An In-Situ Formation for Triton and Nereid

Total Page:16

File Type:pdf, Size:1020Kb

An In-Situ Formation for Triton and Nereid EPSC Abstracts Vol. 14, EPSC2020-769, 2020 https://doi.org/10.5194/epsc2020-769 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. An in-situ formation for Triton and Nereid Daohai Li1 and Apostolos Christou2 1Lund University, Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Sweden ([email protected]) 2Armagh Observatory and Planetarium, UK All giant planets in the solar system have two types of moons as defined by their orbits and mode of origin. The first type, referred to as the regular moons, has tight circular orbits close to the equatorial plane of the host, implying primordial accretion in the circum-planetary disc. The second type, called the irregular moons, in contrast, is characterised by wide, highly-eccentric and -inclined orbits and are believed to be captured by their host from heliocentric orbits through some form of dissipation. However, the Neptunian moon Triton, 3000 km across, does not neatly fit in any of the two categories — it is orbiting the host rather close-in but in a direction opposite to the spin of Neptune. The obvious incompatibility between its retrograde orbit and an in-situ accretion origin suggests that it was captured by Neptune, for example, as a component of a binary asteroid pair. Another moon in the system, Nereid, is a distant irregular satellite. It is the largest of its kind and at the same time features the tightest and the most eccentric orbit for an irregular moon. Here we explore an in-situ formation formation for these two moons. We assume that both initially formed as regular satellites at Neptune. Then a planetary encounter triggers an evolutionary sequence of events for these two moons towards their observed orbits. Such an encounter cannot happen in the present solar system. But rather in the early solar system, there is an instability period as envisioned by the Nice scenario. Specifically in a later version of the Nice scenario where three gas giants (IG) are initially orbiting the Sun; during the instability period the additional IG gains a significant orbital eccentricity, allowing it to encounter other planets until finally ejected. Here, we model such an encounter between a moon-bearing Neptune and an IG. We find that during the encounter, about half of the pre-existing Neptunian moons are ejected and the surviving moons are highly excited. Among the survivors, a few per cent gain retrograde orbits (Triton analogues, TAs) while a similar fraction acquire wide, eccentric orbit (Nereid analogues, NAs). While the NAs orbits match that of Nereid quite well, those of the TAs are highly eccentric. Often the orbit of the TA intersect that of the NA; then the latter will be removed due to scattering or collision within a Myr. How can the NA survive then? A further issue is after the Neptune-IG encounter, some of the other moons may also survive. Why are these additional moons not observed today? We find that if these moons are small, collisions between them and the TA would eliminate the former without endangering the latter. Collisions also shrink the orbit of the TA, decouple from that of NA and hence NA is protected. Finally, tides takes control and circularise TA’s orbit on Gyr timescale. An illustration of our model is shown in Figure 1 and an example from the numerical simulations in Figure 2. Depending on how stringently we define a TA and NA, our model has an efficiency of 10^-5 - 10^-3. In this in-situ formation model, Triton and Nereid accrete in the circum-planetary disk (see also, Harrington & Van Flandern, 1979, Icarus, 39, 131; Li et al. 2020, A&A, in press, doi: 10.1051/0004-6361/201936672) whereas the conventional capture model (e.g., Agnor & Hamilton, 2006, Nature, 441, 192;Nesvorny et al., 2007, AJ, 133, 1962) predicts that the two form in the circum-stellar disk. The environment, e.g., the temperature, in the two disks could be rather different, potentially leading to different compositional properties for example the fraction of volatiles. Hence, further observations as well as space missions would be helpful to constrain the formation path of the two moons. Full details can be found in Li & Christou (2020, AJ, 159, 184). The authors thank Dr. Craig B. Agnor for direct contributions to this work. DL acknowledges financial support from Knut and Alice Wallenberg Foundation (2014.0017 and 2012.0150) and from Vetenskapsrådet (2017-04945). The authors also thank the Royal Physiographic Society of Lund. Astronomical research at the Armagh Observatory and Planetarium is funded by the Northern Ireland Department for Communities (DfC). Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Astrometric Reduction of Cassini ISS Images of the Saturnian Satellites Mimas and Enceladus? R
    A&A 551, A129 (2013) Astronomy DOI: 10.1051/0004-6361/201220831 & c ESO 2013 Astrophysics Astrometric reduction of Cassini ISS images of the Saturnian satellites Mimas and Enceladus? R. Tajeddine1;3, N. J. Cooper1;2, V. Lainey1, S. Charnoz3, and C. D. Murray2 1 IMCCE, Observatoire de Paris, UMR 8028 du CNRS, UPMC, Université de Lille 1, 77 av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 2 Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, UK 3 Laboratoire AIM, UMR 7158, Université Paris Diderot – CEA IRFU – CNRS, Centre de l’Orme les Merisiers, 91191 Gif-sur-Yvette Cedex, France Received 2 December 2012 / Accepted 6 February 2013 ABSTRACT Aims. We provide astrometric observations of two of Saturn’s main satellites, Mimas and Enceladus, using high resolution Cassini ISS Narrow Angle Camera images. Methods. We developed a simplified astrometric reduction model for Cassini ISS images as an alternative to the one proposed by the Jet Propulsion Labratory (JPL). The particular advantage of the new model is that it is easily invertible, with only marginal loss in accuracy. We also describe our new limb detection and fitting technique. Results. We provide a total of 1790 Cassini-centred astrometric observations of Mimas and Enceladus, in right ascension (α) and declination (δ) in the International Celestial Reference Frame (ICRF). Mean residuals compared to JPL ephemerides SAT317 and SAT351 of about one kilometre for Mimas and few hundreds of metres for Enceladus were obtained, in α cos δ and δ, with a standard deviation of a few kilometres for both satellites.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Asteroid Retrieval Mission
    Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech © 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works for Earth, Moon, Mars, Phobos, Deimos etc… very stable orbits Other Lunar Storage Orbit Options • Lagrange Points – Earth-Moon L1/L2 • Unstable; this instability enables many interesting low-energy transfers but vehicles require active station keeping to stay in vicinity of L1/L2 – Earth-Moon L4/L5 • Some orbits in this region is may be stable, but are difficult for MPCV to reach • Lunar Weakly Captured Orbits – These are the transition from high lunar orbits to Lagrange point orbits – They are a new and less well understood class of orbits that could be long term stable and could be easier for the MPCV to reach than DROs – More study is needed to determine if these are good options • Intermittent Capture – Weakly captured Earth orbit, escapes and is then recaptured a year later • Earth Orbit with Lunar Gravity Assists – Many options with Earth-Moon gravity assist tours Backflip Orbits • A backflip orbit is two flybys half a rev apart • Could be done with the Moon, Earth or Mars. Backflip orbit • Lunar backflips are nice plane because they could be used to “catch and release” asteroids • Earth backflips are nice orbits in which to construct things out of asteroids before sending them on to places like Earth- Earth or Moon orbit plane Mars cyclers 4 Example Mars Cyclers Two-Synodic-Period Cycler Three-Synodic-Period Cycler Possibly Ballistic Chen, et al., “Powered Earth-Mars Cycler with Three Synodic-Period Repeat Time,” Journal of Spacecraft and Rockets, Sept.-Oct.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • Project Report
    Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 11 September 2014 (MN LATEX style file v2.2) In situe irregular satellite formation Xiao-Chen Zheng1;2, Hagai B. Perets3, Alice Quillen4 1 Kavili institute for astronomy and Astrophysics, Peking University, Beijing, China 2 Department of Astronomy, Peking University, Beijing, China 3Technion - Israel Institute of Technology, Haifa 32000, Israel 4 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA 11 September 2014 ABSTRACT We investigate formation of satellites through collisions in a planetesimal disk that is surrounding an oblique oblate planet. We find that Kozai resonance lifted particles cause large eccentricities and inclinations in the growing satellite population and this can lead to formation of a single large moon near the Laplace radius. It could be the formation mechanism for a single large moon. Besides, retrograde moon forms in some cases motivted us a possible fomation mechanism for Triton-like irregulars. 1 INTRODUCTION 1.1 Basic physics A satellite in orbit about an oblate planet precesses about Moons around the planets are grouped into two categories, the planet's spin axis due to the planet's gravitational poten- regular and irregular. Regular moons have low inclination tial quadrupole moment. If the planet has a non-zero obliq- and eccentricity, with respect to the planet's spin axis. uity, then this axis is tilted with respect to the star's tidal In contrast, irregular satellites can have high inclinations field. The obliquity of the planet is the angle between the and eccentricities and even orbit the planet retrograde to planet's spin axis and its orbital angular momentum axis.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]
  • Survey of Irregular Jovian Moons with IVO
    CO Meeting Organizer EPSC2020 https://meetingorganizer.copernicus.org/EPSC2020/EPSC2020-767.html Europlanet Science Congress 2020 Virtual meeting 21 September – 9 October 2020 EPSC2020-767 EPSC Abstracts Vol.14, EPSC2020-767, 2020 https://doi.org/10.5194/epsc2020-767 Europlanet Science Congress 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Survey of Irregular Jovian Moons with IVO Tilmann Denk 1, Alfred McEwen2, Jörn Helbert 1, and the IVO Team3 1DLR (German Aerospace Center), Berlin 2LPL, University of Arizona, Tucson, AZ 3JHU/APL and others The Io Volcano Observer (IVO) [1] is a NASA Discovery mission currently under Phase A study [2]. Its primary goal is a thorough investigation of Io (e.g., [3]), the innermost of Jupiter's Galilean moons and the most volcanically active body in the Solar system. The 1 von 7 27.11.2020, 13:04 CO Meeting Organizer EPSC2020 https://meetingorganizer.copernicus.org/EPSC2020/EPSC2020-767.html strategy consists of the observation of Io mainly during ten targeted flybys [4] between August 2033 and April 2037. At this time, IVO will orbit Jupiter on highly eccentric orbits with periods between 78 and 260 days, a minimum Jupiter altitude of ~340000 km, apoapsis distances between 10 and 23 million kilometers, and an orbit inclination of ~45°. Among the remote-sensing and field-and-particle instruments, there are also a narrow-angle camera (NAC; clear aperture of ~15 cm; pixel field-of-view of 10 µrad) and an infrared mapping instrument (TMAP). The irregular moons of Jupiter [5] are a group of Solar system objects which is poorly studied.
    [Show full text]
  • A Serendipitous All Sky Survey for Bright Objects in the Outer Solar System
    Draft version January 6, 2015 A Preprint typeset using LTEX style emulateapj v. 5/2/11 A SERENDIPITOUS ALL SKY SURVEY FOR BRIGHT OBJECTS IN THE OUTER SOLAR SYSTEM M.E. Brown1,M.E. Bannister2,3, B.P. Schmidt3, A.J. Drake1,S.G. Djorgovski1, M.J. Graham1,A. Mahabal1, C. Donalek1,S. Larson4, E. Christensen4, E. Beshore4, R. McNaught3 Draft version January 6, 2015 ABSTRACT We use seven year’s worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20 degrees to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover 8 known bright objects in the outer solar system, the faintest having V = 19.8 ± 0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V . 19.1 (V . 18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%. Subject headings: solar system: Kuiper belt — solar system: formation — astrochemistry 1. INTRODUCTION images with archival images of the same location taken The last decade has seen the discovery of most at a different time is it recognized that the bright outer of the brightest objects in the outer solar system solar system object appears as a one-time transient.
    [Show full text]
  • A Voyage Round Saturn, Its Rings and Moons Transcript
    A voyage round Saturn, its rings and moons Transcript Date: Wednesday, 2 November 2011 - 1:00PM Location: Museum of London 2 November 2011 A Voyage Round Saturn, its Moons and Rings Professor Carolin Crawford INTRODUCTION Saturn is the most distant planet easily visible to the unaided eye, and as such it has been watched closely since prehistoric times. Its particular mystery was only unveiled when Galileo Galilei first turned his simple optical telescope to it in 1610, and immediately noticed something strange about the planet. At first he guessed that its elongated shape was due to a couple of large moons to either side of Saturn; two years later these had disappeared, only to be replaced by two arched ‘cup handles’ to the planet by 1616. It wasn’t until Christiaan Huygens was able to observe Saturn with a much improved version of a telescope in 1659 that the mystery was resolved, when he identified the two ‘handles’ as a ring encircling the planet. Huygens also discovered Saturn's largest moon, Titan. A few years later, Jean-Dominique Cassini discovered a further four moons of Saturn, and resolved the surrounding ring into a series of rings, separated by gaps – the most apparent of these gaps has since been named for him. Today we have the opportunity to scrutinise Saturn in detail, with the luxury of remote exploration by robotic spacecraft; and yet the planet and its complex system of rings and moons remains intriguing. Saturn has been visited by spacecraft only four times. Three were brief flybys: Pioneer 11 in 1979, followed by Voyagers 1 and 2 in 1980 and 1981.
    [Show full text]
  • Survey of Jovian Irregular Moons with Ivo (Io Volcano Observer)
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1841.pdf SURVEY OF JOVIAN IRREGULAR MOONS WITH IVO (IO VOLCANO OBSERVER). T. Denk1, A.S. McEwen2, J. Helbert1, and the IVO Team. 1DLR Berlin ([email protected]), 2LPL, University of Arizona. Introduction. This talk combines three different quantity. (Of course, with respect to mass, they topics: (1) A quick introduction into the IVO mission, a contribute very little to the Jovian moon system.) spacecraft proposed to orbit Jupiter in the 2030's decade Irregular moons are believed to be remnants from [1][2]; (2) Jupiter is host of at least 71, and likely many catastrophic collisions of progenitor objects suspected hundred [3] outer, so-called irregular moons with a size to have been trapped by Jupiter in the early history of >1 km which are poorly explored so far; (3) the Cassini the Solar system. Many details and characteristics, spacecraft performed an observation campaign of including their region of origin and their relationship to Saturn's irregular moons in the 2010 decade [4]. other small bodies, are not known [8]. Cassini has proven the feasibility and strong The Cassini observation potentials of irregular-moon observations by spacecraft campaign of Saturn's irregular orbiting the center planet of irregular moons. Such a moons was the first irregular-moon campaign is thus proposed as part of the Science inventory by a spacecraft orbiting Enhancement Option (SEO) "Jupiter system science" of the host planet [4][9]. Especially in the IVO mission. the second half of the mission, IVO (Io Volcano Observer) is approximately one or two days per a NASA Discovery mission cur- orbit were used to observe Saturn's irregular moons, rently under Phase A study.
    [Show full text]