Variations in the Airfoil Trace the History of Flight

Total Page:16

File Type:pdf, Size:1020Kb

Variations in the Airfoil Trace the History of Flight Variations in the airfoil trace the history of flight. By Walter J. Boyne INGS have always captured the wing, or the elimination of all or W human imagination. The my- part of the wing. thology of flight is found in every culture. Despite this fascination, it Aerodynamic Magic was not until the nineteenth century Since the late 1940s, aerodynamic that scientists began to use precise progress has accelerated at an ever mathematics to compute the opti- greater rate, so much so that modern mum size and shape of wings for a engineering methods and materials flying machine. have combined with new require- Orville and Wilbur Wright did it ments to create totally new wing best with their 1903 Flyer, forcing configurations. Now, elaborate high- competitors to try wings of all shapes, lift devices are tucked into wing lead- styles, and dimensions to avoid in- ing and trailing edges to deploy dur- fringing on their patents. Some went ing the approach to landing, with the to multiple wings—triplanes, quadra- slats and flaps folding out like hand- planes, and more. Others altered the kerchiefs from a magician's sleeve. shape of wings to sweptback, tan- Some by-products have become dem, joined, and cruciform. perhaps too sophisticated. Where Most of the results were too inef- the thick wing of a Douglas C-47 ficient to fly; some were capable of "Gooney Bird" would let you plow generating just enough lift to stag- through cold, wet clouds forever, ger through the air if coupled with a shaking off the ice buildup with sufficiently powerful engine, and a pneumatic boots, some modern air- very few were both stable and effi- foils—as on the Aerospatiale/Alenia cient. ATR-42—have become so efficient At least since the Greeks crafted the Some concepts were diametrically that even a small buildup of ice myth of Icarus (depicted here in an opposed—very low aspect ratio (the becomes a deadly hazard. eighteenth century woodcut), man has dreamt of taking wing. That ratio of span to chord) vs. high as- On the other hand, the increased dream was realized in 1903 by the pect ratio, or a pure wing form vs. a sophistication has occasionally per- Wright brothers and is carried on lifting body—yet success was some- mitted a return to some of the ideas today in the B-2, the most successful times found at either end of the spec- put forward by earlier inventors but flying-wing design ever. trum. not realized at the time for technical, From the 1920s through the 1940s, mechanical, or even political, rea- advances in aeronautical engineer- sons. Thus, the unsuccessful tandem ing resulted in much stronger, more wing design of Samuel Pierpont complex wings using now familiar Langley was reprised through the high-lift devices and modern airfoils. years, first by the French Albessard Nonetheless, variations in span, in- "Tri-avion" and Arsenal-Delanne 10 cidence, and geometry persisted. For fighter, and most recently by Burt some, the ultimate goal became the Rutan with his Advanced Technol- elimination of all surfaces except ogy Tactical Transport. 74 AIR FORCE Magazine / October 1996 trolled flights around its home field at Cicero, Ill. Flying Flapjacks In later years, there were dozens of attempts to obtain the high lift be- lieved to be inherent in low-aspect- ratio aircraft. Some of the most suc- cessful of these were designed by Charles H. Zimmerman, who en- hanced the low-aspect-ratio concept by directing the airflow from very large propellers over the entire wing surface in the 1942 Vought V-173 "Flying Pancake." The V-173 was flown successfully by Boone T. Guyton, Charles A. Lind- bergh, and Najeeb E. Halaby, among others, and was developed into the wicked-looking Vought XF5U-1, a In a similar way, the greatest come- i back has been that of the flying wing, hoen Sc t Ar well expressed by the Wrights in tesy their 1901 glider and found now on r the flight line at Whiteman AFB, cou Mo., in the superlative form of the to Northrop Grumman B-2 bomber. Pho The Wrights went on to attach el- evators and rudders but maintained their strongly braced biplane wings. This combination of wings was a masterpiece of design, with a bal- ance of span, chord, and gap that was imitated by myriad other de- signers. Coupled with their insight into the need for three-axis control, the Wrights set the pattern for most other inventors of the time, few of whom were deterred by the broth- ers' patents. Some, such as Glenn H. Curtiss, Aircraft designers sometimes use the same approach to solve different problems. The Vought V-173 "Flying Pancake" (above) owes its low-aspect- used a similar biplane layout, em- ratio design to a quest for reduced drag, while Lockheed Martin's F-117 (top) ploying ailerons in an attempt to cir- takes a similar shape in order to reduce radar signature. cumvent the patents. Other inven- tors depended on their intuition, their aesthetic sense, or their fascination the Flick-Reinig "Apteroid" of 1911, circular-planform Navy fighter. The with complex mechanical solutions whose biplane wings ran fore and aft XF5U-1, too radical and made obso- to approach flight in a way they hoped along the fuselage rather than per- lete by the jet engine, was dismantled differed from the Wrights' method. pendicular to it, as if it had been before its first flight. Wilbur Wright' s triumphant exhi- packaged for shipment by railcar. Low-aspect-ratio wings found their bition at Le Mans, France, in 1908 Many_ low-aspect-ratio airplanes ultimate expression in the delta-wing opened the floodgates of European followed, including the McConnick designs that flowed from the genius imagination and turned loose an out- Romme "umbrella plane" of 1912. of Dr. Alexander M. Lippisch, whose pouring of innovative designs. Al- Designed by the young Chance Vought, first delta-wing aircraft flew in 1931. though most of these were failures, it had a circular wing absolutely de- He followed with a series of inno- many of them forecast future trends. void of camber and in appearance was vative designs, most notably the The low aspect ratio found in the no more than a set of loosely con- world' s first delta-wing, rocket- Lockheed Martin F-117 Nighthawk nected awnings. When a rip-roaring powered fighter—the Messerschmitt stealth fighter or the older Convair fifty-horsepower Gnome-Rh8ne rotary Me-163 Komet. After World War II, F-102 Delta Dagger and F-106 Delta engine was installed, however, the the delta-wing layout served many Dart interceptors was anticipated "doughnut," as it was called, not only aircraft well, including the beautiful by many aircraft, beginning with managed to get airborne but made con- Convair B-58 Hustler, the first su- 76 AIR FORCE Magazine / October 1996 personic bomber. Foreign manufac- bert A. Merrill designed a stall-proof ground-adjustable wing sweep for turers who adopted the delta con- biplane. That same year, George W. comparative flight tests. Bell adapted figuration include Dassault, Avro, Cornelius created his first variable- the design in 1951 with the X-5, Fairey, Saab, Tupelov, and the MiG angle-of-incidence aircraft and fol- whose wings could be swept from Design Bureau. lowed it a few years later with his 200 to 60°, making it the first high- Success was easier at the other "Mallard," which had both variable performance aircraft to fly with a end of the aspect-ratio spectrum. incidence and forward-swept wings. variable-geometry wing. High-aspect-ratio wings were unde- The practical success of variable in- Grumman experimented with vari- niably efficient and were widely used cidence came in 1955 with the debut able-geometry wings in its unsuccess- by sailplanes. The French manufac- of the Vought (later LTV) F8U Cru- ful XF10E-1 Jaguar of 1952. The prin- turer Hurel-Dubois carried the idea sader, whose object was not avoid- ciple of the swing wing served its a step further with its extremely high- ing a stall but getting off a carrier successor, the F-14 Tomcat, well, as it aspect-ratio, strut-braced-wing air- deck. did a number of US and foreign air- craft of the late 1940s. The idea lapsed The Germans led the way in vari- craft, including the US F-111 and B-1, for years, only to be revived by the able-geometry wings with the Mes- the Soviet MiG-23 and Su-24, and the successful Short Brothers transports, serschmitt P-1101 jet prototype. It European consortium Panavia's Tor- such as USAF's C-23 Sherpa. never flew but was to have had nado. By the 1930s, while most of the world's aeronautical engineers strug- gled toward a common denominator of the cantilever low-wing all-metal aircraft, some designers persisted in pressing for unorthodox solutions to specific problems. The concept of variable-span wings was tried in the 1931 mono- plane designed in France by Mikhail Makhonine, a Russian engineer. The handsome aircraft featured exten- sible outer wing panels that could vary the wingspan from forty-three feet to sixty-nine feet and the wing area from 226 to 335 square feet. The greater wingspan allowed for takeoff with greater loads. At alti- tude, the wings retracted for more speed. Other inventors sought safety with their unorthodox designs. In 1931, Al- Accidental Benefit Fixed wing sweep had been built into dozens of aircraft since the ear- liest days of flight, often as a solu- tion to center-of-gravity problems.
Recommended publications
  • Wing-Folding Mechanism of the Grumman Wildcat
    WING-FOLDING MECHANISM OF THE GRUMMAN WILDCAT An American Society of Mechanical Engineers Historic Mechanical Engineering Landmark DESIGNATION CEREMONY AT THE KALAMAZOO AVIATION HISTORY MUSEUM KALAMAZOO, MICHIGAN May 15, 2006 A Mechanical Engineering Landmark The innovative wing folding mechanism (STO-Wing), developed by Leroy Grumman in early 1941 and first applied to the XF4F-4 Wildcat, manufactured by the Grumman Aircraft Engineering Corporation, is designated an ASME Historic Mechanical Engineering Landmark. (See Plaque text on page 6) Grumman People Three friends were the principal founders of the Grumman Aircraft Engineering Corporation (Now known as Northrop Grumman Corporation), in January 1930, in a garage in Baldwin, Long Island, New York. (See photo of Leon Swirbul, William Schwendler, and Leroy Grumman on page 7) Leroy Randle (Roy) Grumman (1895-1982) earned a Bachelor of Science degree in mechanical engineering from Cornell University in 1916. He then joined the U. S. Navy and earned his pilot’s license in 1918. He was later the Managing Director of Loening Engineering Corporation, but when Loening merged with Keystone Aircraft Corporation, he and two of his friends left Loening and started their own firm — Grumman Aircraft Engineering Corporation. William T. Schwendler (1904-1978) earned a Bachelor of Science degree in mechanical engineering from New York University in 1924. He was reluctant to leave Long Island, so he chose to join Grumman and Swirbul in forming the new company. Leon A. (Jake) Swirbul (1898-1960) studied two years at Cornell University but then left to join the U.S. Marine Corps. Instrumental in the founding and early growth of Grumman, he soon became its president.
    [Show full text]
  • Northrop Grumman
    Northrop Grumman Northrop Grumman Corporation Type Public (NYSE: NOC) 1927 (in 1994, company took on Founded current name), Denver, Colorado Headquarters Los Angeles, California Ronald Sugar, Chairman and Key people CEO Industry Aerospace and defense Aircraft carriers, military aircraft, satellites, missile defense Products systems, advanced electronic sensors and systems, Information Technology, ships, and systems Revenue $30.15 Billion USD (2006) Net income $1.59 Billion USD (2006) Employees 123,600 (2007) Website NorthropGrumman.com Northrop Grumman Corporation (NYSE: NOC) is an aerospace and defense conglomerate that is the result of the 1994 purchase of Grumman by Northrop. The company is the third largest defense contractor for the U.S. military[1], and the number-one builder of naval vessels. Northrop Grumman employs over 122,000 people worldwide[2]. Its 2006 annual revenue is reported at US$30 billion. Northrop Grumman ranks #73 on the 2007 Fortune 500 list of U.S. industrial companies.[3] Products and services Some of the most expensive vehicles in the world, such as this B-2 Spirit strategic bomber, are made by Northrop Grumman and purchased by the United States government. Naval 1 Northrop Grumman's many products are made by separate business units. Newport News Shipbuilding manufactures all U.S. aircraft carriers, and is the only company capable of building Nimitz-class supercarriers. It also produces a large percentage of U.S. nuclear submarines. A separate sector, Northrop Grumman Ship Systems, produces amphibious assault ships and many other commercial and military craft, including icebreakers, tankers, and cargo ships. In a partnership with Science Applications International Corporation, Northrop Grumman provides naval engineering and architecture services as well as naval maintenance services Aerospace A BQM-74 Chukar unmanned aerial drone launches from a U.S.
    [Show full text]
  • Aerospace-America-April-2019.Pdf
    17–21 JUNE 2019 DALLAS, TX SHAPING THE FUTURE OF FLIGHT The 2019 AIAA AVIATION Forum will explore how rapidly changing technology, new entrants, and emerging trends are shaping a future of flight that promises to be strikingly different from the modern global transportation built by our pioneers. Help shape the future of flight at the AIAA AVIATION Forum! PLENARY & FORUM 360 SESSIONS Hear from industry leaders and innovators including Christopher Emerson, President and Head, North America Region, Airbus Helicopters, and Greg Hyslop, Chief Technology Officer, The Boeing Company. Keynote speakers and panelists will discuss vertical lift, autonomy, hypersonics, and more. TECHNICAL PROGRAM More than 1,100 papers will be presented, giving you access to the latest research and development on technical areas including applied aerodynamics, fluid dynamics, and air traffic operations. NETWORKING OPPORTUNITIES The forum offers daily networking opportunities to connect with over 2,500 attendees from across the globe representing hundreds of government, academic, and private institutions. Opportunities to connect include: › ADS Banquet (NEW) › AVIATION 101 (NEW) › Backyard BBQ (NEW) › Exposition Hall › Ignite the “Meet”ing (NEW) › Meet the Employers Recruiting Event › Opening Reception › Student Welcome Reception › The HUB Register now aviation.aiaa.org/register FEATURES | APRIL 2019 MORE AT aerospaceamerica.aiaa.org The U.S. Army’s Kestrel Eye prototype cubesat after being released from the International Space Station. NASA 18 30 40 22 3D-printing solid Seeing the far Managing Getting out front on rocket fuel side of the moon drone traffi c Researchers China’s Chang’e-4 Package delivery alone space technology say additive “opens up a new could put thousands manufacturing is scientifi c frontier.” of drones into the sky, U.S.
    [Show full text]
  • AMA FPG-9 Glider OBJECTIVES – Students Will Learn About the Basics of How Flight Works by Creating a Simple Foam Glider
    AEX MARC_Layout 1 1/10/13 3:03 PM Page 18 activity two AMA FPG-9 Glider OBJECTIVES – Students will learn about the basics of how flight works by creating a simple foam glider. – Students will be introduced to concepts about air pressure, drag and how aircraft use control surfaces to climb, turn, and maintain stable flight. Activity Credit: Credit and permission to reprint – The Academy of Model Aeronautics (AMA) and Mr. Jack Reynolds, a volunteer at the National Model Aviation Museum, has graciously given the Civil Air Patrol permission to reprint the FPG-9 model plan and instructions here. More activities and suggestions for classroom use of model aircraft can be found by contacting the Academy of Model Aeronautics Education Committee at their website, buildandfly.com. MATERIALS • FPG-9 pattern • 9” foam plate • Scissors • Clear tape • Ink pen • Penny 18 AEX MARC_Layout 1 1/10/13 3:03 PM Page 19 BACKGROUND Control surfaces on an airplane help determine the movement of the airplane. The FPG-9 glider demonstrates how the elevons and the rudder work. Elevons are aircraft control surfaces that combine the functions of the elevator (used for pitch control) and the aileron (used for roll control). Thus, elevons at the wing trailing edge are used for pitch and roll control. They are frequently used on tailless aircraft such as flying wings. The rudder is the small moving section at the rear of the vertical stabilizer that is attached to the fixed sections by hinges. Because the rudder moves, it varies the amount of force generated by the tail surface and is used to generate and control the yawing (left and right) motion of the aircraft.
    [Show full text]
  • Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
    NASA/TM-2000-210646 Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics Dennis M. Bushnell Langley Research Center, Hampton, Virginia December 2000 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co-sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA's scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. TECHNICAL TRANSLATION. English- The Program Office is also NASA's institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following Specialized services that complement the STI report types: Program Office's diverse offerings include creating custom thesauri, building customized TECHNICAL PUBLICATION. Reports of databases, organizing and publishing research completed research or a major significant results ... even providing videos. phase of research that present the results of NASA programs and include extensive For more information about the NASA STI data or theoretical analysis.
    [Show full text]
  • Northrop XFT
    Was Sie schon immer mal wissen wollten – oder die letzten Geheimnisse der Luftfahrt Eine lose Folge von Dokumentationen vom Luftfahrtmuseum Hannover-Laatzen Stand Winter 2017 - Seite 1 Diese Dokumentationen werden Interessenten auf Wunsch zur Verfügung gestellt und erscheinen in einer losen Folge von Zeiträumen.Compiled and edited by Johannes Wehrmann 2017 Source of Details “Bredow-web.de”,“Das Flugzeug-Archiv”,FliegerWeb, Wikipedia Northrop XFT AIC = 1.011.1710.40.10 Die Northrop XFT war ein amerikanisches Kampfflugzeug der 1930er Jahre. Ein einmotoriger Tiefdecker wurde entworfen und gebaut, um einen Auftrag der United States Navy für einen fortschrittlichen Trägerjäger zu erfüllen. Es zeigte eine schlechte Flugleistung und wurde von der Navy zurückgewiesen, wobei der einzelne Prototyp bei einem Unfall verloren ging. Eine Variante, die Northrop 3A, war ebenfalls nicht erfolgreich. Entwicklung und Design In den frühen 1930er Jahren war die United States Navy daran interessiert, die Verwendung moderner Eindecker als Kampfflugzeuge zu untersuchen, um die Doppeldecker zu ersetzen, die ihre Jagdstaffeln ausrüsteten. Im Dezember 1932 bestellte er den XF7B von Boeing, und aufgrund der beeindruckenden Leistung von Northrops Gamma und Delta, die beide Blecheindecker be- tonten, erhielt Northrop am 8. Mai 1933 einen Auftrag für einen einzelnen Prototyp, genannt XFT-1 Das resultierende Flugzeug, das von einem Team um Ed Heinemann entworfen wurde, ähnelte einem verkleinerten Northrop Delta. Es handelte sich um einen Tiefdecker mit einer Konstruktion aus Metall, die ausschließlich aus Metall bestand. Es hatte ein festes Spornraduntergestell, dessen Hauptrad mit stromlinienartigen Hosenverkleidungen versehen war. Der Pilot saß in einem ge- schlossenen Cockpit mit einem Schiebedach. Es wurde von einem einzigen Wright R-1510 Sternmotor angetrieben.
    [Show full text]
  • Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
    AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft
    [Show full text]
  • Artifacts and Aircraft
    International Journal of Business, Humanities and Technology Vol. 5, No. 2; April 2015 The Ancients: Artifacts and Aircraft Susan Kelly Archer, EdD Embry-Riddle Aeronautical University Department of Doctoral Studies College of Aviation Daytona Beach, Florida USA Abstract Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. In 1996, Lumir Janku wrote about a set of artifacts, discovered in Peru and determined to be Pre-Columbian, that can be interpreted as models of delta- winged fliers. The design of the Peruvian artifacts has been interpreted in multiple ways by a variety of professionals. The delta wing was also incorporated into the design of civilian aircraft during the 20th Century. Modern delta-winged aircraft were used successfully in both military and civilian applications for more than 40 years. It is interesting to read about the possibility that this aeronautical design may have originated millennia earlier with a culture that did not leave written records to explain its artifacts crafted in gold. Keywords: aviation history, delta wing, Pre-Columbian artifacts Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. Man’s fascination with how birds fly can be linked to the ancient legends of Daedalus or the winged Egyptian gods, and then more recently to John Damien’s attempt to fly with wings made from chicken feathers (Brady, 2000) or Otto Lillienthal’s essays linking the physiology of birds to the design of early gliders (Lillienthal, 2001).
    [Show full text]
  • Class 244 Aeronautics and Astronautics 244 - 1
    CLASS 244 AERONAUTICS AND ASTRONAUTICS 244 - 1 244 AERONAUTICS AND ASTRONAUTICS 1 R MISCELLANEOUS 168 ..By solar pressure 1 N .Noise abatement 169 ..By jet motor 1 A .Lightning arresters and static 170 ..By nutation damper eliminators 171 ..With attitude sensor means 1 TD .Trailing devices 171.1 .With propulsion 2 COMPOSITE AIRCRAFT 171.2 ..Steerable mount 3 .Trains 171.3 ..Launch from surface to orbit 3.1 MISSILE STABILIZATION OR 171.4 ...Horizontal launch TRAJECTORY CONTROL 171.5 ..Without mass expulsion 3.11 .Remote control 171.6 .Having launch pad cooperating 3.12 ..Trailing wire structure 3.13 ..Beam rider 171.7 .With shield or other protective 3.14 ..Radio wave means (e.g., meteorite shield, 3.15 .Automatic guidance insulation, radiation/plasma 3.16 ..Optical (includes infrared) shield) 3.17 ...Optical correlation 171.8 ..Active thermal control 3.18 ...Celestial navigation 171.9 .With special crew accommodations 3.19 ..Radio wave 172.1 ..Emergency rescue means (e.g., escape pod) 3.2 ..Inertial 172.2 .With fuel system details 3.21 ..Attitude control mechanisms 172.3 ..Fuel tank arrangement 3.22 ...Fluid reaction type 172.4 .Rendezvous or docking 3.23 .Stabilized by rotation 172.5 ..Including satellite servicing 3.24 .Externally mounted stabilizing appendage (e.g., fin) 172.6 .With deployable appendage 3.25 ..Removable 172.7 .With solar panel 3.26 ..Sliding 172.8 ..Having solar concentrator 3.27 ..Collapsible 172.9 ..Having launch hold down means 3.28 ...Longitudinally rotating 173.1 .With payload accommodation 3.29 ...Radially rotating
    [Show full text]
  • 10. Supersonic Aerodynamics
    Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited.
    [Show full text]
  • FROM the GROUNDUP September 2004 CAPABILITIES BROCHURE
    Vought Aircraft Industries, Inc. www.voughtaircraft.com INTEGRATED AEROSTRUCTURES FROM THE GROUNDUP September 2004 CAPABILITIES BROCHURE Airbus A330/A340 In 1988, we became the Boeing 747 We’ve built panels for the main first major U.S. structural assemblies supplier to fuselage, doors and the empennage section for more Airbus with the award of wing components for than 1,350 Boeing 747 aircraft since the program the A330/A340 long-range aircraft. Deliveries began in 1968. began in 1990, exceeding the 500 shipset mark in 2002. 2 PROVEN Lockheed Martin C-130J Hercules Northrop Grumman B-2 Spirit Our company has delivered more than 2,200 We were one of three team members on the empennage sections to Lockheed Martin B-2 program, with responsibility for more since becoming a supplier on the C-130 structure than any other team member. program in the 1950s. Through our heritage companies, we have been a premier supplier to the aerospace industry for nearly nine decades. Vought is a proven leader in providing aerostructures of superior quality to our customers. We’ve helped shape many major aircraft programs over the years – from small business jets to jumbo airplanes, and tactical fighters to cargo aircraft. From the ground up, Vought creates quality structures that help our customers take flight. 3 Boeing C-17 Globemaster III Robotic Tack Cell Machine We have consistently driven down the price of the Our new robotic tack cell transforms a six-step C-17 components we build through continuous process into a single operation. The six-axis producibility improvements.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,104.498 B2 Englar Et Al
    USOO7104498B2 (12) United States Patent (10) Patent No.: US 7,104.498 B2 Englar et al. (45) Date of Patent: Sep. 12, 2006 (54) CHANNEL-WING SYSTEM FOR THRUST 2,665,083. A 1, 1954 Custer ....................... 244, 12.6 DEFLECTION AND FORCE/MOMENT 2,687.262 A 8, 1954 Custer GENERATION 2.691,494. A * 10, 1954 Custer ....................... 244, 12.6 2,885,160 A * 5/1959 Griswold, II ............... 244,207 (75) Inventors: Robert J. Englar, Marietta, GA (US); 2.937,823 A * 5/1960 Fletcher ..................... 244, 12.6 Dennis M. Bushnell, Hayes, VA (US) (73) Assignee: Georgia Tech Research Corp., Atlanta, (Continued) GA (US) Primary Examiner Peter M. Poon Assistant Examiner Jia Qi (Josh) Zhou (*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Thomas, Kayden, patent is extended or adjusted under 35 Horstemeyer & Risley, LLP U.S.C. 154(b) by 111 days. (57) ABSTRACT (21) Appl. No.: 10/867,114 An aircraft comprising a Channel Wing having blown chan (22) Filed: Jun. 14, 2004 nel circulation control wings (CCW) for various functions. The blown channel CCW includes a channel that has a (65) Prior Publication Data rounded or near-round trailing edge. The channel further has US 2005/OO29396 A1 Feb. 10, 2005 a trailing-edge slot that is adjacent to the rounded trailing edge of the channel. The trailing-edge slot has an inlet Related U.S. Application Data connected to a source of pressurized air and is capable of tangentially discharging pressurized air over the rounded (60) Provisional application No.
    [Show full text]