Generation Antipsychotics for Children and Young Adults Comparative Effectiveness Review Number 39
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antipsychotics and Seizures: Higher Risk with Atypicals?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 22 (2013) 141–143 Contents lists available at SciVerse ScienceDirect Seizure jou rnal homepage: www.elsevier.com/locate/yseiz Short communication Antipsychotics and seizures: Higher risk with atypicals? a, b c d e Unax Lertxundi *, Rafael Hernandez , Juan Medrano , Saioa Domingo-Echaburu , Monserrat Garcı´a , e Carmelo Aguirre a Pharmacy Service, Red de Salud Mental de Araba, C/alava 43, 01006 Vitoria-Gasteiz, Alava, Spain b Internal Medicine Service, Red de Salud Mental de Araba, Spain c Psychiatry Service, Red de Salud Mental de Araba, Spain d Pharmacy Service, OSI Alto Deba, Spain e Basque Pharmacovigilance Unit, Hospital de Galdakao-Usa´nsolo, Spain A R T I C L E I N F O A B S T R A C T Article history: Purpose: Almost all antipsychotics have been associated with a risk of epileptic seizure provocation. Received 29 May 2012 Among the first-generation antipsychotics (FGA) chlorpromazine appears to be associated with the Received in revised form 17 October 2012 greatest risk of seizures among the second-generation antipsychotics (SGA) clozapine is thought to be Accepted 18 October 2012 most likely to cause convulsions. This information is largely based on studies that are not sufficiently controlled. Besides, information about the seizure risk associated with newer antipsychotics is scarce. Keywords: Method: The Pharmacovigilance Unit of the Basque Country (network of centers of the Spanish Antipsychotics Pharmacovigilance System, SEFV) provided reporting data for adverse reactions (AR) from the whole Seizures SEFV to estimate the reporting odds ratio (ROR) for antipsychotics and seizures (‘‘convulsions’’ as Single Pharmacovigilance MedDra Query). -
World Journal of Pharmaceutical Research Mathur Et Al
World Journal of Pharmaceutical Research Mathur et al . World Journal of Pharmaceutical SJIF ResearchImpact Factor 8.074 Volume 7, Issue 16, 111-124. Review Article ISSN 2277– 7105 ADRS DUE TO ANTIPSYCHOTIC DRUGS: A REVIEW Prashant Mathur*1 and Waseem Yahya2 1,2Department of Pharmacy Practice Shri Guru Ram Rai Institute of Technology and Science, Patel Nagar (248001), Dehradun, Uttarakhand. INTRODUCTION Article Received on 28 June 2018, WHO defines an ADR as ―any response to a drug which is noxious and Revised on 18 July 2018, unintended, and which occurs at doses normally used in man for Accepted on 08 August 2018, DOI: 10.20959/wjpr201816-12706 prophylaxis, diagnosis, or therapy of disease, or for the modification of physiological function‖.[1] The antipsychotic drugs are chemically *Corresponding Author diverse but have the common property of alleviating the symptoms of [2] Prashant Mathur organic as well as functional psychosis. Antipsychotics are among Department of Pharmacy the most effective drugs used in psychiatry in the maintenance therapy Practice Shri Guru Ram Rai of schizophrenia, mania, or in acute psychotic reactions.[3] These drugs Institute of Technology and are also capable of causing a wide range of potential adverse drug Science, Patel Nagar (248001), Dehradun, reactions that can lead to non-compliance that can impair quality of Uttarakhand. life, may cause stigma and physical morbidity which may lead to discontinuation of medication and in extreme cases may be fatal.[4] Antipsychotic drugs have a high therapeutic -
The National Drugs List
^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ. -
Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism -
Centre for Reviews and Dissemination
Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta- analysis Leucht S, Corves C, D Arbter, Engel R R, Li C, Davis J M CRD summary The authors concluded that amisulpride, clozapine, olanzapine and risperidone can be effective in treating schizophrenia patients. Second-generation antipsychotic drugs can also result in fewer extrapyramidal side effects, but can induce weight gain. The authors' conclusions reflected the evidence presented, but some potential methodological flaws in the review process meant that the extent to which those conclusions were reliable was unclear. Authors' objectives To compare the effects of first and second-generation antipsychotic drugs in schizophrenia patients. Searching The search for eligible studies was started in 2005, including MEDLINE to October 2006, Cochrane Schizophrenia Group's Specialised Register and the US Food and Drugs Administration website. Search terms were reported and there were no language restrictions. Previous reviews were searched for additional relevant studies. Study selection Randomised controlled trials (RCTs) of oral second-generation antipsychotic drugs (amisulpride, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, sertindole, ziprasidone and zotepine) compared with first-generation drugs in patients with schizophrenia or related disorders (schizoaffective, schizophreniform or delusional disorders) irrespective of diagnostic criteria were eligible for inclusion in the review. The optimum doses of second-generation drugs were selected -
Product Monograph
PRODUCT MONOGRAPH PrFLUANXOL® Flupentixol Tablets (as flupentixol dihydrochloride) 0.5 mg, 3 mg, and 5 mg PrFLUANXOL® DEPOT Flupentixol Decanoate Intramuscular Injection 2% and 10% flupentixol decanoate Antipsychotic Agent Lundbeck Canada Inc. Date of Revision: 2600 Alfred-Nobel December 12th, 2017 Suite 400 St-Laurent, QC H4S 0A9 Submission Control No : 209135 Page 1 of 35 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE ..............................................................................3 CONTRAINDICATIONS ...................................................................................................4 WARNINGS AND PRECAUTIONS ..................................................................................4 ADVERSE REACTIONS ..................................................................................................10 DRUG INTERACTIONS ..................................................................................................13 DOSAGE AND ADMINISTRATION ..............................................................................15 OVERDOSAGE ................................................................................................................18 ACTION AND CLINICAL PHARMACOLOGY ............................................................19 STORAGE AND STABILITY ..........................................................................................21 -
Properties and Units in Clinical Pharmacology and Toxicology
Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. -
<I>Iguana Iguana</I>
Journal of the American Association for Laboratory Animal Science Vol 58, No 6 Copyright 2019 November 2019 by the American Association for Laboratory Animal Science Pages 810–816 Use of Rodent Sedation Tests to Evaluate Midazolam and Flumazenil in Green Iguanas (Iguana iguana) Thais F Bressan, Thayanee Sobreira, and Adriano B Carregaro* This study aimed to evaluate the applicability of rodent behavioral tests to assess the effects of midazolam and flumazenil in green iguanas. Four tests commonly used to assess sedation in rodents—the open field test, forced swim test, behavioral scale, and traction test—were conducted in 10 juveniles iguanas. The animals received midazolam (2 mg/kg IM) or 0.9% NaCl (0.4 mL/kg IM), and the tests were conducted between 0 and 300 min thereafter. To verify the effects of midazolam and flumazenil, the most informative tests from the evaluation stage and the limb withdrawal latency time (LWLT) were used. All 10 iguanas were tested under 4 conditions, as follows: MS, midazolam (2 mg/kg IM), followed 30 min later by 0.9% NaCl (0.4 mL/kg IM); FS, flumazenil (0.05 mg/kg IM), followed by 0.9% NaCl (0.4 mL/kg IM) 30 min later; MF, midazolam (2 mg/ kg IM), followed by flumazenil (0.05 mg/kg IM) 30 min later; and CON, 0.9% NaCl (0.4 mL/kg IM). The behavioral scale and the forced swim test showed the best detection of the onset, peak effect, and the differences between the sedated and con- trol iguanas, with testing done between 15 and 240 min after drug administration. -
Comparative Efficacy and Safety of Antipsychotic Drugs for Tic Disorders: a Systematic Review and Bayesian Network Meta-Analysis
Published online: 2018-03-05 Review Thieme Yang Chunsong et al. Comparative Efficacy and Safety … Phar- macopsychiatry 2017; 00: 00–00 Comparative Efficacy and Safety of Antipsychotic Drugs for Tic Disorders: A Systematic Review and Bayesian Network Meta-Analysis Authors Chunsong Yang1,2 * , Zilong Hao3 * , Ling-Li Zhang1,2, Cai-Rong Zhu4, Ping Zhu4, Qin Guo5 Affiliations Supporting Information for this article is available 1 Department of Pharmacy, Evidence-Based Pharmacy online at http:// doi.org/10.1055/s-0043-124872 Center, West China Second Hospital, Sichuan University 2 Key Laboratory of Birth Defects and Related Diseases of ABSTracT Women and Children (Sichuan University), Ministry of Objective The purpose of this study was to evaluate the ef- Education ficacy and safety of antipsychotic drugs for tic disorders (TDs) 3 Department of Neurology, West China Hospital, Sichuan in a network meta-analysis. University, Chengdu, China Methods PubMed, Embase, Cochrane Library, and 4 Chinese 4 West China School of Public Health, Sichuan University databases were searched. Randomized controlled trials (RCTs) 5 Department of Pediatrics, West China Second Hospital, evaluating the efficacy of antipsychotic drugs for TDs were in- Sichuan University cluded. Results Sixty RCTs were included. In terms of tic symptom Key words score, compared with placebo, haloperidol, risperidone, ari- tic disorder, antipsychotic drug, systematic review, network piprazole, quetiapine, olanzapine, and ziprasidone can sig- meta-analysis nificantly improve tic symptom score (standardized mean received 02.09.2017 differences [SMD] ranged from − 12.32 to − 3.20). Quetiapine revised 04.12.2017 was superior to haloperidol, pimozide, risperidone, tiapride, accepted 10.12.2017 aripiprazole, and penfluridol for improving tic symptom score (SMD ranged from − 28.24 to − 7.59). -
Yorkshire Palliative Medicine Clinical Guidelines Group Guidelines on the Use of Antiemetics Author(S): Dr Annette Edwards (Chai
Yorkshire Palliative Medicine Clinical Guidelines Group Guidelines on the use of Antiemetics Author(s): Dr Annette Edwards (Chair) and Deborah Royle on behalf of the Yorkshire Palliative Medicine Clinical Guidelines Group Overall objective : To provide guidance on the evidence for the use of antiemetics in specialist palliative care. Search Strategy: Search strategy: Medline, Embase and Cinahl databases were searched using the words nausea, vomit$, emesis, antiemetic and drug name. Review Date: March 2008 Competing interests: None declared Disclaimer: These guidelines are the property of the Yorkshire Palliative Medicine Clinical Guidelines Group. They are intended to be used by qualified, specialist palliative care professionals as an information resource. They should be used in the clinical context of each individual patient’s needs. The clinical guidelines group takes no responsibility for any consequences of any actions taken as a result of using these guidelines. Contact Details: Dr Annette Edwards, Macmillan Consultant in Palliative Medicine, Department of Palliative Medicine, Pinderfields General Hospital, Aberford Road, Wakefield, WF1 4DG Tel: 01924 212290 E-mail: [email protected] 1 Introduction: Nausea and vomiting are common symptoms in patients with advanced cancer. A careful history, examination and appropriate investigations may help to infer the pathophysiological mechanism involved. Where possible and clinically appropriate aetiological factors should be corrected. Antiemetics are chosen based on the likely mechanism and the neurotransmitters involved in the emetic pathway. However, a recent systematic review has highlighted that evidence for the management of nausea and vomiting in advanced cancer is sparse. (Glare 2004) The following drug and non-drug treatments were reviewed to assess the strength of evidence for their use as antiemetics with particular emphasis on their use in the palliative care population. -
The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone -
Redalyc.Tissue Depletion of Azaperone and Its Metabolite
Revista de Toxicología ISSN: 0212-7113 [email protected] Asociación Española de Toxicología España Mestorino, N.; Marchetti, M. L.; Daniele, M.; Martínez, M. A.; Martínez-Larrañaga, M. R.; Anadón, A. Tissue depletion of azaperone and its metabolite azaperol after oral administration of azaperone in food-producing pigs Revista de Toxicología, vol. 30, núm. 2, julio-diciembre, 2013, pp. 209-214 Asociación Española de Toxicología Pamplona, España Available in: http://www.redalyc.org/articulo.oa?id=91931189013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev. Toxicol. (2013) 30: 209-214 Tissue depletion of azaperone and its metabolite azaperol after oral administration of azaperone in food-producing pigs Mestorino N1* , Marchetti M L1 , Daniele M1 , Martínez M A2 , Martínez-Larrañaga M R2 , Anadón A2 . 1Laboratorio de Estudios Farmacológicos y Toxicológicos (LEFyT), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 1900- La Plata, Buenos Aires, Argentina. 2Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, España. Recibido 5 de noviembre de 2013 / Aceptado 20 de diciembre de 2013 Abstract: Azaperone is a butyrophenone tranquilizer for swine. establecidos por la Unión Europea (100 mg / kg en el músculo, el Food producing pigs are particularly sensitive to stress during hígado, los riñones y la piel + grasa) en ningún momento del handling and transport to the abattoir. In vivo, azaperone is partially muestreo. Como consecuencia, según los resultados obtenidos en el metabolised to azaperol, a metabolite with pharmacological activity.