunsch zur Verfügung gestellt und erscheinen in einer losen Folge von Zeiträumen.Compiled and edited by Johannes Wehrmann 2017 Source of Details “Bredow-web.de”,“Das Flugzeug-Archiv”,FliegerWeb, Wikipedia Northrop XFT AIC = 1.011.1710.40.10 Die Northrop XFT war ein amerikanisches Kampfflugzeug der 1930er Jahre. Ein einmotoriger Tiefdecker wurde entworfen und gebaut, um einen Auftrag der United States Navy für einen fortschrittlichen Trägerjäger zu erfüllen. Es zeigte eine schlechte Flugleistung und wurde von der Navy zurückgewiesen, wobei der einzelne Prototyp bei einem Unfall verloren ging. Eine Variante, die Northrop 3A, war ebenfalls nicht erfolgreich. Entwicklung und Design In den frühen 1930er Jahren war die United States Navy daran interessiert, die Verwendung moderner Eindecker als Kampfflugzeuge zu untersuchen, um die Doppeldecker zu ersetzen, die ihre Jagdstaffeln ausrüsteten. Im Dezember 1932 bestellte er den XF7B von Boeing, und aufgrund der beeindruckenden Leistung von Northrops Gamma und Delta, die beide Blecheindecker be- tonten, erhielt Northrop am 8. Mai 1933 einen Auftrag für einen einzelnen Prototyp, genannt XFT-1 Das resultierende Flugzeug, das von einem Team um Ed Heinemann entworfen wurde, ähnelte einem verkleinerten Northrop Delta. Es handelte sich um einen Tiefdecker mit einer Konstruktion aus Metall, die ausschließlich aus Metall bestand. Es hatte ein festes Spornraduntergestell, dessen Hauptrad mit stromlinienartigen Hosenverkleidungen versehen war. Der Pilot saß in einem ge- schlossenen Cockpit mit einem Schiebedach. Es wurde von einem einzigen Wright R-1510 Sternmotor angetrieben.
    [Show full text]
  • Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
    AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft
    [Show full text]
  • Atkron 12 Newsletter
    ATKRON 12 NEWSLETTER PUBLISHED BY THE SQUADRON LINEAGE 1946 VBF - 4 VA-12 REUNION ASSOCIATION 1946 VF - 2A See CONTACT INFO Page 4 1948 VF-12 1955 VA-12 ALL ARE WELCOME TO VISIT THE WORLD FAMOUS FLYING UBANGIS AT OUR WEBSITE WWW.VA12.COM Volume XIV, Issue 1 April 2015 A4D-2 Skyhawk at MCAS Yuma, 1959 VA-12 IN 1955 2015 REUNION Page 2 NEWSLETTER NOTES 2 TREASURY REPORT 2 UBANGI? CUTLASS RECOLLECTIONS 2 MY FIRST NIGHT HOP 5 VA-12 THE SECOND TIME AROUND 5 UBETCHA! ON THE COVER 6 PICTURE PAGES 7, 8 VA-12 Newsletter 1 2015 REUNION NEWS & NOTES ATTENTION! Yes, there will be a reunion. I know I scared Please, please, please send in your registration some of you with my email regarding the low form and $ before 3/8/15. The banquet requires turn out a few weeks ago. Since that time 30 days notice on the number of attendees. I several more of you have signed up. Not as know I shouldn’t have to say this, but local many as I expected for a Florida location, but people, please don’t plan on just dropping by. enough to still hold the event. The planned No walk-ons. itinerary is as follows. TREASURY REPORT Thursday Apr 9 Arrive Cocoa Beach, Ice Breaker 1700 Previous Balance $647.91 Dues/Reunion fees 1,572.00 Friday Apr 10 Air Boat Ride Christmas, FL interest .05 Saturday Apr 11 Valiant Air Museum, Titusville SUB TOTAL $2,219.96 Day trip *Stamps 100.34 Reunion Banquet 1900 *Printing 235.01 Sunday Apr 12 Kennedy Space Center CURRENT EXPENSES 335.35 NEW BALANCE $1,864.61 REGISTERED ATTENDEES as of 2/17/15 NEWSLETTER NOTES Jerry & Doni Barnett (Repeated from the last issue!) Lynn & Ruth Card Joe & Carol Cassel John Larch and I have decided to reduce the Bill & Faith Doody number of Newsletters that we will create each Rod & Sara Dunlap year.
    [Show full text]
  • 18842020.Pdf
    SP’s AN SP GUIDE PUBLICATION 100.00 (INDIA-BASED BUYER ONLY) BUYER 100.00 (INDIA-BASED ` aviationSHARP CONTENT FOR A SHARP AUDIENCE www.sps-aviation.com VOL 23 ISSUE 4 • 2020 OEMs’ MERGER COVID-19 RAYTHEON & UTC COME THE INDIAN AIR FORCE TOGETHER TO CREATE RESPONSE RAYTHEON TECHNOLOGIES BUSINESS AVIATION & WAY FOWARD MRO FUTURE OF INDIA’S AIRLINE INDUSTRY BUSINESS: CURRENT SCENARIO AIRCRAFT SANITISING IN INDIA TECHNIQUES TAXATION: LAST WORD FINALLY – BOOST AIRLINE INDUSTRY FOR INDUSTRY IN DISTRESS ONE-ON-ONE NOT JUST VIP JET’S UNIQUE LEVEL OF RECONFIGURATION BUT PAGE 11 MUCHLUFTHANSA TECHNIK, CELEBRATING MORE ITS 25TH YEAR IN 2020, RNI NUMBER: DELENG/2008/24199 OFFERS RELIABLE SERVICE AND FULFILMENT FLYING INTO TOMORROW As we complete yet another milestone in our journey, we take a moment to thank all our customers, partners, and employees who supported us in becoming what we are today: the world’s most acknowledged MRO provider. PUBLISHER AND EDITOR-IN-CHIEF Jayant Baranwal SENIOR EDITOR Air Marshal B.K. Pandey (Retd) TABLE OF CONTENTS DEPUTY MANAGING EDITOR Neetu Dhulia SENIOR TECHNICAL GROUP EDITOR Lt General Naresh Chand (Retd) GROUP EXECUTIVE EDITOR AN SP GUIDE PUBLICATION Vishal Thapar SP’s STAFF CORRESPONDENT Ayushee Chaudhary 100.00 (INDIA-BASED BUYER ONLY) BUYER 100.00 (INDIA-BASED ` aviationSHARP CONTENT FOR A SHARP AUDIENCE CONTRIBUTORS www.sps-aviation.com VOL 23 ISSUE 4 • 2020 India: Air Chief Marshal F.H. Major (Retd), OEMs’ MERGER COVID-19 VOL 23 ISSUE 4 • 2020 RAYTHEON & UTC COME THE INDIAN AIR FORCE Satyendra Pandey,
    [Show full text]
  • Aviation Facility Requirements Chapter Four Port of Portland
    PORT OF PORTLAND Chapter Four AVIATION FACILITY REQUIREMENTS CHAPTER FOUR PORT OF PORTLAND AVIATIONAVIATION FACILITYFACILITY REQUIREMENTSREQUIREMENTS In this chapter, existing components of the airport are evaluated to identify the capacities of the overall system. Once identified, the existing capacity is compared to the forecast activity levels prepared in Chapter Three to determine where deficiencies currently exist, or may be expected to materialize in the future. Once deficiencies in a component are identified, a more specific determination of the approximate sizing and timing of the new facilities can be made. The objective of this effort is to identify, in general terms, the adequacy of the existing airport facilities and outline what new facilities may be needed and when they may be needed to accommodate forecast demands. Having established these facility requirements, alternatives for providing these facilities will be evaluated in Chapter Five to determine the most cost- effective and efficient means for implementation. As stated previously, the Hillsboro Airport Master Plan covers a 20-year period through 2025. The base year used for starting the forecasting effort and in turn the capacity analysis is the year 2003. The first year for implementation of Master Plan recommendations is expected to be 2006, which will be the beginning of the Short Term Planning Horizon. The Short Term Planning Horizon covers the first five years of the 20-year planning period (2006-2010). The Intermediate Term Planning Horizon encompasses the next five years (2011 4-1 through 2015). The Long Term Plan- schedule of planned improvements ning Horizon would correlate to the provides flexibility in development final 10 years of the planning period since development schedules can be (2016 through 2025).
    [Show full text]