United States Patent Office Patented Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Oct 3,347,931 United States Patent Office Patented Oct. 17, 1967 1. 2 halogenated aromatics as benzyl chloride, phenylbromo 3,347,931 PRE PARATION OF ORGANOBORON pentane, chlorobenzene, xylyl chloride, chlorotetramethyl COMPOUNDS benzene, iodoheptylbenzene, 1 - chloro-2-phenylethylene Paul R. Wunz, Jr., Richland Township, and Albert F. and the like. Typical cycloaliphatic halides include cyclo Stang, Harmony, Pa., assignors to Callery. Chemical 5 hexyl chloride and cyclopentyl bromide, while examples Company, Pittsburgh, Pa., a corporation of Pennsyl of aliphatic halides are chloroprene, allyl bromide, vinyl vania chloride, dodecyl bromide, octadecyl chloride and the like. No Drawing. Fied Aug. 14, 1958, Ser. No. 756,058 The compounds corresponding to the foregoing but con - 17 Claims. (CI. 260-606.5) taining a plurality of halogens can also be used. For ex 0 ample we have successfully used compounds such as car This application is a continuation-in-part of our applica bon tetrachloride and 1,3-dichloropropane as a reactant tion Serial Number 484,586, filed January 27, 1955, now to obtain boron hydride derivatives. While any of the abandoned. halogens may be present in the halogenated hydrocarbons, This invention relates to the preparation of organoboron chlorides and bromides generally are preferred for reasons compounds, and in particular it relates to the preparation 5 of economics and handling considerations. of organoboron compounds upon reaction of an alkene In the process involving the hydrides and alkenes, while and halogenated organic compounds with volatile boron any alkene may be used, it is generally preferred to use hydrides having at least four boron atoms per molecule. alkenes with a maximum of about 25 carbon atoms, and . It is an object of this invention to provide a method usually not more than 15 carbon atoms, per molecule for for preparing organoboron compounds that may be classed 20 they include the most common materials. Typical alkenes as derivatives of volatile higher boron hydrides. are ethylene, propene, hexene, methylbutylene, butadiene, Another object of the invention is to provide a method 1-propyl-3-decene, octadecylene and the like. for preparing organoboron compounds such as hydrocar The reactions in accordance with this invention are bon-boron compounds in accordance with the foregoing carried out in the presence of an aluminum halide catalyst. object by which a variety of hitherto unknown boron 25 Aluminum chloride and aluminum bromide are two espe containing organic compounds can be prepared. cially suitable catalyst. These are materials of commerce A specific object is to provide an improved method for and the commercially available proprietary catalysts of preparing aliphatic hydrocarbon derivatives of volatile this general type usually may be used as such in practicing higher boron hydrides. this invention. An additional specific object is to provide new alkylated 30 boron hydrides having at least four baron atoms per mole The invention will be described further in conjunction cule. with the following examples. It should be understood that These and other objects are attained with our discovery the details disclosed are given by way of illustration. that volatile higher boronhydrides react with halogenated Example I hydrocarbons in the presence of an aluminum halide and 35 thereby from organoboron compounds. We have also dis Monoethyldecaborane (C2H5B10H13) was prepared by covered that an aluminum halide will catalyze the reaction reacting ethyl bromide and decaborane in the presence of of volatile higher boron hydrides and alkenes thereby aluminum chloride using carbon disulfide as a solvent. A forming alkyl derivatives of these boron hydrides. In the 3-necked, round bottomed flask fitted with a magnetic foregoing manner, a variety of organoboron compounds 40 stirrer, reflux condenser thermometer and dropping funnel can be readily produced. Moreover, alkyl derivatives of was charged with 13.4 g (0.11 mol) of decaborane, 6 g. volatile higher boron hydrides can be produced under of aluminum chloride and 125 ml. of carbon disulfide. more moderate conditions than was heretofore possible. The dropping funnel was charged with 10.9 g (0.10 mol) The boron containing reactants that are used in our in of ethyl bromide. The contents of the flask were warmed vention are volatile higher boron hydrides containing 4 to 45 to the reflux temperature of CS, and the CHBr was 12 boron atoms per molecule. Examples of these hydrides added dropwise. Gas was evolved during the reaction. include tetraborane, pentaborane-9, pentaborane-11, hexa The reaction was complete in 4 hours. The product was borane and decaborane. The hydrides can be used in sub cooled and poured on cracked ice to decompose the AlCls. stantially pure form. However, mixtures of the hydrides The solvent layer was removed, washed and dried and as obtained, for example, by a pyrolysis of diborane, are 50 the CS2 removed under vacuum. About 3.7 g. of unreacted generally a more economical starting material and consti decaborane were removed by filtration. The crude filtrate, tute the preferred reactant for many purposes, e.g. where which weighed 10.1 g., was analyzed and found to con the identity of the product species is not of primary im tain no aluminum, halogen or sulfur. The boron and portance, as in a fuel application. It should be understood carbon content expressed in milligram atoms per gram. that materials other than the hydrides may be present was as follows: along with this reactant as long as they do not interfere deleteriously with this invention. Calculated The halogenated organic compounds that are used in Found the invention are halogenated hydrocarbons wherein the C.H. BioEI13 (CEIs) Biodia hydrocarbon portion of the molecule can be. aromatic, cycloaliphatic or aliphatic, and combinations of the fore 66.7 56.2 62.8 going such as cyclic hydrocarbons containing one or more 13.3 22.4 16.7 side chains. These compounds can be saturated or un saturated, the latter in the rings or side chains or both. 65 This analysis indicates that a mixture of monoethyldec While the number or disposition of carbon atoms present aborane and diethyldecaborane was formed in the above is not known to affect this invention, for most purposes reaction. Distillation of this product through a falling film. compounds containing a maximum of about 25 and suit molecular still yielded two major fractions which are ably 18 carbon atoms per molecule are used. Typical halo monoethyldecaborane and diethyldecaborane, respec genated hydrocarbons include, by way of example, such tively. 3,347,931 4. 3. and the halogen from the halide reactant, hydrogen halide being split out. Fraction 1 Fraction 2 Similar reactions can be carried out with the other CH5B10H13 (C2H5)2B1012 halogenated hydrocarbons and the volatile higher boron Analysis: hydrides in the presence of aluminum halides in the Boron--------------------- 65.1 56.0 manner of the representative examples above. Where the Carbon------------------- 4.6 20.8 halogenated hydrocarbons are solid, it generally is de Density at 25 C. ing.fml ----- 0.788 0.830 sirable to use a solvent and higher temperatures to facili tate contact and speed the reaction. The temperatures used Example II should, of course, take into account the pyrolysis tem Dimethyldecaborane (CH3)2B10H12, was prepared in a O perature of the borane used, for if the temperature be fashion similar to that in Example I by the action of comes excessive some of the borane will be degraded and methyl bromide on decaborane in the presence of AlBra otherwise be unavailable for the intended reaction, there using CS2 as a solvent. A mixture of 12.2 g (0.1 mol) by decreasing the yield of the desired product. Generally of decaborane, 10 g. of AlBra and 100 ml. of CS was temperatures up to about 150 to 200° C. and higher heated to the reflux temperature of CS and sparged with 5 are used. Similarly, while subatmospheric, atmospheric or 19 g. (0.2 mol) of methyl bromide. The reaction was superatmospheric pressures can be used, this condition of complete in 3% hours after which the product was reaction also is chosen with a view to facilitating the worked up as in the previous example. A 60% yield of a reaction. For example, with the more volatile halides liquid product was obtained which analyzed 61.8 milli and boranes, it is usual to conduct the reaction under gram atoms per gram of boron and 14.4 milligram atoms 20 autogenous pressure. per gram of carbon which corresponds to the theoretical The examples also show that the reaction can be boron and carbon content of dimethyldecaborane. carried out in a solvent as well as in the absence of a Example III solvent. A practice that we have found satisfactory in 25 volves using the halogenated hydrocarbon itself as a In this run, 6 g. (0.05 mol) of decaborane, 33 g (0.30 solvent, when it is liquid at normal conditions or be mol) ethyl bromide, and 1 g. AICl were reacted to comes liquid at the conditions of reaction. This embodi gether at room temperature for six hours in the absence ment involves simply using a large excess of halogenated of solvent. A vigorous reaction took place accompanied hydrocarbon relative to the boron hydride present, or by by the evolution of gas. The reaction mixture was mixed 30 providing both an alkene and halogenated hydrocarbon with water to hydrolyze the AlCl4 present. The excess in the system. The excess then serves as the reaction ethyl bromide was removed and a liquid product obtained medium; it also facilitates consumption of all the hydride which analyzed B 43.2 mga./g. and C 34.8 mga./g. This added thereby resulting in a high efficiency. The reactants, analysis corresponds, within experimental error, to the as a rule, are used in a molar ratio of about 0.2 to 5 analysis for tetraethyldecaborane, (C2H5) BioHo.
Recommended publications
  • Regulated Substance List
    INSTRUCTIONS FOR THE UNIFIED PROGRAM (UP) FORM REGULATED SUBSTANCE LIST CHEMICAL NAME CAS # TQ Listing CHEMICAL NAME CAS # TQ Listing (Lbs) Basis (Lbs) Basis Acetaldehyde 75-07-0 10,000 g Cantharidin 56-25-7 100/10,0001 * Acetone Cyanohydrin 75-86-5 1,000 Carbachol Chloride 51-83-2 500/10,0001 Acetone Thiosemicarbazide 1752-30-3 1,000/10,0001 Acetylene (Ethyne) 74-86-2 10,000 f Carbamic Acid, Methyl-,o- Acrolein (2-Propenal) 107-02-8 500 b (((2,4-Dimethyl-1,3-Dithiolan- Acrylamide 79-06-1 1,000/10,0001 2-YL) Methylene)Amino)- 26419-73-8 100/10,0001 Acrylonitrile (2- Propenenitrile) 107-13-1 10,000 b Carbofuran 1563-66-2 10/10,0001 Acrylyl Chloride Carbon Disulfide 75-15-0 10,000 b (2-Propenoyl Chloride) 814-68-6 100 b Carbon Oxysulfide Aldicarb 116-06-3 100/10,0001 (Carbon Oxide Sulfide (COS)) 463-58-1 10,000 f Aldrin 309-00-2 500/10,0001 Chlorine 7782-50-5 100 a,b Allyl Alcohol (2-Propen-1-ol) 107-18-6 1,000 b Chlorine Dioxide Allylamine (2-Propen-1-Amine) 107-11-9 500 b (Chlorine Oxide (ClO2)) 10049-04-4 1,000 c Aluminum Phosphide 20859-73-8 500 Chlorine Monoxide (Chlorine Oxide) 7791-21-1 10,000 f Aminopterin 54-62-6 500/10,0001 Chlormequat Chloride 999-81-5 100/10,0001 Amiton Oxalate 3734-97-2 100/10,0001 Chloroacetic Acid 79-11-8 100/10,0001 Ammonia, Anhydrous 2 7664-41-7 500 a,b Chloroform 67-66-3 10,000 b Ammonia, Aqueous Chloromethyl Ether (conc 20% or greater) 7664-41-7 20,000 a,b (Methane,Oxybis(chloro-) 542-88-1 100 b * Aniline 62-53-3 1,000 Chloromethyl Methyl Ether Antimycin A 1397-94-0 1,000/10,0001 (Chloromethoxymethane)
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Minutesbasel Approved
    Approved minutes, Basel 2018 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Approved minutes for Division Committee Meeting Basel, Switzerland, 13–14 August, 2018 1. Welcome, introductory remarks and housekeeping announcements Alan Hutton (ATH) welcomed everybody to the meeting, extending a special welcome to those who were attending the Division Committee (DC) meeting for the first time, and noting the presence of three former Presidents of the Division, as well as the current Secretary General of IUPAC. He described the house rules and arrangements for the course of the meeting. 2. Attendance and apologies Present: Alan T. Hutton (President, ATH), Karl-Heinz Hellwich (Past-President, KHH), Risto S. Laitinen (Secretary, RSL), Michael A. Beckett (MAB), Edwin C. Constable (ECC), Ture Damhus (TD), Richard M. Hartshorn (RMH), Elisabeth Mansfield (EM), Gerry P. Moss (GPM), Michelle M. Rogers (MMR), Molly A. Strausbaugh (MAS), Clare Tovee (CT), Andrey Yerin (AY) (see also Appendix 1) Apologies: Fabio Aricò (FA), Maria Atanasova Petrova (MA), Neil Burford (NB), (JC), Ana Maria da Costa Ferreira (ACF), Safiye Erdem (SE), Rafał Kruszyński (RK), Robin Macaluso (RM), , Ladda Meesuk (LM), Ebbe Nordlander (EN), Amelia P. Rauter (APR), Erik Szabó (ES), Keith T. Taylor (KTT), Jiří Vohlídal (JV) Invited observer: G. Jeffery Leigh (GJL) No replies: József Nagy, Sangho Koo 3. Introduction of attendees A short round of introductions was made. A new titular member, Prof. Edwin C. Constable and a new Associate Member, Dr. Clare Tovee, were attending the meeting of the Division Committee for the first time in this function. KHH informed the meeting that the following persons had passed away during recent years: Peter A.
    [Show full text]
  • UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Carboranes: Building Blocks for Materials and Ligand Development Permalink https://escholarship.org/uc/item/2vp9m2z6 Author Estrada, Jess Steven Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Carboranes: Building Blocks for Materials and Ligand Development A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Jess Steven Estrada September 2017 Dissertation Committee: Dr. Vincent Lavallo, Chairperson Dr. Richard Hooley Dr. Pingyun Feng Copyright by Jess Steven Estrada 2017 The Dissertation Jess Steven Estrada is approved: Committee Chairperson University of California, Riverside Acknowledgements I would like to thank Dr. Vincent Lavallo for giving me the opportunity to join his lab and for all of his help and support throughout graduate school. I owe a lot of my success to you. I would also like to thank the amazing faculty at UCR for all of their help and knowledge they have provided. I truly enjoyed every class I took here at UCR. In addition to the faculty, the staff in the chemistry department has been amazing over the last five years and played a huge role in my success as well so I would specifically like to thank Dr. Borchardt, the NMR genius, Dr. Fook for all of his help with my great looking X-ray structures, Christina Youhas for answering literally every question I ever had and being so kind about answering. My lab mates, who created the most unique group of people probably in the history of UCR and that I’ve ever had the pleasure of working with.
    [Show full text]
  • United States Patent Office Patented Jan
    3,489,812 United States Patent Office Patented Jan. 13, 1970 2 3,489,812 and sufficient dialkyl sulfide to permit convenient stirring METHOD OF PREPARING BIS-(DIETHYL of the reactant mixture. The reaction should be carried SULFIDE)-DECABORANE out in the absence of air or other oxidizing gas, suitably Mervin D. Marshall, Fombell, and Richard M. Hunt and by using a vacuum or nonoxidizing cover gas such as Gerald T. Heiferan, Butler, Pa., assignors to Mine nitrogen or argon. Safety Appliances Company, a corporation of Pennsyl vania tion:The following examples are illustrative of this inven No Drawing. Filed Jan. 15, 1968, Ser. No. 697,596 Int, C. C07f 5/02 EXAMPLE I U.S. C. 260-606.5 1 Claim O A glass reactor equipped with a magnetic stirrer and connected to a glass vacuum apparatus was charged with ABSTRACT OF THE DISCLOSURE 3.513 g. of (NH4)2BioHo (22.6 millimols) and 40 ml. of diethyl sulfide, cooled to about 4° C. and evacuated. Bis-(diethyl sulfide)-decaborane is prepared by reac Measured aliquots of anhydrous hydrogen chloride (92. tion of ammonium decahydrodecarborate, HCl and di 15 immoles) were added in two equal increments. This reac ethyl sulfide. tion mixture was allowed to warm to room temperature and stirred for 72 hours. A white precipitate formed which Bis-(dialkyl sulfide)-decaboranes, such as bis-(dimethyl was filtered from the diethyl sulfide solution. The evapora sulfide)-decaborane, BioH12S (CH3)2)2, and bis-(diethyl tion of excess diethyl sulfide from the solution gave 4.596 sulfide)-decaborane, BioH12S (C2H5)2)2, have been used g.
    [Show full text]
  • Nite States Patent O?Ice Patented Apr
    3,030,423 nite States Patent O?ice Patented Apr. 17, 1962 1 2 cuprous chloride catalyst employed also can be varied 3,030,423 REACTION PRODUCTS 0F ACETYLENES widely, generally being in the range of from 0.005 to 0.5 AND DECABORANE mole of cuprous chloride per mole of decaborane and Starling K. Alley, Beverly Hills, Calif., and Otto Fuchs, preferably from 0.01 to 0.2 mole of cuprous chloride per Tonawanzia, N.Y., assignors to Olin Mathieson Chemi- 5 mole of decaborane. The reaction temperature can vary cal Corporation, a corporation of Virginia from 100 to 350° C. and preferably from 150 to 250° C. No Drawing. Filed Feb. 13, 1959, Ser. No. 793,211 The pressure can vary from atmospheric pressure to about 3 Claims. (Cl. 260-6065) 700 p.s.i.g., although closed system reactions are usually conducted at about 100 to 600 p.s.i.g. The reaction gen This invention relates to solid products obtained by 10 erally requires about 1 to 10 hours depending upon the the reaction of acetylene or methylacetylene with deca~ ratio of reactants and the temperature and pressure em borane. ployed. The solid products of this invention, when incorporated Although the reaction will proceed in the absence of a with suitable oxidizers such as ammonium perchlorate, solvent, a solvent common for the reactants but inert with potassium perchlorate, sodium perchlorate, etc., yield 15 respect to the reactants under the reaction conditions is solid propellants generally suitable for rocket power usually employed. Such solvents include aliphatic hydro plants and other jet propelled devices.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Revision Date 14-February-2020 Revision Number 2 1. Identification Product Name Decaborane Cat No. : 87892 CAS-No 17702-41-9 Synonyms No information available Recommended Use Laboratory chemicals. Uses advised against Food, drug, pesticide or biocidal product use. Details of the supplier of the safety data sheet Company Importer/Distributor Manufacturer Fisher Scientific Alfa Aesar 112 Colonnade Road, Thermo Fisher Scientific Chemicals, Inc. Ottawa, ON K2E 7L6, 30 Bond Street, Ward Hill, MA 01835-8099 Canada Tel: 800-343-0660 Fax: 800-322-4757 Tel: 1-800-234-7437 Email: [email protected] www.alfa.com Emergency Telephone Number During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (800) 579-7421. 2. Hazard(s) identification Classification WHMIS 2015 Classification Classified as hazardous under the Hazardous Products Regulations (SOR/2015-17) Flammable solids Category 2 Acute oral toxicity Category 3 Acute dermal toxicity Category 3 Acute Inhalation Toxicity Category 2 Physical Hazards Not Otherwise Classified Category 1 Risk of explosion if heated under confinement Label Elements Signal Word Danger Hazard Statements Flammable solid Fatal if inhaled Toxic if swallowed or in contact with skin ______________________________________________________________________________________________ Page 1 / 7 Decaborane Revision Date 14-February-2020 ______________________________________________________________________________________________ Risk of explosion if heated under confinement Precautionary Statements Manufacturer Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street, Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Prevention Keep away from heat, hot surfaces, sparks, open flames and other ignition sources.
    [Show full text]
  • Tuning Photophysical Properties in Closo-Decaborane Cluster Derivatives
    TUNING PHOTOPHYSICAL PROPERTIES IN CLOSO-DECABORANE CLUSTER DERIVATIVES by Mustapha B. Abdulmojeed A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University 2020 Thesis Committee: Dr. Andrienne C. Friedli, Major Advisor Dr. Piotr Kaszynski, Committee Member Dr. Kevin Bicker, Committee Member Dr. Justin Miller, Committee Member ii Tuning Photophysical Properties in Closo-Decaborane Cluster Derivatives by Mustapha B. Abdulmojeed Approved: _____________________________________________ Dr. Andrienne C. Friedli, Committee Chair _____________________________________________ Dr. Piotr Kaszynski, Committee Member _____________________________________________ Dr. Kevin L. Bicker, Committee Member _____________________________________________ Dr. Justin M. Miller, Committee Member _____________________________________________ Dr. Paul G. Van Patten, Chair, Department of Chemistry _____________________________________________ Dr. David L. Butler, Dean, College of Graduate Studies ii iii ACKNOWLEDGEMENTS All thanks belong to God who has made it possible to complete this piece of work. Thanks to my wife for her love, care and understanding, taking care of our kids while I was away. Special thanks to my advisor, Dr. Andrienne Friedli for her support, guide and patiently delivered instructions through-out the course of this project. Dziękuję to my co- advisor, Dr. Piotr Kaszynski whose constant push and motivation from across the Atlantic Ocean kept me going, no amount of words could express my gratitude to both of you. Sincere appreciation also goes to Dr. Szymon Kapuscinski who is not just an excellent senior colleague but a great personality whose help in this work cannot be measured. I also want to thank MTSU chemistry department for the funding opportunity. I extend my gratitude to all faculty members in the department for creating a conducive and welcoming environment to learn and train as a chemist.
    [Show full text]
  • And 1,7-Carborane Ligands for Boron Neutron Capture Therapy
    YO t' Lg-3^o Ptatinum(Il) Complexes Containing lr2' and lr7-Carborane Ligands for Boron Neutron Capture Therapy A Thesis Submitted Towards the Degree of Doctor ofPhilosophy by Jean Ann Todd B.Sc. (Hons) * * a ADELAIDE * t UNIVERSITY t- AUSTRALIA cRucr L Department of Chemistry October 2001 Contents Acknowledgements IX Statement x Abstract xl Abbreviations xiii Chapter I : Introduction I l.l Cancer 1.1.1 Current Cancer Therapy 2 1.1.2 Binary Systems 2 l.l.2.l The Neutron Capture Reaction 2 1.2 Boron Neutron Capture Therapy J 1.2.1 The Advantages of BNCT J 1.2.2 Optimisation of BNCT 4 1.2.3 Application of BNCT 5 1.2.3.1 The Blood-Brain Barrier 5 1.2.4 Early Trials of BNCT 6 1.2.5 Recent Advances in BNCT 8 1.2.5.1The Carboranes 8 l.2.5.2Types of BNCT Agents 9 1.3 Tumour Selective Agents l0 1.3.1 Cellular Builcling Blocks l0 I 1.3.1. I Boron-Containing Nucleic Acid Precursors I .3.1.2Boron-Containing Amino Acids 1.3.1.3 Lipids, Phospholipids and Carbohydrates 1.3.2 Lipoproteins 1.3.3 Liposomes 1.3.4 Receptor / Antigen Binders 1.3.4.1Antibodies l-3.4.2Growth Factors 1.3.4.3 Hormones 1.3.5 Porphyrins 1.4 DNA Targeting Agents for BNCT 1.4.1 AlkylatingAgents L4.2 DNA Intercalators 1.4.3 Groove Binders I.4.4 Polyamines 1.4.5 Nucleic Acid Precursors 1.5 Background of platinum anti-cancer drugs 1.5.1 Cisplatin 1.5.1 .1 Activity and Action of Cisplatin 1.5.1.2 Problems Associated with the Use of Cisplatin in Cancer Therapy 1.5.2 New Generations of Platinum Anti-tumour Complexes 1.5.2.1Carboplatin 1.5.2.2 Other analogues of Cisplatin and Carboplatin-
    [Show full text]
  • And 5-Halodecaboranes: Selective Syntheses from Closo-B10H10(2-) and Use As Polyborane Building Blocks" (2010)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 6- and 5-Halodecaboranes: Selective Syntheses From ClOSO- B10H10(2-) and Use as Polyborane Building Blocks William C. Ewing University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Inorganic Chemistry Commons Recommended Citation Ewing, William C., "6- and 5-Halodecaboranes: Selective Syntheses From ClOSO-B10H10(2-) and Use as Polyborane Building Blocks" (2010). Publicly Accessible Penn Dissertations. 261. https://repository.upenn.edu/edissertations/261 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/261 For more information, please contact [email protected]. 6- and 5-Halodecaboranes: Selective Syntheses From ClOSO-B10H10(2-) and Use as Polyborane Building Blocks Abstract Decaborane halogenated in the 6-position has been synthesized in high yields via the super-acid induced cage-opening reactions of closo-B10H10(2-) salts. These 6-halogenated compounds were then isomerized to their 5-substituted isomers through base catalysis. The isomerization was driven by the energy differences between the anionic-forms of each respective isomer. These reactions provided 5-halodeboranes in high yields. The bridging-hydrogens of the halodecaboranyl anions were fluxional at a range of temperatures. Variable-temperature NMR studies supported computationally proposed fluxional mechanisms. Both 5- and 6-halodecaboranes were reacted with alcohols yielding boranyl ethers. The mechanisms of substitution, where reactions with 6- and 5-halodecaboranes yielded 5- and 6-boranyl ethers, respectively, were explained computationally and confirmed through isotopic-labeling studies. The regeneration of the polymeric products of ammonia-borane dehydrogenation was carried out through a process that included digestion of the polymer, complexation of the digestate with a base, reduction of B-X bonds to B-H bonds, and finally displacement of the base with ammonia.
    [Show full text]
  • Chapter 3 Molecular Shape and Structure
    2009년도 제2학기 화 학 2 담당교수: 신국조 Textbook: P. Atkins / L. Jones, Chemical Principles, 4th ed., Freeman (2008) Chapter 14 CHAPTER 14 THE ELEMENTS: THE FIRST FOUR MAIN GROUPS Beginning of the descriptive chemistry ! ▶ Nanotechnology Æ 1 ~ 100 nm particles Æ Biosensor, Microscopic computers, Artificial bones, Light weight, strong materials Fig. 14.1 The relative abundances of the principal elements. PREODIC TRENDS Congener (동족원소) ex. Li, Na, K, Rb, Cs, Fr 14.1 Atomic Properties Fig. 14.2 Atomic radius Fig. 14.3 Ionization energy Fig. 14.4 Electronegativity Fig. 14.5 Polarizability 14.2 Bonding Trends ▶ Multiple bond formation Æ Depends on the size of atomic radii Ex. Period 2 elements form π -bond (effective overlap of p-orbitals) contrary to Period 3 and heavier elements Fig. 14.6 Overlapping of p-orbitals: (a) Period 3 and heavier elements. (b) Period 2 elements (π -bond) ▶ Periodic trend in bonding of main-group elements Æ Binary hydrides: Formulas directly related to the group number showing typical valences of the elements CH4 (Group 14/IV), NH3 (Group 15/V), H2O (Group 16/VI), HF (Group 17/VII) Fig. 14.7 Chemical formulas of hydrides vs. valences 1 2009년도 제2학기 화 학 2 담당교수: 신국조 Textbook: P. Atkins / L. Jones, Chemical Principles, 4th ed., Freeman (2008) Chapter 14 ▶ Binary hydrides Saline hydrides (이온성 수소화물): s-block elements, white, high m.p., crystals, portable fuel, H– ∆ 2 K(sg) +⎯H2 ( ) ⎯→2 KH(s) Metallic hydrides: d-block elements, black, conducting powder, portable fuel ∆ 2 Cu(sg) +⎯H2 ( ) ⎯→2 CuH(s) Molecular hydrides: non-metal elements, low melting volatile Brønsted acid NH3, HX, hydrocarbons Fig.
    [Show full text]
  • Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013
    International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Division Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. Prepared for publication by Henri A. Favre and Warren H. Powell, Royal Society of Chemistry, ISBN 978-0-85404-182-4 Chapter P-6 APPLICATIONS TO SPECIFIC CLASSES OF COMPOUNDS (continued) (P-66 to P-69) (continued from P-60 to P-65) P-60 Introduction P-61 Substitutive nomenclature: prefix mode P-62 Amines and imines P-63 Hydroxy compounds, ethers, peroxols, peroxides and chalcogen analogues P-64 Ketones, pseudoketones and heterones, and chalcogen analogues P-65 Acids and derivatives P-66 Amides, hydrazides, nitriles, aldehydes P-67 Oxoacids used as parents for organic compounds P-68 Nomenclature of other classes of compounds P-69 Organometallic compounds P-66 AMIDES, IMIDES, HYDRAZIDES, NITRILES, AND ALDEHYDES, P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines, and amidoximes (amide oximes) P-66.5 Nitriles P-66.6 Aldehydes P-66.0 INTRODUCTION The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’, or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for –CN, and one that does not, for example, ‘-nitrile’ for –(C)N. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides.
    [Show full text]