Lunar Sourcebook : a User's Guide to the Moon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lunar Impact Crater Identification and Age Estimation with Chang’E
ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy. -
Bombardment History of the Moon: What We Think We Know and What We Don’T Know Donald Bogard, ARES-KR, NASA-JSC, Houston, TX 77058 ([email protected])
Planetary Chronology Workshop 2006 6001.pdf Bombardment History of the Moon: What We Think We Know and What We Don’t Know Donald Bogard, ARES-KR, NASA-JSC, Houston, TX 77058 ([email protected]) Summary. The absolute impact history of and 14 soils show a decrease in the number of the moon and inner solar system can in principle beads with age from ~4 Gyr ago to ~0.4 Gyr ago, be derived from the statistics of radiometric ages followed by a significant increase in beads with of shock-heated planetary samples (lunar or age <0.4 Gyr (2). These authors concluded that meteoritic), from the formation ages of specific the projectile flux had decreased over time, impact craters on the moon or Earth; and from followed by a significant flux increase more age-dating samples representing geologic surface recently. However, this data set has also been units on the moon (or Mars) for which crater interpreted to represent variable rates of impact densities have been determined. This impact melt production as a function of regolith maturity history, however, is still poorly defined. (3). In another study, measured ages of 21 small The heavily cratered surface of the moon is a impact melt clasts in four lunar meteorites from testimony to the importance of impact events in the lunar highlands suggested four to six impact the evolution of terrestrial planets and satellites. events over the period ~2.5-4.0 Gyr ago (4). Lunar impacts range in scale from an early Clearly considerable uncertainty exists in the intense flux of large objects that defined the projectile flux over the past ~3.5 Gyr and whether surface geology of the moon, down to recent, this flux has been approximately constant or smaller impacts that continually generate and exhibited appreciable shorter-term variations. -
Exploring the Bombardment History of the Moon
EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique. -
Quantitative Planetary Image Analysis Via Machine Learning
Tina Memo No. 2013-008 External, PhD Thesis, University of Manchester Quantitative Planetary Image Analysis via Machine Learning. Paul Tar Last updated 25 / 09 / 2014 Centre for Imaging Sciences, Medical School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT. Quantitative Planetary Image Analysis via Machine Learning A thesis submitted to the University of Manchester for the degree of PhD in the faculty of Engineering and Physical Sciences 2014 Paul D. Tar School of Earth, Atmospheric and Environmental Sciences 2 Contents 1 Introduction 19 1.1 Theriseofimagingfromspace. ...... 19 1.1.1 Historicalimages ............................... 20 1.1.2 Contemporaryimages . 20 1.1.3 Futureimages.................................. 21 1.2 Sciencecase ..................................... .. 22 1.2.1 Lunarscience .................................. 22 1.2.2 Martianscience ................................ 22 1.3 Imageinterpretation ............................. ..... 23 1.3.1 Manualanalysis................................ 24 1.3.2 Automatedanalysis.............................. 24 1.4 Measurements.................................... .. 25 1.4.1 Quantitative measurements and The Scientific Method . .......... 26 1.4.2 Theroleofstatistics . ... 27 1.4.3 Assumptionsandapproximations . .... 29 1.5 Argumentforquantitativeautomation . ........ 30 1.6 Criteriaforaquantitativesystem . ......... 31 1.7 Thesisoutline ................................... ... 32 2 Literature Review 35 2.1 Representations ................................ -
Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J
Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J. Byrne Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J. Byrne Image Again Middletown, NJ USA Cover illustration: Earth-based photograph of the full Moon from the “Consolidated Lunar Atlas” on the Website of the Lunar and Planetary Institute. British Library Cataloging-in-Publication Data Byrne, Charles J., 1935– Lunar Orbiter photographic atlas of the near side of the Moon 1. Lunar Orbiter (Artificial satellite) 2. Moon–Maps 3. Moon–Photographs from space I. Title 523.3 0223 ISBN 1852338865 Library of Congress Cataloging-in-Publication Data Byrne, Charles J., 1935– Lunar Orbiter photographic atlas of the near side of the Moon : with 619 figures / Charles J. Byrne. p. cm. Includes bibliographical references and index. ISBN 1-85233-886-5 (acid-free paper) 1. Moon–Maps. 2. Moon–Photographs from space. 3. Moon–Remote-sensing images. 4. Lunar Orbiter (Artificial satellite) I. Title. G1000.3.B9 2005 523.3 022 3–dc22 2004045006 Additional material to this book can be downloaded from http://extras.springer.com. ISBN 1-85233-886-5 Printed on acid-free paper. © 2005 Springer-Verlag London Limited Apart from any fair dealing for the purposes of research or private study, or criticism, or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro- duced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
January 2019 Cardanus & Krafft
A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2019 CARDANUS & KRAFFT Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA September 24, 2018 04:40-05:04 UT, 15 cm refl, 170x, seeing 7/10, transparence 6/6. I drew these craters and vicinity on the night of Sept. 23/24, 2018. The moon was about 22 hours before full. This area is in far western Oceanus Procellarum, and was favorably placed for observation that night. Cardanus is the southern one of this pair and is of moderate depth. Krafft to the north is practically identical in size, and is perhaps slightly deeper. Neither crater has a central peak. Several small craters are near and within Krafft. The crater just outside the southeast rim of Krafft is Krafft E, and Krafft C is nearby within Krafft. The small pit to the west is Krafft K, and Krafft D is between Krafft and Cardanus. Krafft C, D and E are similar sized, but K is smaller than these. A triangular-shaped swelling protrudes from the north side of Krafft. The tiny pit, even smaller than Krafft K, east of Cardanus is Cardanus E. There is a dusky area along the southwest side of Cardanus. Two short dark strips in this area may be part of the broken ring Cardanus R as shown on the. Lunar Quadrant map. -
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) ^i e I !emote sousing sad eeolegio Studies of the llaistary Crusts Bernard Ray Hawke Prince-1 Investigator a EL r Z^ .99 University of Hawaii Hawaii Institute of Geophysics Planetary Geosciences Division Honolulu, Hawaii 96822 ^y 1i i W. December 1983 (NASA —CR-173215) REMOTE SENSING AND N84-17092 GEOLOGIC STUDIES OF THE PLANETARY CRUSTS Final Report ( Hawaii Inst. of Geophysics) 14 p HC A02/MF 101 CSCL 03B Unclas G3/91 11715 Gy -2- ©R1GNAL OF POOR QUALITY Table of Contents Page I. Remote Sensing and Geologic Studies cf Volcanic Deposits . • . 3 A. Spectral reflectance studies of dark-haloed craters. • . 3 B. Remote s^:sing studies of regions which were sites of ancient volcanisa . 3 C. [REEP basalt deposits in the Imbrium Region. -
Jjmonl 1402.Pmd
alactic Observer GJohn J. McCarthy Observatory Volume 7, No. 2 February 2014 Beneath the Clouds: An in-depth look at Jupiter's wacky weather machine. See inside, pages 6 and 20. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Jon Wallace Tom Heydenburg Paul Woodell Amy Ziffer In This Issue OUT THE WINDOW ON YOUR LEFT .................................... 4 JUPITER AND ITS MOONS ................................................ 20 SCHILLER TO HANSTEEN .................................................. 5 TRANSIT OF THE JUPITER'S RED SPOT .............................. 17 LRO IMAGES CHANG'E 3 LANDING SITE ........................... 6 SUNRISE AND SUNSET .................................................... -
Exploration of the Moon
Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms. -
Sky and Telescope
SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history. -
Alactic Observer Gjohn J
alactic Observer GJohn J. McCarthy Observatory Volume 5, No. 2 February 2012 Belly of the Beast At the center of the Milky Way galaxy, a gas cloud is on a perilous journey into a supermassive black hole. As the cloud stretches and accelerates, it gives away the location of its silent predator. For more information , see page 9 inside, or go to http://www.nasa.gov/ centers/goddard/news/topstory/2008/ blackhole_slumber.html. Credit: NASA/CXC/MIT/Frederick K. Baganoff et al. The John J. McCarthy Observatory Galactic Observvvererer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 Allan Ostergren www.mccarthyobservatory.org Website Development John Gebauer JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory has Josh Reynolds established itself as a significant educational and recreational Technical Support resource within the western Connecticut community. Bob Lambert Steve Barone Allan Ostergren Dr. Parker Moreland Colin Campbell Cecilia Page Dennis Cartolano Joe Privitera Mike Chiarella Bruno Ranchy Jeff Chodak Josh Reynolds Route Bill Cloutier Barbara Richards Charles Copple Monty Robson Randy Fender Don Ross John Gebauer Ned Sheehey Elaine Green Gene Schilling Tina Hartzell Diana Shervinskie Tom Heydenburg Katie Shusdock Phil Imbrogno Jon Wallace Bob Lambert Bob Willaum Dr. Parker Moreland Paul Woodell Amy Ziffer In This Issue THE YEAR OF THE SOLAR SYSTEM ................................ 4 SUNRISE AND SUNSET .................................................. 11 OUT THE WINDOW ON YOUR LEFT ............................... 5 ASTRONOMICAL AND HISTORICAL EVENTS ...................... 11 FRA MAURA ................................................................ 5 REFERENCES ON DISTANCES .......................................