Genomic Mapping of Leaf Rust and Stem Rust Resistance Loci in Durum

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Mapping of Leaf Rust and Stem Rust Resistance Loci in Durum GENOMIC MAPPING OF LEAF RUST AND STEM RUST RESISTANCE LOCI IN DURUM WHEAT AND USE OF RAD-GENOTYPE BY SEQUENCING FOR THE STUDY OF POPULATION GENETICS IN PUCCINIA TRITICINA A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Meriem Aoun In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department Plant Pathology November 2016 Fargo, North Dakota North Dakota State University Graduate School Title GENOMIC MAPPING OF LEAF RUST AND STEM RUST RESISTANCE LOCI IN DURUM WHEAT AND USE OF RAD-GENOTYPE BY SEQUENCING FOR THE STUDY OF POPULATION GENETICS IN PUCCINIA TRITICINA By Meriem Aoun The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. James A. Kolmer Dr. Elias Elias Dr. Robert Brueggeman Dr. Zhaohui Liu Approved: 11/09/16 Dr. Jack Rasmussen Date Department Chair ABSTRACT Leaf rust, caused by Puccinia triticina Erikss. (Pt), and stem rust, caused by Puccinia graminis f. sp. tritici Erikss. and E. Henn (Pgt), are among the most devastating diseases of durum wheat (Triticum turgidum L. var. durum). This study focused on the identification of Lr and Sr loci using association mapping (AM) and bi-parental population mapping. From the AM conducted on the USDA-National Small Grain Collection (NSGC), 37 loci associated with leaf rust response were identified, of which 14 were previously uncharacterized. Inheritance study and bulked segregant analysis on bi-parental populations developed from eight leaf rust resistance accessions from the USDA-NSGC showed that five of these accessions carry single dominant Lr genes on chromosomes 2B, 4A, 6BS, and 6BL. The other three accessions have Lr genes with more complex inheritance. All eight accessions carry different genes than those already mapped in durum cultivars except one accession with Lr61. Linkage mapping in two of the bi-parental populations showed that the gene in PI 209274 (LrCA) was mapped to 6BS between SNPs IWA3298 and IWB39456, while the gene in PI 192051 (LrPort) was mapped to 4AL, flanked by IWA4254 and IWA8341. Resistance to Pgt-race TTKSK was also observed in PI 534304 and PI 192051. PI 534304 was found to carry Sr13 on chromosome 6AL, while PI 192051 carries a novel Sr gene (SrPort) mapped to 7AS flanked by IW8390 and IWA1805. The genotype PI 192051 has an additional QTL (QSr.ndsu-5B) to Pgt races in a field trial in Ethiopia in 2016. The QSr.ndsu-5B was mapped to 5BL and delimited by IWA6992 and IWA2181. The study of virulence diversity in Pt isolates collected from several countries identified seven races among 51 isolates collected from durum wheat and 21 races among 40 isolates collected from common wheat. The phylogeny study on 30 Pt isolates based on the Restriction-Associated DNA (RAD)-Genotype by Sequencing (GBS), clustered the isolates into eight clades, with higher iii diversity in the SNP genotypes in common wheat isolates compared to that in durum wheat isolates. RAD-GBS is identified as a suitable and informative genotyping technique to study the population genetics of Pt. iv ACKNOWLEDGMENTS I would like to express my sincere gratitude to my advisor, Dr. Maricelis Acevedo for her guidance, encouragement, understanding, support, and mentorship during my doctoral studies at the Department of Plant Pathology. With deep sense of gratitude, I would like to express my sincere thanks to Dr. James Kolmer at the United States Department of Agriculture, Cereal Disease Laboratory (USDA-CDL, Saint Paul, Minnesota) for providing constructive guidance throughout the period of my research study. His wealth of knowledge in wheat leaf rust was an asset to my research work. I am indebted to the other members of my committee, Dr. Elias Elias, Dr. Robert Brueggeman, and Dr. Zhaohui Liu for their valuable suggestions, encouragements, and constructive feedback. I would also like to thank the department chair, Dr. Jack Rasmussen who supported my stay at North Dakota State University (NDSU). Special thanks to the faculty of the Department of Plant Pathology at NDSU for mentoring me into a deeper thinking plant pathologist. I extend my thanks to all the members of the wheat rust laboratory, Matthew Breiland, Amanda Swank, Zennah Kosgey, Albert Kertho, Jason Zurn, and Sheshanka Dugyala for always being positive and supportive. I would like also to thank Jon Richards and Tom Gross at the Barley Pathology Lab at NDSU for their help in the genotyping of P. triticina isolates. My appreciation goes to the students and staff of the Department of Plant Pathology for providing me a friendly environment to perform my research. I am very grateful for the support from our collaborators at the USDA-CDL at Saint Paul, Minnesota, Dr. Matthew Rouse for his help in screening two mapping populations with stem rust and Dr. Jerry Johnson and Dr. Les Szabo for their help in the phylogeny analysis. Many thanks goes to our collaborators at CIMMYT- Mexico, Dr. Julio Huerta-Espino for providing me with some P. triticina isolates for this project, v Dr. Amor Yahyaoui for his continuous encouragement and advice, Dr. Karim Ammar and Dr. Alexander Loladze for their help in conducting leaf rust nursery in Mexico. I am also indebted to Dr. Steven Xu from the USDA–ARS, Cereal Crops Research Unit in Fargo for providing me with germplasm from NSGC and Dr. Shiaoman Chao from USDA-ARS Small Grain Genotyping Lab in Fargo for her constructive feedback and genotyping of the durum wheat populations. I am deeply grateful to the collaborators from the Ethiopia Institute for Agricultural Research Center in Debre Zeit and ICARDA-Morocco for their help in carrying out rust nurseries. My thanks go to the North Dakota Wheat Commission and State Board of Agricultural Research and Education for funding my research project. I would like to thank my friends Sahar Arabiat, Zennah Kosgey, Nivi Abraham, Hazila Khalid, and Serap Vatansever who encouraged me and made my stay in Fargo enjoyable and memorable. Many thanks go to Dr. Mohamed Somo who helped me in so many ways during my stay in Fargo. I also appreciate the long distance support of my friends Ada Metaliu, Asma Benali, Shaimaa Helmy, Amal Kahla, Janet Kanani, Samira Kharchoufi, Soukaina Ben Othmen, and Suad Khaled who motivated me during my entire stay in Fargo. I am indebted to my parents and my siblings who provided me endless love, encouragement, care, patience, and support during the entire period of my academic life. vi DEDICATION To my beloved parents Ibrahim Aoun and Mahbouba Aoun and to my brothers and sisters Mouna, Mohamed, Marwa, Maha, Makrem, and Mehdi who always inspire me. vii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii ACKNOWLEDGMENTS .............................................................................................................. v DEDICATION .............................................................................................................................. vii LIST OF TABLES ....................................................................................................................... xiii LIST OF FIGURES ...................................................................................................................... xv LIST OF APPENDIX TABLES .................................................................................................. xvi LIST OF APPENDIX FIGURES................................................................................................ xvii GENERAL INTRODUCTION ....................................................................................................... 1 CHAPTER I. LITERATURE REVIEW ......................................................................................... 5 Evolution of durum wheat ........................................................................................................... 5 Origin and domestication of durum wheat .................................................................................. 7 Dissemination of domesticated durum wheat ............................................................................. 8 Wheat rusts ................................................................................................................................ 10 Taxonomy and disease cycle ................................................................................................. 10 Leaf rust ................................................................................................................................. 12 Leaf rust importance and symptoms .................................................................................. 12 Puccinia triticina hosts, biology, and epidemiology ......................................................... 13 Population genetics of Puccinia triticina ........................................................................... 14 Characteristics of P. triticina populations in durum wheat ............................................... 17 Leaf rust resistance in durum wheat .................................................................................. 19 Wheat stem rust ..................................................................................................................... 22 Importance, symptoms,
Recommended publications
  • Induced Resistance in Wheat
    https://doi.org/10.35662/unine-thesis-2819 Induced resistance in wheat A dissertation submitted to the University of Neuchâtel for the degree of Doctor in Naturel Science by Fares BELLAMECHE Thesis direction Prof. Brigitte Mauch-Mani Dr. Fabio Mascher Thesis committee Prof. Brigitte Mauch-Mani, University of Neuchâtel, Switzerland Prof. Daniel Croll, University of Neuchâtel, Switzerland Dr. Fabio Mascher, Agroscope, Changins, Switzerland Prof. Victor Flors, University of Jaume I, Castellon, Spain Defense on the 6th of March 2020 University of Neuchâtel Summary During evolution, plants have developed a variety of chemical and physical defences to protect themselves from stressors. In addition to constitutive defences, plants possess inducible mechanisms that are activated in the presence of the pathogen. Also, plants are capable of enhancing their defensive level once they are properly stimulated with non-pathogenic organisms or chemical stimuli. This phenomenon is called induced resistance (IR) and it was widely reported in studies with dicotyledonous plants. However, mechanisms governing IR in monocots are still poorly investigated. Hence, the aim of this thesis was to study the efficacy of IR to control wheat diseases such leaf rust and Septoria tritici blotch. In this thesis histological and transcriptomic analysis were conducted in order to better understand mechanisms related to IR in monocots and more specifically in wheat plants. Successful use of beneficial rhizobacteria requires their presence and activity at the appropriate level without any harmful effect to host plant. In a first step, the interaction between Pseudomonas protegens CHA0 (CHA0) and wheat was assessed. Our results demonstrated that CHA0 did not affect wheat seed germination and was able to colonize and persist on wheat roots with a beneficial effect on plant growth.
    [Show full text]
  • Image-Based Wheat Fungi Diseases Identification by Deep
    plants Article Image-Based Wheat Fungi Diseases Identification by Deep Learning Mikhail A. Genaev 1,2,3, Ekaterina S. Skolotneva 1,2, Elena I. Gultyaeva 4 , Elena A. Orlova 5, Nina P. Bechtold 5 and Dmitry A. Afonnikov 1,2,3,* 1 Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] (M.A.G.); [email protected] (E.S.S.) 2 Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia 3 Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia 4 All Russian Institute of Plant Protection, Pushkin, 196608 St. Petersburg, Russia; [email protected] 5 Siberian Research Institute of Plant Production and Breeding, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630501 Krasnoobsk, Russia; [email protected] (E.A.O.); [email protected] (N.P.B.) * Correspondence: [email protected]; Tel.: +7-(383)-363-49-63 Abstract: Diseases of cereals caused by pathogenic fungi can significantly reduce crop yields. Many cultures are exposed to them. The disease is difficult to control on a large scale; thus, one of the relevant approaches is the crop field monitoring, which helps to identify the disease at an early stage and take measures to prevent its spread. One of the effective control methods is disease identification based on the analysis of digital images, with the possibility of obtaining them in field conditions, Citation: Genaev, M.A.; Skolotneva, using mobile devices. In this work, we propose a method for the recognition of five fungal diseases E.S.; Gultyaeva, E.I.; Orlova, E.A.; of wheat shoots (leaf rust, stem rust, yellow rust, powdery mildew, and septoria), both separately Bechtold, N.P.; Afonnikov, D.A.
    [Show full text]
  • Wheat Leaf Rust
    Marcia McMullen Jack Rasmussen Plant Pathologist Plant Pathologist PP589 (Revised) NDSU Extension Service Agricultural Experiment Station WHEAT LEAF RUST Wheat leaf rust, caused by the fungus Puccinia triticina (formerly recondita f. sp. tritici), reduces wheat yields in susceptible varieties when weather conditions favor rust development and spread. The most notable signs of leaf rust infection are the reddish-orange spore masses of the fungus breaking through the leaf surface (Figure 1). These spore masses, called pus- tules or uredinia, are first detected on wheat in North Dakota in late May or early June, generally in the Figure 1. Top: Resistant reaction; Center: Moderately resistant reac- southern-most counties. Normally, tion; Bottom: Susceptible reaction. only a few pustules are visible on susceptible varieties in early June because spore numbers are still low. The disease develops prior to this period on susceptible winter or spring wheat crops grown in states farther south. The leaf rust spores are carried by wind currents, and the disease advances progressively northward across the Great Plains as the wheat crops develop (Figure 2). The leaf rust pathogen has only occasionally over-wintered in North Dakota, during a mild winter or when protected by deep snow. Figure 2. Leaf rust disease cycle. North Dakota State University, Fargo, North Dakota 58105 JULY 2002 The Disease The following factors must be present for wheat leaf rust infection to occur: viable spores; susceptible or moder- ately susceptible wheat plants; moisture on the leaves (six to eight hours of dew); and favorable temperatures (60 to 80 degrees Fahrenheit). Relatively cool nights combined with warm days are excellent conditions for disease development.
    [Show full text]
  • Cereal Rye Section 9 Diseases
    SOUTHERN SEPTEMBER 2018 CEREAL RYE SECTION 9 DISEASES TOOLS FOR DIAGNOSING CEREAL DISEASE | ERGOT | TAKE-ALL | RUSTS | YELLOW LEAF SPOT (TAN SPOT) | FUSARIUM: CROWN ROT AND FHB | COMMON ROOT ROT | SMUT | RHIZOCTONIA ROOT ROT | CEREAL FUNGICIDES | DISEASE FOLLOWING EXTREME WEATHER EVENTS SOUTHERN JANUARY 2018 SECTION 9 CEREAL rye Diseases Key messages • Rye has good tolerance to cereal root diseases. • The most important disease of rye is ergot (Claviceps purpurea). It is important to realise that feeding stock with ergot infested grain can result in serious losses. Grain with three ergots per 1,000 kernels can be toxic. 1 • Stem and leaf rusts can usually be seen on cereal rye in most years, but they are only occasionally a serious problem. 2 • All commercial cereal rye varieties have resistance to the current pathotypes of stripe rust. However, the out-crossing nature of the species will mean that under high disease pressure, a proportion of the crop (approaching 15–20% of the plant population) may show evidence of the disease. Other diseases are usually insignificant. • Cereal rye has tolerance to take-all, making it a useful break crop following grassy pastures. 3 • Bevy is a host for the root disease take-all and this should be carefully monitored. 4 General disease management strategies: • Use resistant or partially resistant varieties. • Use disease-free seed. • Use fungicidal seed treatments to kill fungi carried on the seed coat or in the seed. • Have a planned in-crop fungicide regime. • Conduct in-crop disease audits to determine the severity of the disease. This can be used as a tool to determine what crop is grown in what paddock the following year.
    [Show full text]
  • Virulence of Puccinia Triticina on Wheat in Iran
    African Journal of Plant Science Vol. 4 (2), pp. 026-031, February 2010 Available online at http://www.academicjournals.org/ajps ISSN 1996-0824 © 2010 Academic Journals Full Length Research Paper Virulence of Puccinia triticina on wheat in Iran S. Elyasi-Gomari Azad Islamic University, Shoushtar Branch, Faculty of Agriculture, Shoushtar, Iran. E-mail: [email protected]. Accepted 12 January, 2010 Wheat leaf rust is controlled mainly by race-specific resistance. To be effective, breeding wheat for resistance to leaf rust requires knowledge of virulence diversity in local populations of the pathogen. Collections of Puccinia triticina were made from rust-infected wheat leaves on the territory of Khuzestan province (south-west) in Iran during 2008 - 2009. In 2009, up to 20 isolates each of the seven most common leaf rust races plus 8 -10 isolates of unnamed races were tested for virulence to 35 near- isogenic wheat lines with different single Lr genes for leaf rust resistance. The lines with Lr9, Lr25, Lr28 and Lr29 gene were resistant to all of the isolates. Few isolates of known races but most isolates of the new, unnamed races were virulent on Lr19. The 35 Lr gene lines were also exposed to mixed race inoculum in field plots to tests effectiveness of their resistance. No leaf rust damage occurred on Lr9, Lr25, Lr28 and Lr29 in the field, and lines with Lr19, Lr16, Lr18, Lr35, Lr36, Lr37 and the combination Lr27 + Lr31 showed less than 15% severity. A total of 500 isolates of P. triticina obtained from five commercial varieties of wheat at two locations in the eastern and northern parts of the Khuzestan region were identified to race using the eight standard leaf rust differential varieties of Johnson and Browder.
    [Show full text]
  • Early Molecular Signatures of Responses of Wheat to Zymoseptoria Tritici in Compatible and Incompatible Interactions
    Plant Pathology (2016) Doi: 10.1111/ppa.12633 Early molecular signatures of responses of wheat to Zymoseptoria tritici in compatible and incompatible interactions E. S. Ortona, J. J.Ruddb and J. K. M. Browna* aJohn Innes Centre, Norwich Research Park, Norwich NR4 7UH; and bRothamsted Research, Harpenden AL5 2JQ, UK Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic pathogen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most common qualitative resistance genes in modern wheat cultivars, determine specific resistance to avirulent fun- gal genotypes following a gene-for-gene relationship. This study investigated compatible and incompatible interactions of wheat with Z. tritici using eight combinations of cultivars and isolates, with the aim of identifying molecular responses that could be used as markers for disease resistance during the early, symptomless phase of colonization. The accumulation of TaMPK3 was estimated using western blotting, and the expression of genes implicated in gene-for- gene interactions of plants with a wide range of other pathogens was measured by qRT-PCR during the presymp- tomatic stages of infection. Production of TaMPK3 and expression of most of the genes responded to inoculation with Z. tritici but varied considerably between experimental replicates. However, there was no significant difference between compatible and incompatible interactions in any of the responses tested. These results demonstrate that the molecular biology of the gene-for-gene interaction between wheat and Zymoseptoria is unlike that in many other plant diseases, indicate that environmental conditions may strongly influence early responses of wheat to infection by Z.
    [Show full text]
  • Evaluation of Winter Wheat Germplasm for Resistance To
    EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By ALBERT OKABA KERTHO In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology August 2014 Fargo, North Dakota North Dakota State University Graduate School Title EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST By ALBERT OKABA KERTHO The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. Francois Marais Dr. Liu Zhaohui Dr. Phil McClean Approved: 09/29/2014 Dr. Jack Rasmussen Date Department Chair ABSTRACT Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.
    [Show full text]
  • Achievements and Prospects of Wheat Breeding for Disease Resistance
    Czech J. Genet. Plant Breed., 38, 2002 (1): 16–28 Achievements and Prospects of Wheat Breeding for Disease Resistance PAVEL BARTOŠ, VÁCLAV ŠÍP, JANA CHRPOVÁ, JOSEF VACKE, EVA STUCHLÍKOVÁ, VERONIKA BLAŽKOVÁ, JANA ŠÁROVÁ and ALENA HANZALOVÁ Research Institute of Crop Production – Division of Genetics and Plant Breeding, Prague-Ruzyně, Czech Republic Abstract: Achievements and prospects of wheat breeding for disease resistance in the world and in the Czech Republic are reviewed. Attention is paid to rusts, powdery mildew, leaf blotch, glume blotch, tan spot, fusarium head blight, common and dwarf bunt, eyespot, barley yellow dwarf virus on wheat and wheat dwarf virus. Genes for resistance to rusts and powdery mildew in the cultivars registered in the Czech Republic are listed. Promising resistance genes and sources of resistance to the above mentioned diseases are reviewed. Prospects of resistance breeding including application of methods of molecular genetics and development of synthetic hexaploids are outlined. Keywords: wheat; resistance breeding; fungal diseases; virus diseases; Czech Republic The development of disease resistance breeding is (defined by JOHNSON [1981]) attracted attention par- closely linked with the development of genetics, plant ticularly in the last decade when several conferences pathology and the progress of plant breeding methods. were devoted to this aspect of resistance. Finally, recent First crosses of wheat based on Mendels genetic princi- development of molecular biology opened many new ples, aiming to transfer disease resistance, were carried prospects for the resistance breeding. out by BIFFEN (1905). He found monogenic inheritance of yellow rust resistance in wheat. Such inheritance has been later confirmed in other crops and pathogens.
    [Show full text]
  • Proceedings of the First International Workshop on Hulled Wheats, 21-22 July 1995, Castelvecchio Pascoli, Tuscany, Italy
    Proceedings of the First International Workshop on Hulled Wheats 21-22 July 1995 Castelvecchio Pascoli, Tuscany, Italy S. Padulosi, K. Hammer and J. Heller, editors ii HULLED WHEATS The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by December 1995, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Burkina Faso, Cameroon, China, Chile, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Iran, Israel, Italy, Jordan, Kenya, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Ukraine and Uganda. IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partnership with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the agreed research agenda of IPGRI is provided by the Governments of Australia, Austria, Belgium, Canada, China, Denmark, France, Germany, India, Italy, Japan, the Republic of Korea, Mexico, the Netherlands, Norway, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, IDRC, UNDP and the World Bank. The Institute of Plant Genetics and Crop Plant Research (IPK) is operated as an independent foundation under public law. The foundation statute assigns to IPK the task of conducting basic research in the area of plant genetics and research on cultivated plants.
    [Show full text]
  • Quantification of Genetic Relationships Among a Genomes of Wheats
    297 Quantification of genetic relationships among A genomes of wheats A. Brandolini, P. Vaccino, G. Boggini, H. Özkan, B. Kilian, and F. Salamini Abstract: The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome spe- cific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate be- tween bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am,Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo- pheevii AG genome is molecularly equidistant from those of Au and Am wheats. Key words: A genome, Triticum, genetic relationships, AFLP. Résumé : Les relations génétiques entre les espèces à génome A Triticum urartu (Au)etTriticum monococcum (Am)et les blés polyploïdes sont explorées et quantifiées à l’aide de marqueurs AFLP.
    [Show full text]
  • Characterization of Puccinia Recondita, the Causal Agent of Brown Rust: a Review
    AGRICULTURAL SCIENCES DOI: 10.22616/rrd.25.2019.051 CHARACTERIZATION OF PUCCINIA RECONDITA, THE CAUSAL AGENT OF BROWN RUST: A REVIEW Kintija Peksa1,2, Biruta Bankina1 1Latvia University of Life Sciences and Technologies, Latvia 2Institute of Agricultural Resources and Economics, Latvia [email protected] Abstract Brown rust caused by Puccinia recondita is a significant disease in cereal growing areas worldwide. On average, brown rust can cause yield losses from 10% to 40% resulting in economic losses. The disease damages the leaves, stems and glumes of cereals. Classification of the pathogen causing brown rust has undergone several revisions. There are two different opinions about the causal agent causing brown rust on rye and wheat. Some scientists consider that the causal agent of brown rust in wheat (Triticum aestivum L.) and rye (Secale cereale) is included in the broad species of P. recondita defined by Cummins, but other scientists consider that there are two species causing brown rust – P. recondita in rye and P. triticina in wheat. There are many studies about the races of P. recondita in wheat: in North America, 70 races are collected every year; in Canada, 35 races have been found; in Europe, 105 races have been found. Unfortunately, there are no studies about the races of the pathogen of rye. P. recondita is a heteroecious fungus with a complicated life cycle. For successful development, the fungus requires cereals as primary hosts and different alternative hosts, depending on the specialization of the pathogen. Specific studies about the biology, distribution and harmfulness of Puccinia recondita in Latvia are necessary.
    [Show full text]
  • Detection of Ancient Genome Duplications in Several Flowering Plant
    DETECTION OF ANCIENT GENOME DUPLICATIONS IN SEVERAL FLOWERING PLANT LINEAGES AND SYNTE-MOLECULAR COMPARISON OF HOMOLOGOUS REGIONS by JINGPING LI (Under the Direction of Andrew H. Paterson) ABSTRACT Flowering plants have evolved through repeated ancient genome duplications (or paleo- polyploidies) for ~200 million years, a character distinct from other eukaryotic lineages. Paleo-duplicated genomes returned to diploid heredity by means of extensive sequence loss and rearrangement. Therefore repeated paleo-polyploidies have left multiple homeologs (paralogs produced in genome duplication) and complex networks of homeology in modern flowering plant genomes. In the first part of my research three paleo-polyploidy events are discussed. The Solanaceae “T” event was a hexaploidy making extant Solanaceae species rare as having derived from two successive paleo-hexaploidies. The Gossypium “C” event was the first paleo-(do)decaploidy identified. The sacred lotus (Nelumbo nucifera) was the first sequenced basal eudicot, which has a lineage-specific “λ” paleo-tetraploidy and one of the slowest lineage evolutionary rates. In the second part I describe a generalized method, GeDupMap, to simultaneously infer multiple paleo-polyploidy events on a phylogeny of multiple lineages. Based on such inferences the program systematically organizes homeologous regions between pairs of genomes into groups of orthologous regions, enabling synte-molecular analyses (molecular comparison on synteny backbone) and graph representation. Using 8 selected eudicot and monocot
    [Show full text]