Modeling Wind-Driven Circulation in Lake Ladoga

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Wind-Driven Circulation in Lake Ladoga BOREAL ENV. ENVIRONMENT RES. Vol. 6 • ModelingRESEARCH wind-driven 6: 307–316 circulation in Lake Ladoga ISSN 1239-6095307 Helsinki 20 December 2001 © 2001 Modeling wind-driven circulation in Lake Ladoga Dmitry Beletsky Department of Naval Architecture and Marine Engineering, University of Michigan, c/o NOAA/GLERL, 2205 Commonwealth Blvd., Ann Arbor, MI 48105, USA Beletsky, D. 2001. Modeling wind-driven circulation in Lake Ladoga. Boreal Env. Res. 6: 307–316. ISSN 1239-6095 The goal of this paper is to present circulation patterns in Lake Ladoga occurring during episodes of strong wind. Hydrodynamics of episodic events are studied with a three-dimensional barotropic numerical model. Model results are presented for a variety of wind directions and, therefore, can be used for analysis of various biogeochemical data. As an illustration, an analysis of sediment distribution in Lake Ladoga is presented. It is suggested that location of maximum sediment deposition in southeastern Lake Ladoga is due to sediment transport during episodes of strong northwesterly winds. These events generate signifi cant waves in southern Lake Ladoga, causing sediment resuspension and subsequent offshore advection and deposition. Introduction and even years of weaker winds. Wind-driven currents are also thought to be largely respon- Lake Ladoga, the largest European lake, has sible for nearshore-offshore transport of biogeo- become increasingly contaminated with nutri- chemically important materials (BIMs) in Lake ents and toxic chemicals, especially during the Michigan (Eadie et al. 1996). last 30 years (Drabkova et al. 1996). Transport Recent observations and modeling work in and fate of these substances (which are mostly Lake Michigan (Lou et al. 2000, Schwab et attached to fi ne-grained particles) is largely deter- al. 2000) suggest that waves and turbulence are mined by physical processes such as waves, tur- necessary for sediment resuspension, while cur- bulence, and currents, both mean and episodic. rents transport resuspended sediments away from Recently, there has been a growing interest in places where they temporarily reside. Because the role of episodic (wind-driven) currents in Lake Ladoga’s size, depth, and thermal regime sediment transport and, more broadly, in the (both lakes are seasonally dimictic) are compa- ecosystems of large lakes. Lick et al. (1994) rable to those of Lake Michigan, similar physi- suggested that in Lake Erie, the strongest single cal processes may be responsible for the trans- wind event can produce sediment transport com- port of BIMs in both aquatic systems. There- parable to the sediment transport during months fore, the knowledge obtained in Lake Michigan 308 Beletsky • BOREAL ENV. RES. Vol. 6 Lake Ladoga Sortavala Pitkjaranta Valaam Island100 50 Mantsinsaari Island 100 50 Priozersk 100 61o 50 Konevets Island Svir 50 Bay Burnaya River (Vuoksi) Svir River Volkhov Bay Volkhov River 60o Neva River Petrokrepost o o 32o o 30 31 33 Fig. 1. Lake Ladoga bathym- etry and main tributaries hydrodynamic and sediment transport studies rized in Filatov (1983) and Beletsky (1996) may be useful for the analysis of Lake Ladoga confi rming the existence of mean cyclonic circu- data. lation in Lake Ladoga. More recently, new tech- In order to understand transport of BIMs in niques such as ADCP (Acoustic Doppler Cur- Lake Ladoga (or in any lake) during strong wind rent Profi ler) were introduced in Lake Ladoga episodes, knowledge of lake circulation patterns current studies by Huttula et al. (1997). is required. Historically, indirect methods such Current observations are much more reliable as drifters and tracers were used to derive circu- and abundant today than 100 years ago but are lation patterns in lakes. In particular, Andreev still barely suffi cient to describe circulation in (1875) used the color differences of major tribu- most large lakes (Beletsky et al. 1999). There- taries of Lake Ladoga (Fig. 1) to suggest for the fore, numerical modeling seems to be a viable fi rst time a lake-wide cyclonic circulation pat- approach, especially when someone is inter- tern. Later, very comprehensive direct meas- ested in deriving the typical circulation patterns. urements of currents in Lake Ladoga were car- The objective of this paper is to study these ried out by the North-West Regional Administra- typical wind-driven circulation patterns in Lake tion on Hydrometeorology and Environmental Ladoga. These circulation patterns will, hope- Monitoring (1986). The results were summa- fully, contribute to understanding the distribu- BOREAL ENV. RES. Vol. 6 • Modeling wind-driven circulation in Lake Ladoga 309 tion of various biological, chemical, and geo- anic applications and subsequently used in many logical data. Ideally, we want someone having coastal and freshwater applications (Demin et a set of circulation maps to be able to explain al. 1990, Beletsky et al. 1994, Beletsky 1996). or predict biogeochemical tracer patterns. To The model uses traditional approximations of obtain wind-driven circulation patterns in Lake Bussinesq, hydrostatics, and incompressibility. Ladoga we use a state-of-the-art three-dimen- Model equations are written in the Cartesian sional numerical model. system of coordinates, and the fi nite-difference In the past, several hydrodynamic models scheme is constructed using the conservative of Lake Ladoga have been developed, both box method and Arakawa’s grid B. The basic barotropic (Lukhovitsky et al. 1978, Kvon et al. scheme of integration in time is the “leap-frog” 1991, Podsetchine et al. 1995) and baroclinic scheme with respect to the pressure gradient (Okhlopkova 1961, Filatov 1983, Astrakhantsev and advective terms, and the Euler scheme for et al. 1996). Although important knowledge of the diffusion terms. Wind and bottom stress are circulation patterns in Lake Ladoga was obtained related to surface winds and bottom currents in these studies, model results were never pre- by the conventional quadratic stress laws. More sented in suffi cient detail in order to describe information about the model can be found in currents occurring under a variety of wind direc- Demin and Ibraev (1989), Beletsky (1996). tions. In addition, horizontal resolution in many The horizontal grid size in the model is earlier models was quite low (7–10 km) because 4 km. Vertical resolution was 13 levels (1, 3, of computer power limitations. Clearly, coarse 5, 7, 10, 15, 20, 30, 40, 60, 80, 100 and 110 grid resolution does not allow one to describe in m). The coeffi cients of vertical and horizontal detail regional circulations arising in areas with turbulent diffusion of momentum were chosen irregular bottom topography and islands. For as 10 and 5 ¥ 105 cm2 s–1, respectively. These example, fi ne horizontal resolution is required coeffi cients were previously used in Lake Onega for accurate modeling of circulation and con- modeling studies which showed good agree- taminant transport in both southern and northern ment with observations (Beletsky 1996). The basins where signifi cant sources of industrial time step of integration was 600 s. There is no pollution are located (Pitkaranta, Sortavala, Pri- infl ow and outfl ow in the lake, so hydraulic fl ow ozersk, Volkhov R.). Adequate horizontal reso- was ignored. The lake is isothermal, so density- lution is also important for an accurate descrip- driven currents were also ignored. tion of water transport through the straits to the east and west of Valaam Island, connecting the northern and central basins of the lake (Fig. 1). Wind-induced currents in Lake Therefore, there is a need for a more compre- Ladoga hensive and updated description of circulation patterns in Lake Ladoga. The value of wind stress of 1 dyn cm–2 cor- To study wind-driven circulation in Lake responding to 6–9 m s–1 winds (depending on Ladoga, a well calibrated numerical circulation atmospheric stability) was used in all calcula- model (Beletsky et al. 1994) was used. This tions. This wind speed is typical during the ice- work continues from Beletsky (1996). free period (May–November) in Lake Ladoga (Kvon et al. 1991). Observational and modeling evidence suggests that wind of such magnitude Hydrodynamic model generates currents exceeding both hydraulic and density-driven currents in the lake (Beletsky and Since wind-driven currents are not strongly Schwab 2001). Therefore, presented circulation affected by stratifi cation, for large-scale wind- patterns can be used not only when the lake is driven circulation modeling in Lake Ladoga a isothermal but also during the stratifi ed period barotropic version of the 3-dimensional primi- if the wind stress is suffi ciently strong (on the tive equation model (Demin and Ibraev 1989) order of 1 dyn cm–2 ). Since our goal is to derive was used. This model was fi rst designed for oce- basic circulation patterns, we chose the simplest 310 Beletsky • BOREAL ENV. RES. Vol. 6 wind fi eld possible, the one with no spatial makes the vorticity of the largest gyres in Lake variability. Therefore, it should be understood Ladoga very sensitive to the east-west compo- that success in using results of our calculations nents of the wind stress. In particular, the mostly will depend on how valid this assumption is cyclonic circulation pattern corresponding to for a particular event. Steady-state circulations southwest or northwest winds (Fig. 4) resembles in Lake Ladoga were calculated for eight wind cyclonic circulation pattern induced by west directions (N, NE, E, SE, S, SW, W and NW). wind. On the other hand, the mostly anticyclonic The circulation pattern emerges after about one circulation pattern corresponding to southeast or day of wind forcing and changes relatively little northeast winds (Fig. 5) resembles anticyclonic after that. circulation pattern induced by east wind. The common feature of wind-induced fl ow Our model results generally agree with model in lakes is so-called two-gyre circulation caused results and current observations in the central by the bottom topography.
Recommended publications
  • Revue Européenne Du Droit Social Nr
    Revista european ă de drept social REVUE EUROPÉENNE DU DROIT SOCIAL 1 Revue europénnee du droit social Maison d’édition Bibliotheca • Atestée par le Ministère de la Culture et des Cultes avec l’avis no. 4363 / 27.05.1997 • Acreditée par le Conseil National de la Recherche Scientifique (CNCS), 2011-2014 • Membre de l’Association des Editeurs de Roumanie – AER (Romanian Publishers Association – RPA) N. Radian, KB 2/3, Târgovi şte, 130062 tel/fax: 0245.212241 e-mail: [email protected] www.bibliotheca.ro 2 Revista european ă de drept social REVUE EUROPÉENNE DU DROIT SOCIAL Volume XXVII • ISSUE 2 • Year 2015 Édition Bibliotheca Târgovi şte, 2015 3 Revue europénnee du droit social La Revue est reconnuée par le Conseil National de la Recherche Scientifique (CNCS) categorie B+ avec avis no. 828/2007 en évidence BDI Copernicus, CEEOL et EBSCO Publishing Comite scientifique/ Scientific Board: 1. Antonio Baylos, Professeur de Droit du Travail et de la Sécurité Sociale à l'Université de Castilla La Mancha, Spain 2. Dimitri Uzunidis, Directeur du Laboratoire de Recherche sur l'Industrie et l'Innovation (ULCO, France) 3. Alexandru Ţiclea, Professeur, Recteur de l’Université Ecologique Bucarest Roumanie 4. Sophie Boutillier, Directrice de recherche au laboratoire Redéploiement industriel et innovation à l'Université du Littoral-Côte d'Opale, France 5. Ahmed Smahi, Enseignant Chercheur à la Faculté des Sciences Economiques et de Gestion, Université de Tlemcen, Algérie 6. Ana R. Martín Minguijón, Doyen de la Faculté de droit UNED Madrid, Spain 7. Vlad Barbu, Professeur, Vice-recteur de l’Académie de Police „Alexandru Ioan Cuza” Bucarest, Roumanie 8.
    [Show full text]
  • Monitoring of Transboundary Waters Between Finland and Russia - Example of Cross-Border Harmonization
    Monitoring of transboundary waters between Finland and Russia - Example of cross-border harmonization Seppo Hellsten Sari Mitikka, Seppo Rekolainen Training Workshop Strengthening The Basis For Exchange Of Data And Information On Priority Themes & Expert Working Group On Monitoring And Information Exchange 2-4 July 2019 Ohrid, North Macedonia Finland and transboundary waters Ref. INBO Europe annual meeting 2019 Marko Taneli Duunari-Työntekijäinen, SYKE 3 Keskinen River basins • The agreement covers most of eastern frontier (about 1000 km) with the exception of sea areas. • All trans-boundary inland waters • 19 river basins • Most waters flow from Finland to Russian • The largest river basins along the common border are those of the Vuoksi and Paatsjoki, both with several hydroelectric power plants • Main interest has long been on watercourses in South-East Finland. Joint Finnish-Russian Commission on the Use of Frontier Waters The agreement • The agreement was made in 1964 between the Soviet Union and Finland. • Long-term and large-scale transboundary cooperation on water management has been carried out between Finland and Soviet Union/Russia. • The most important issue is to regulate on impacts in neighbouring country • Regulation of water flow when there is a threat of floods or water scarcity • Preventing pollution and monitor water quality • Make sure that fish can freely migrate and prevent or minimize harms for fish stocks • Common understanding of risks, benefits and costs in the broad sense The annual meeting of the Commission is the formal decision-making body Both parties (FI and RU) appoints a chairman and provides the commission with experts and secretaries Commission will have its 57.
    [Show full text]
  • Air Defence in Northern Europe
    FINNISH DEFENCE STUDIES AIR DEFENCE IN NORTHERN EUROPE Heikki Nikunen National Defence College Helsinki 1997 Finnish Defence Studies is published under the auspices of the National Defence College, and the contributions reflect the fields of research and teaching of the College. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the National Defence College. Editor: Kalevi Ruhala Editorial Assistant: Matti Hongisto Editorial Board: Chairman Prof. Pekka Sivonen, National Defence College Dr. Pauli Järvenpää, Ministry of Defence Col. Erkki Nordberg, Defence Staff Dr., Lt.Col. (ret.) Pekka Visuri, Finnish Institute of International Affairs Dr. Matti Vuorio, Scientific Committee for National Defence Published by NATIONAL DEFENCE COLLEGE P.O. Box 266 FIN - 00171 Helsinki FINLAND FINNISH DEFENCE STUDIES 10 AIR DEFENCE IN NORTHERN EUROPE Heikki Nikunen National Defence College Helsinki 1997 ISBN 951-25-0873-7 ISSN 0788-5571 © Copyright 1997: National Defence College All rights reserved Oy Edita Ab Pasilan pikapaino Helsinki 1997 INTRODUCTION The historical progress of air power has shown a continuous rising trend. Military applications emerged fairly early in the infancy of aviation, in the form of first trials to establish the superiority of the third dimension over the battlefield. Well- known examples include the balloon reconnaissance efforts made in France even before the birth of the aircraft, and it was not long before the first generation of flimsy, underpowered aircraft were being tested in a military environment. The Italians used aircraft for reconnaissance missions at Tripoli in 1910-1912, and the Americans made their first attempts at taking air power to sea as early as 1910-1911.
    [Show full text]
  • Physical-Geografical Characteristics of Lake Ladoga
    Physical-geograficalcharacteristics of Lake Ladoga Dr. AnastasiyaStepanova Russian State HydrometeorologicalUniversity The purpose of my speech today: •What is Lake? Common concepts. •Main limnologicalcharacteristics of Lake Ladoga. Definitionof the lake. Basinswith different forms are filled of water and which haven't reverse connection with the Ocean. This water body is characterized by special hydrochemicaland hydrobiologicalregimes. The main significances (“roles”) of lakes •Accumulation of atmosphericprecipitation; •Accumulation, processing and recycling of organic and mineral mater; •Regulation of water conditions; •Important “role”in process of climate- formation; •Habitat for different species of animals and plants; •Source of fresh water for the human. Lake origin •tectonic •glacial •tectonic and glacial •erosiveand accumulative •lagoon •flood-lands •meteorite •volcanic •…and other compound origins', more then 60 types Lake origin. An examples •Lake Ladoga •Lake Onega tectonic and glacial •Lake Saimaa–glacial 2 (Area–1 700km ,Hmax –82 m) Lake location Some Lakes are located lower than sea level -in depressions Others are located higher than sea level. Some of them -in mountains-5500 m abovesealevel How many lakes are in the world? •It`svery difficult to calculate number of all Lakes in the world •Exactness of calculation depends from map scale. There are not so many small-scale maps. •Satellite investigations are very useful in this way How many lakes are in the world? •Russia –1,4 milliard •Finland –55 thousand •Sweden –100 thousand Small and big •Lifetime duration is different for small and big lakes. •Small lakes become wetlands after a time. The name of this process is succession. •Big lakes become part of ocean or separate water body from time to time.
    [Show full text]
  • Cost Effective Water Protection in the Gulf of Finland
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE The Finnish Environmentprovided by Helsingin yliopiston632 digitaalinen arkisto ENVIRONMENTAL PROTECTION Mikko Kiirikki, Pirjo Rantanen, Riku Varjopuro, Anne Leppänen, Marjukka Hiltunen, Heikki Pitkänen, Petri Ekholm, Elvira Moukhametshina, Arto Inkala, Harri Kuosa and Juha Sarkkula Cost effective water protection in the Gulf of Finland Focus on St. Petersburg . .......................... FINNISH ENVIRONMENT INSTITUTE The Finnish Environment 632 Mikko Kiirikki, Pirjo Rantanen, Riku Varjopuro, Anne Leppänen, Marjukka Hiltunen, Heikki Pitkänen, Petri Ekholm, Elvira Moukhametshina, Arto Inkala, Harri Kuosa and Juha Sarkkula Cost effective water protection in the Gulf of Finland Focus on St. Petersburg HELSINKI 2003 . .......................... FINNISH ENVIRONMENT INSTITUTE The publication is also available in the Internet www.environment.fi/publications ISBN 952-11-1426-6 ISBN 952-11-1427-4 (PDF) ISSN 1238-7312 Cover photo: Karri Eloheimo/ Water sampling in the Central Waste Water Treatment Plant in St. Petersburg. Graphics: Paula Väänänen & Mikko Kiirikki Layout: Ritva Koskinen Printing: Dark Ltd Helsinki 2003 2 ..........................................................The Finnish Environment 632 Contents Summary ..........................................................................................5 1 Introduction ..................................................................................7 2 Nutrient load ..............................................................................10
    [Show full text]
  • Some Facts About Southeast Finland Frontier Guard
    THE SOUTHEAST FINLAND BORDER GUARD DISTRICT THETHE SOUTHEA SOUTHEASTST FINLAND FINLAND BORDER BORDER GUA GUARDRD DISTRICT DISTRICT Border guard stations 10 Border check station 1 II/123 Border crossing points 8 Uukuniemi International Pitkäpohja Kolmikanta Restricted Imatra BGA (Parikkala) Kangaskoski Immola Personnel 1.1.2006: • headquarters Lake Ladoga • logistics base Niskapietilä Officers 95 Lappeenranta BGA Pelkola Border guards 570 (Imatra) Others 87 Lappeenranta airport Total 752 Nuijamaa Common border with Vehicles: Vainikkala Russia 227 km Virolahti Cars 65 BGA Leino Motorbikes 15 Vyborg Snowmobiles 59 Patrol boats 11 Vaalimaa Vaalimaa Hurppu Dogs 95 (Santio) VI/11 Gulf of Finland BORDERBORDER SECURITYSECURITY SYSTEMSYSTEM ININ SOUTHEASOUTHEASTST FINLAFINLANDND (figures/2005) BORDERBORDER CO-OPERATION WITH SURVEILLASURVEILLANCENCE NATIONAL AUTHORITIES • exposed illegal border crossings 16 • accomplished refused entries 635 • executive assistances 23 • assistances, searches 25 4 3 2 1 CO-OPERATION OVER THE BORDER RUSSIAN BORDER GUARD SERVICE • apprehended ~80 • meetings: • border delegates/deputies 22 • assistants of the border delegates 70 BORDERBORDER CHECKSCHECKS CONSULATES • refusals of entry 707 • ST. PETERSBURG • discovered fraudulent documents 128 • MOSCOW • discovered stolen vehicles 13 • PETROZAVODSK • discovered fraudulent documents 88 BORDERBORDER CHECKSCHECKS Investment: v. 2004 392 man-years; 19,0 mill. € v. 2005 409 man-years; 19,5 mill. € PASSENGERPASSENGER TRAFFIC TRAFFIC 1996 1996 - -20052005 4 764 495 4 694 657
    [Show full text]
  • Isotopic Composition of Pyterlite in Vyborg (Viipuri), Wiborg Batholith, Russia
    111 ISOTOPIC COMPOSITION OF PYTERLITE IN VYBORG (VIIPURI), WIBORG BATHOLITH, RUSSIA TAPANI RÄMÖ RÄMÖ, TAPANI 2001. Isotopic composition of pyterlite in Vyborg (Viipuri), Wiborg batholith, Russia. Bulletin of the Geological Society of Finland 73, Parts 1–2, 111–115. Key words: granites, rapakivi, geochemistry, isotopes, neodymium, lead, Proter- ozoic, Vyborg, Russian Federation Tapani Rämö: Department of Geology, P.O. Box 64, FIN-00014 University of Helsinki, Finland. E-mail: [email protected] INTRODUCTION 1994). The latter turned out to be quite homoge- neous in terms of Nd and Pb isotopes with a clear Active worldwide research on rapakivi granites Paleoproterozoic signature for all plutons extend- and related mafic and intermediate rocks has ing from the Åland Islands in the west to the Finn- shown that this lithologic assemblage is an impor- ish-Russian border in the east (Rämö 1991). tant tool in the study of the composition of deep The Russian Karelian rapakivi batholiths (Sal- continental crust and subcontinental mantle (see mi and Ulyalegi; Fig. 1a) are situated at the con- Haapala & Rämö 1999 and references therein). In tact zone of the Archean and Paleoproterozoic any one area, the radiogenic isotope composition crustal domains of the Fennoscandian Shield and of the rapakivi granites reflects the overall age of their mixed (Archean-Proterozoic) isotopic signa- the unexposed lithosphere that they occupy (e.g., ture is thus quite understandable. Recent studies Rämö 1991, Neymark et al. 1994, Rämö et al. on the Mesoproterozoic
    [Show full text]
  • Fish and Fishing in Karelia Удк 597.2/.5+639.2(470.2) Ббк 28.693.32.(2Рос.Кар.) I-54
    FISH AND FISHING IN KARELIA УДК 597.2/.5+639.2(470.2) ББК 28.693.32.(2Рос.Кар.) I-54 ISBN 978-5-9274-0651-7 © Karelian research centre RAS, 2014 FISH AND FISHING IN KARELIA N.V. ILMAST, O.P. STERLIGOVA, D.S. SAVOSIN PETROZAVODSK 2014 CHARACTERISTICS OF THE FRESHWATER FISH FAUNA OF KARELIA Karelian waters belong to drainage basins of two seas: the Baltic and the White Sea. The watershed between them runs across the central part of the republic. The hydrographic network is made up of numerous rivers and lakes grouped together into lake-river systems. The republic comprises nearly 50% of the water area of Lake Ladoga and 80% of Lake Onega, which are the biggest freshwater bodies in Europe. If lakes Onega and Ladoga are included, the lake cover of the territory (the ratio of the surface area of all lakes and the land area) is 21%. This is one of the highest values in the world. Migratory and salt-water fishes in Karelian waters are of marine origin, and the rest are of freshwater origin. Colonization of the region by freshwater fish fauna proceeded from south to north as the glacier was retreating. More thermophilic species (cyprinids, percids, etc.) colonized the waters some 10000 years B.P., and cold-loving species (salmons, chars, whitefishes, etc.) – even earlier. Contemporary freshwater fish fauna in Karelia comprises 44 fish species, excluding the typically marine species that enter the lower reaches of the rivers emptying into the White Sea (European plaice, Arctic flounder, navaga), farm-reared species (pink salmon, common carp, rainbow trout, longnose sucker, muksun, Arctic cisco, broad whitefish, northern (peled) whitefish, nelma/inconnu), as well as some accidental species (European flounder).
    [Show full text]
  • GORGEOUS KARELIA With
    GORGEOUS KARELIA with 1 The tours presented in this brochure aim to country had been for centuries populated by the introduce customers to the unique beauty and Russian speaking Pomors – proud independent folk culture of the area stretching between the southern that were at the frontier of the survival of the settled coast of the White Sea and the Ladoga Lake. civilization against the harshness of the nature and Karelia is an ancient land that received her name paid allegiance only to God and their ancestors. from Karelians – Finno-Ugric people that settled in that area since prehistoric times. Throughout the For its sheer territory size (half of that of Germany) history the area was disputed between the Novgorod Karelia is quite sparsely populated, making it in fact Republic (later incorporated into Russian Empire) the biggest natural reserve in Europe. The and Kingdom of Sweden. In spite of being Orthodox environment of this part of Russia is very green and Christians the Karelians preserved unique feel of lavish in the summer and rather stern in the winter, Finno-Ugric culture, somehow similar to their but even in the cold time of the year it has its own Finnish cousins across the border. East of the unique kind of beauty. Fresh water lakes and rivers numbered in tens of thousands interlace with the dense taiga pine forest and rocky outcrops. Wherever you are in Karelia you never too far from a river or lake. Large deposits of granite and other building stones give the shores of Karelian lakes a uniquely romantic appearance.
    [Show full text]
  • DRAINAGE BASIN of the BALTIC SEA Chapter 8
    216 DRAINAGE BASIN OF THE BALTIC SEA Chapter 8 BALTIC SEA 217 219 TORNE RIVER BASIN 221 KEMIJOKI RIVER BASIN 222 OULUJOKI RIVER BASIN 223 JÄNISJOKI RIVER BASIN 224 KITEENJOKI-TOHMAJOKI RIVER BASINS 224 HIITOLANJOKI RIVER BASIN 226 VUOKSI RIVER BASIN 228 LAKE PYHÄJÄRVI 230 LAKE SAIMAA 232 JUUSTILANJOKI RIVER BASIN 232 LAKE NUIJAMAANJÄRVI 233 RAKKOLANJOKI RIVER BASIN 235 URPALANJOKI RIVER BASIN 235 NARVA RIVER BASIN 237 NARVA RESERVOIR 237 LAKE PEIPSI 238 GAUJA/KOIVA RIVER BASIN 239 DAUGAVA RIVER BASIN 241 LAKE DRISVYATY/ DRUKSHIAI 242 LIELUPE RIVER BASIN 245 VENTA, BARTA/BARTUVA AND SVENTOJI RIVER BASINS 248 NEMAN RIVER BASIN 251 LAKE GALADUS 251 PREGEL RIVER BASIN 254 VISTULA RIVER BASIN 260 ODER RIVER BASIN Chapter 8 218 BALTIC SEA This chapter deals with major transboundary rivers discharging into the Baltic Sea and some of their transboundary tributaries. It also includes lakes located within the basin of the Baltic Sea. TRANSBOUNDARY WATERS IN THE BASIN OF THE BALTIC SEA1 Basin/sub-basin(s) Total area (km²) Recipient Riparian countries Lakes in the basin Torne 40,157 Baltic Sea FI, NO, SE Kemijoki 51,127 Baltic Sea FI, NO, RU Oulujoki 22,841 Baltic Sea FI, RU Jänisjoki 3,861 Lake Ladoga FI, RU Kiteenjoki-Tohmajoki 1,595 Lake Ladoga FI, RU Hiitolanjoki 1,415 Lake Ladoga FI, RU Lake Pyhäjärvi and Vuoksi 68,501 Lake Ladoga FI, RU Lake Saimaa Juustilanjoki 296 Baltic Sea FI, RU Lake Nuijamaanjärvi Rakkonlanjoki 215 Baltic Sea FI, RU Urpanlanjoki 557 Baltic Sea FI, RU Saimaa Canal including 174 Baltic Sea FI, RU Soskuanjoki Tervajoki 204
    [Show full text]
  • Karelia: a Place of Memories and Utopias
    Oral Tradition, 23/2 (2008): 235-254 Karelia: A Place of Memories and Utopias Outi Fingerroos Karelia is a vast inhabited area in northern Europe of historical significance to Finland,1 Russia, and Sweden. In Finnish historiography, Karelia has often been described as a borderland or battlefield lying between East and West, and as a focal point. These labels date back to medieval times, when the East and the West, that is, Novgorod and Sweden, struggled for commercial and political power over the tribes that lived in the geographical area of Karelia. At the same time, this area was also the arena for a struggle that resulted in the coexistence there of two distinct religious traditions of Eastern and Western Europe until the Second World War.2 Map 1: Since the fourteenth century, the border in Karelia has been re-drawn about ten times. © The Finnish Karelian League 1 Finland gained independence in 1917. 2 See Fingerroos 2007a; Heikkinen 1989:16; Hämynen 1994:17-19; and Sallinen-Gimpl 1994:16-17. 236 OUTI FINGERROOS Karelia is currently divided between the Russian Republic of Karelia, the Russian Leningrad Oblast, and two regions of Finland: South Karelia and North Karelia. There is also a Russian population living in many parts of the area. Some western parts of Karelia have never been on the Russian side of the border, whereas others have never been a part of Finland. Therefore, Karelia should be considered a heterogeneous area, parts of which are culturally connected to either Finland or Russia. This fact is also evident in the assigned names of Finnish and Russian Karelia.
    [Show full text]
  • The Active Tectonics of the Vuoksi Fault Zone in the Karelian Isthmus
    Bulletin of the Geological Society of Finland, Vol. 90, 2018, pp 257–273, https://doi.org/10.17741/bgsf/90.2.009 The active tectonics of the Vuoksi Fault Zone in the Karelian Isthmus: parameters of paleo- earthquakes estimated from bedrock and soft- sediment deformation features Sergey V. Shvarev1,2*, Andrey A. Nikonov2, Michail V. Rodkin3,4 and Anton V. Poleshchuk5 1 Institute of Geography, Russian Academy of Sciences, Staromonetny lane 29, Moscow, 119017, Russia 2 Schmidt Institute of the Physics of the Earth, Russian Academy of Sciences, Bolshaya Gruzinskaya str., 10-1, Moscow, 123242, Russia 3 Institute of Theory of Earthquake Prediction and Mathematical Geophysics, Profsoyuznaya str. 84/32, Moscow, 117997, Russia 4Institute of Marine Geology and Geophysics Far Eastern Branch, Russian Academy of Science, Nauki street., 1B, Yuzhno-Sakhalinsk, 693022, Russia 5 Geological Institute, Russian Academy of Sciences, Pyzhevsky lane 7, Moscow, 119017, Russia Abstract The area under study is located in the south-eastern periphery of the Fennoscandian crystalline shield. At present this is a tectonically quiet region without large seismic events. But it is well known that in post-glacial time the Fennoscandian shield was an arena of active postglacial tectonics and large earthquakes. The evidence for such events was found in various parts of Fennoscandia. The traces left by some paleo- earthquakes show an undisputed character of large post-glacial faults some tens of kilometres long and of a few meters in displacement. However, some other features left by earthquakes are under discussion. Numerous deformations in bedrock and in soft sediments which can be considered as being due to earthquakes were found in the Russian Karelia.
    [Show full text]