The Effect of Chromosome Structure Upon Meiotic Homologous And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WHEAT and WHEAT IMPROVEMENT Second Edition
5910 * WHEAT AND WHEAT IMPROVEMENT Second Edition E. G. Heyne, editor Editorial Committee E. G. Heyne. chair Dale [\Ioss D. R. Knott Gregory Shaner Rosalind Morris Billy Tucker Managing F:ditors: S. H. Mickdson \V. R. Luellen Editor-in-Chief.iSA Puhlications: D. R. Buxton Editor-in-Chief CSS.·/ Puhlications: E. S. Horner Editor-in-ChiefSS5.i. Puhlications: J. J. Mortvedt Number 13 in the series AGRONOl\1Y American Society of Agronomy, Inc. Crop Science Sodety of America, Inc. Soil Science Society of America, Inc. Publishers Madison, Wisconsin. USA 1987 ·5 Origins and AnaJyses of Genes and Genomes in Wheat and Its Relatives Rosalind l\tlorns A. Evolution in the Genus Triticum and the Origin of Cultivated Wheat G. Kimber and E. R. Sears B. The Molecular Genetics of Wheat: Toward an Understanding of 16 Billion Base Pairs of DNA C. E. May and R. Appels C. Genetic and Biochemical Studies of Enzymes Gary E. Hart D. Genetic and Biochemical Studies of Nonenzymatic Endospenn Proteins Jerold A. Bietz . E: Chromosome Banding Methods. Standard Chromosome Band Nomenclature. and Applications in Cytogenetic Analysis Bikram S. Gill F. Aneuploid Analysis in Tetraploid Wheat L. R. Joppa G. Gene Location and Gene Mapping in Hexaploid Wheat R. A. McIntosh H. Linkage Map of Hexaploid Wheat R. A. McIntosh and Jane E. Cusick 151 Tlheat and Wheat Improvement Second Edition 5910* E. G. Heyne, editor 1987 50 Genetic and Biochemical Studies of Nonenzymatic Endosperm Proteins Jerold A. Bietz USDA-ARS Peoria, Illinois The endosperm ofcommon wheat (Triticum aestivum L.) contains a great number of nonenzymatic storage proteins that are the components of gluten, one of the most intricate naturally occurring protein complexes. -
Spontaneous Chromosome Substitutions in Hybrids of Triticum Aestivum with T. Araraticum Detected by C-Banding Technique
Number 80: 26 - 31 (1995) Spontaneous chromosome substitutions in hybrids of Triticum aestivum with T. araraticum detected by C-banding technique E.D. Badaeva and B.S. Gill Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Throckmorton Hall, Manhattan, KS 66506-5502, USA Abstract One hundred thirty-one plants representing twenty-nine families of Triticum aestivum cv. Wichita X T. araraticum hybrids were analyzed by the C-banding technique. Transfer of genetic material involved whole chromosome(s) or chromosome arms. Nine different types of chromosome substitution were found. The mean number of substitutions per karyotype was 1.86 (range 1-3). Substitutions involving G-genome chromosomes occurred more frequently than A' genome chromosomes. Individual chromosomes also differed in the frequency of substitution. The most frequently substituted chromosome was 6G, while substitutions with 1At, 2At, 4At, 6At, 7At, 3G, and 7G were not recovered. A recombinant (rec) 7AS-7AtL chromosome was identified. The spectrum of substitutions was different from those in other T. aestivum x T. timopheevii hybrids, indicating that the genotype of the parental species determines the pattern of substitutions in their hybrids. Introduction Triticum araraticum Jakubz. is a wild tetraploid wheat with the genome formula AtAtGG. Morphologically similar to T. dicoccoides, T. araraticum differs from it in karyotype structure (Badaeva et al. 1986; Gill and Chen 1987; Jiang and Gill 1994). At present, there is no consensus opinion on the origin of these two wheat species. According to one hypothesis, T. dicoccoides and T. araraticum were derived from the common ancestor by introgressive hybridization with unknown diploid species (Gill and Chen 1987). -
18 New Nothogenera and 8 New Combinations in the Grass Family Poaceae
CACTOLOGIA PHANTASTICA 3(2) 4 FEB 2019 10 ISSN 2590-3403 DOI 10.5281/zenodo.2556225 18 New Nothogenera and 8 New Combinations in the Grass Family Poaceae By MAARTEN H. J. VAN DER MEER The grass family Poaceae includes major crop genera like Triticum (wheat), Hordeum (barley) and Secale (rye) in the subfamily Pooideae, and Saccharum (sugarcane), Sorghum (sorghum) and Zea (maize) in the subfamily Panicoideae. Species from this family have been used for extensive hybridization experiments. No less than 59 valid nothogenera are listed in IPNI, yet dozens of intergeneric hybrids remain nameless.1 Notho- generic names are proposed here for eighteen intergeneric hybrids, including one tetrageneric hybrid, ten trigeneric hybrids and seven bigeneric hybrids. In addition, seven new combinations for nothospecies are proposed. Wheat Barley Rye David Monniaux Cliff LSDSL CC BY-SA 3.0 / Wikimedia CC BY 2.0 / Wikimedia CC BY-SA 3.0 / Wikimedia 1 Note that the widely used ×Triticale, an invalid younger synonym of ×Triticosecale, is not listed. MAARTEN H. J. VAN DER MEER ROGGEKAMP 379 NL-2592 VV DEN HAAG [email protected] CACTOLOGIA PHANTASTICA 3(2) 4 FEB 2019 11 ISSN 2590-3403 DOI 10.5281/zenodo.2556225 Valid Nothogenera in Poaceae NOTHOGENUS PARENT 1 PARENT 2 PARENT 3 ×Achnella Achnatherum Nassella ×Aegilosecale Aegilops Secale ×Aegilotriticum Aegilops Triticum ×Agrocalamagrostis Agrostis Calamagrostis ×Agroëlymus Agropyron Elymus ×Agrohordeum Agropyron Hordeum ×Agropogon Agrostis Polypogon ×Agrositanion Acropyron Sitanion ×Agrotrigia Agropyron Elytrigia ×Agrotrisecale Agropyron Secale Triticum ×Agrotriticum Agropyron Triticum ×Ammocalamagrostis Ammophila Calamacrostis ×Arctodupontia Arctophila Dupontia ×Bromofestuca Bromus Festuca ×Calamophila Ammophila Calamagrostis ×Cynochloris Chloris Cynodon ×Danthosieglingia Danthonia Sieglingia ×Dupoa Dupontia Poa ×Dupontopoa Arctopoa Dupontia ×Elyleymus Elymus Leymus ×Elymopyron Agropyron Elymus ×Elymordeum Elymus Hordeum MAARTEN H. -
Advances in Wheat Genetics: from Genome to Field Proceedings of the 12Th International Wheat Genetics Symposium Advances in Wheat Genetics: from Genome to Field
Yasunari Ogihara · Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Advances in Wheat Genetics: From Genome to Field Yasunari Ogihara • Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Editors Yasunari Ogihara Shigeo Takumi Kihara Institute for Biological Research Graduate School of Agricultural Sciences Yokohama City University Kobe University Yokohama , Kanagawa , Japan Kobe , Hyogo , Japan Hirokazu Handa Plant Genome Research Unit National Institute of Agrobiological Sciences Tsukuba , Ibaraki , Japan ISBN 978-4-431-55674-9 ISBN 978-4-431-55675-6 (eBook) DOI 10.1007/978-4-431-55675-6 Library of Congress Control Number: 2015949398 Springer Tokyo Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and the Author(s) 2015 . The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Evaluation of Winter Wheat Germplasm for Resistance To
EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By ALBERT OKABA KERTHO In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology August 2014 Fargo, North Dakota North Dakota State University Graduate School Title EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST By ALBERT OKABA KERTHO The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. Francois Marais Dr. Liu Zhaohui Dr. Phil McClean Approved: 09/29/2014 Dr. Jack Rasmussen Date Department Chair ABSTRACT Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively. -
Transfer of Disease Resistance Genes from Triticum Araraticum to Common Wheat
Plant Breeding 116, 105-112 (1997) © 1997 Blackwell Wissenschafts-Verlag, Berlin ISSN 0179-9541 Transfer of disease resistance genes from Triticum araraticum to common wheat 1 2 3 4 G. L. BROWN-GUEDIRA , B. S. GILL , T. S. Cox , and S. LEATH I USDA-ARS, Plant Physiology and Genetics Research Unit, 234 EASB 1101 W. Peabody Drive, University of Illinois, Urabana, IL 61801, USA; 2Department of Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA; 3 USDA-ARS, Agronomy Department, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA; 4 USDA-ARS, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA With 5 tables Received May 24, 1996/Accepted September 12,1996 Communicated by R. Koebner Abstract (McIntosh and Gyarfas 1971, Gill et al. 1983, Tomar et al. The wild tetraploid wheat species Triticum timopheevii (Zhuk.) Zhuk. 1988, Brown-Guedira et al. 1996). Cultivated T. timopheevii has var. araraticum is a source ofpest resistance genes for Triticum aestivum been used for wheat improvement to a greater extent than has L. Our objectives were to describe the breeding behaviour of T. ara its wild progenitor, T. araraticum. Because T. timopheevii is raticum when backcrossed to common wheat, and to transfer resistance a cultivated species, the chances of recovering agronomically to leaf rust (caused by Puccinia recondita f.sp. tritici) and powdery acceptable derivatives from crosses with wheat are greater. mildew (caused by Blumeria graminis f.sp. tritici) to wheat. Crosses were However, T. timopheevii is endemic to the country of Georgia made between five wheat genotypes and 12 T. -
Plant Genetic Resources: Characterization and Utilization
Plant Genetic Resources: Characterization and Utilization Special issue on the 2nd International Symposium on “Genomics of Plant Genetic Resources”, 24–27 April 2010, Bologna, Italy Guest editors Roberto Tuberosa Andreas Graner Rajeev K. Varshney Plant Genetic Resources Characterization and Utilization journals.cambridge.org/pgr Publishing, Production, Marketing and publication. Replacement copies supplied after this date will be Subscription Sales Office: chargeable. Cambridge University Press The Edinburgh Building US POSTMASTERS: please send address corrections Plant Genetic Shaftesbury Road Resources USA address. Cambridge CB2 8RU Information for Authors: UK Please email manuscript (with any accompanying figures or tables) For Customers in North America: to the Journal Administrator Faye Kalloniatis at Cambridge University Press [email protected] Journals Fullfillment Dept Notes for Authors are available on the internet at 100 Brook Hill Drive journals.cambridge.org/pgr West Nyack 10994-2133 USA Offprints: The corresponding author of an accepted paper will receive a pdf offprint. Additional offprints are available for a fee Publisher: Katy Christomanou and should be ordered at proof stage. No page charges or Plant Genetic Resources: Characterization and Utilization is an inter- submission charges are levied by this journal. national journal published tri-annually by Cambridge University Press in April, August and December on behalf of NIAB. The online edition Copyright: q NIAB 2011. All rights reserved: permission for repro- is available at journals.cambridge.org/pgr. duction of any part of the journal (text, figures, tables or other matter) in any form (on paper, microfiche or electronically) should Special sales and supplements: be sought directly from CUP or a licence permitting restricted copying This Journal accepts advertising and inserts. -
Evolutionary History of Triticum Petropavlovskyi Udacz. Et Migusch
Evolutionary History of Triticum petropavlovskyi Udacz. et Migusch. Inferred from the Sequences of the 3-Phosphoglycerate Kinase Gene Qian Chen1,2., Hou-Yang Kang1., Xing Fan1, Yi Wang1, Li-Na Sha1, Hai-Qin Zhang1, Mei-Yu Zhong1, Li-Li Xu1, Jian Zeng3, Rui-Wu Yang4, Li Zhang4, Chun-Bang Ding4, Yong-Hong Zhou1,2* 1 Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People’s Republic of China, 2 Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People’s Republic of China, 3 College of Resources and Environment, Sichuan Agricultural University, Sichuan, People’s Republic of China, 4 College of Biology and Science, Sichuan Agricultural University, Sichuan, People’s Republic of China Abstract Single- and low-copy genes are less likely to be subject to concerted evolution. Thus, they are appropriate tools to study the origin and evolution of polyploidy plant taxa. The plastid 3-phosphoglycerate kinase gene (Pgk-1) sequences from 44 accessions of Triticum and Aegilops, representing diploid, tetraploid, and hexaploid wheats, were used to estimate the origin of Triticum petropavlovskyi. Our phylogenetic analysis was carried out on exon+intron, exon and intron sequences, using maximum likelihood, Bayesian inference and haplotype networking. We found the D genome sequences of Pgk-1 genes from T. petropavlovskyi are similar to the D genome orthologs in T. aestivum, while their relationship with Ae. tauschii is more distant. The A genome sequences of T. petropavlovskyi group with those of T. polonicum, but its Pgk-1 B genome sequences to some extent diverge from those of other species of Triticum. -
Complex Genome Rearrangements Reveal Evolutionary Dynamics of Pericentromeric Regions in the Triticeae
1628 Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae Lili Qi, Bend Friebe, and Bikram S. Gill Abstract: Most pericentromeric regions of eukaryotic chromosomes are heterochromatic and are the most rapidly evolving regions of complex genomes. The closely related genomes within hexaploid wheat (Triticum aestivum L., 2n =6x = 42, AABBDD), as well as in the related Triticeae taxa, share large conserved chromosome segments and provide a good model for the study of the evolution of pericentromeric regions. Here we report on the comparative analysis of pericentric inversions in the Triticeae, including Triticum aestivum, Aegilops speltoides, Ae. longissima, Ae. searsii, Hordeum vulgare, Secale cereale, and Agropyron elongatum. Previously, 4 pericentric inversions were identified in the hexaploid wheat culti- var ‘Chinese Spring’ (‘CS’) involving chromosomes 2B, 4A, 4B, and 5A. In the present study, 2 additional pericentric in- versions were detected in chromosomes 3B and 6B of ‘CS’ wheat. Only the 3B inversion pre-existed in chromosome 3S, 3Sl, and 3Ss of Aegilops species of the Sitopsis section, the remaining inversions occurring after wheat polyploidization. The translocation T2BS/6BS previously reported in ‘CS’ was detected in the hexaploid variety ‘Wichita’ but not in other species of the Triticeae. It appears that the B genome is more prone to genome rearrangements than are the A and D ge- nomes. Five different pericentric inversions were detected in rye chromosomes 3R and 4R, 4Sl of Ae. longissima,4Hof barley, and 6E of Ag. elongatum. This indicates that pericentric regions in the Triticeae, especially those of group 4 chro- mosomes, are undergoing rapid and recurrent rearrangements. -
Proceedings of the First International Workshop on Hulled Wheats, 21-22 July 1995, Castelvecchio Pascoli, Tuscany, Italy
Proceedings of the First International Workshop on Hulled Wheats 21-22 July 1995 Castelvecchio Pascoli, Tuscany, Italy S. Padulosi, K. Hammer and J. Heller, editors ii HULLED WHEATS The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by December 1995, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Burkina Faso, Cameroon, China, Chile, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Iran, Israel, Italy, Jordan, Kenya, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Ukraine and Uganda. IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partnership with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the agreed research agenda of IPGRI is provided by the Governments of Australia, Austria, Belgium, Canada, China, Denmark, France, Germany, India, Italy, Japan, the Republic of Korea, Mexico, the Netherlands, Norway, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, IDRC, UNDP and the World Bank. The Institute of Plant Genetics and Crop Plant Research (IPK) is operated as an independent foundation under public law. The foundation statute assigns to IPK the task of conducting basic research in the area of plant genetics and research on cultivated plants. -
Quantification of Genetic Relationships Among a Genomes of Wheats
297 Quantification of genetic relationships among A genomes of wheats A. Brandolini, P. Vaccino, G. Boggini, H. Özkan, B. Kilian, and F. Salamini Abstract: The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome spe- cific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate be- tween bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am,Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo- pheevii AG genome is molecularly equidistant from those of Au and Am wheats. Key words: A genome, Triticum, genetic relationships, AFLP. Résumé : Les relations génétiques entre les espèces à génome A Triticum urartu (Au)etTriticum monococcum (Am)et les blés polyploïdes sont explorées et quantifiées à l’aide de marqueurs AFLP. -
Detection of Ancient Genome Duplications in Several Flowering Plant
DETECTION OF ANCIENT GENOME DUPLICATIONS IN SEVERAL FLOWERING PLANT LINEAGES AND SYNTE-MOLECULAR COMPARISON OF HOMOLOGOUS REGIONS by JINGPING LI (Under the Direction of Andrew H. Paterson) ABSTRACT Flowering plants have evolved through repeated ancient genome duplications (or paleo- polyploidies) for ~200 million years, a character distinct from other eukaryotic lineages. Paleo-duplicated genomes returned to diploid heredity by means of extensive sequence loss and rearrangement. Therefore repeated paleo-polyploidies have left multiple homeologs (paralogs produced in genome duplication) and complex networks of homeology in modern flowering plant genomes. In the first part of my research three paleo-polyploidy events are discussed. The Solanaceae “T” event was a hexaploidy making extant Solanaceae species rare as having derived from two successive paleo-hexaploidies. The Gossypium “C” event was the first paleo-(do)decaploidy identified. The sacred lotus (Nelumbo nucifera) was the first sequenced basal eudicot, which has a lineage-specific “λ” paleo-tetraploidy and one of the slowest lineage evolutionary rates. In the second part I describe a generalized method, GeDupMap, to simultaneously infer multiple paleo-polyploidy events on a phylogeny of multiple lineages. Based on such inferences the program systematically organizes homeologous regions between pairs of genomes into groups of orthologous regions, enabling synte-molecular analyses (molecular comparison on synteny backbone) and graph representation. Using 8 selected eudicot and monocot