Red Material on the Large Moons of Uranus: Dust from the Irregular Satellites?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Wunda-Full World? Carbon Dioxide Ice Deposits on Umbriel and Other Uranian Moons
Icarus 290 (2017) 1–13 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian moons ∗ Michael M. Sori , Jonathan Bapst, Ali M. Bramson, Shane Byrne, Margaret E. Landis Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA a r t i c l e i n f o a b s t r a c t Article history: Carbon dioxide has been detected on the trailing hemispheres of several Uranian satellites, but the exact Received 22 June 2016 nature and distribution of the molecules remain unknown. One such satellite, Umbriel, has a prominent Revised 28 January 2017 high albedo annulus-shaped feature within the 131-km-diameter impact crater Wunda. We hypothesize Accepted 28 February 2017 that this feature is a solid deposit of CO ice. We combine thermal and ballistic transport modeling to Available online 2 March 2017 2 study the evolution of CO 2 molecules on the surface of Umbriel, a high-obliquity ( ∼98 °) body. Consid- ering processes such as sublimation and Jeans escape, we find that CO 2 ice migrates to low latitudes on geologically short (100s–1000 s of years) timescales. Crater morphology and location create a local cold trap inside Wunda, and the slopes of crater walls and a central peak explain the deposit’s annular shape. The high albedo and thermal inertia of CO 2 ice relative to regolith allows deposits 15-m-thick or greater to be stable over the age of the solar system. -
Exomoon Habitability Constrained by Illumination and Tidal Heating
submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. -
7 Planetary Rings Matthew S
7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure ..................................................... -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
“Savage and Deformed”: Stigma As Drama in the Tempest Jeffrey R
“Savage and Deformed”: Stigma as Drama in The Tempest Jeffrey R. Wilson The dramatis personae of The Tempest casts Caliban as “asavageand deformed slave.”1 Since the mid-twentieth century, critics have scrutinized Caliban’s status as a “slave,” developing a riveting post-colonial reading of the play, but I want to address the pairing of “savage and deformed.”2 If not Shakespeare’s own mixture of moral and corporeal abominations, “savage and deformed” is the first editorial comment on Caliban, the “and” here Stigmatized as such, Caliban’s body never comes to us .”ס“ working as an uninterpreted. It is always already laden with meaning. But what, if we try to strip away meaning from fact, does Caliban actually look like? The ambiguous and therefore amorphous nature of Caliban’s deformity has been a perennial problem in both dramaturgical and critical studies of The Tempest at least since George Steevens’s edition of the play (1793), acutely since Alden and Virginia Vaughan’s Shakespeare’s Caliban: A Cultural His- tory (1993), and enduringly in recent readings by Paul Franssen, Julia Lup- ton, and Mark Burnett.3 Of all the “deformed” images that actors, artists, and critics have assigned to Caliban, four stand out as the most popular: the devil, the monster, the humanoid, and the racial other. First, thanks to Prospero’s yarn of a “demi-devil” (5.1.272) or a “born devil” (4.1.188) that was “got by the devil himself” (1.2.319), early critics like John Dryden and Joseph War- ton envisioned a demonic Caliban.4 In a second set of images, the reverbera- tions of “monster” in The Tempest have led writers and artists to envision Caliban as one of three prodigies: an earth creature, a fish-like thing, or an animal-headed man. -
Planetary Nomenclature: an Overview and Update
3rd Planetary Data Workshop 2017 (LPI Contrib. No. 1986) 7119.pdf PLANETARY NOMENCLATURE: AN OVERVIEW AND UPDATE. T. Gaither1, R. K. Hayward1, J. Blue1, L. Gaddis1, R. Schulz2, K. Aksnes3, G. Burba4, G. Consolmagno5, R. M. C. Lopes6, P. Masson7, W. Sheehan8, B.A. Smith9, G. Williams10, C. Wood11, 1USGS Astrogeology Science Center, Flagstaff, Ar- izona ([email protected]); 2ESA Scientific Support Office, Noordwijk, The Netherlands; 3Institute for Theoretical Astrophysics, Oslo, Norway; 4Vernadsky Institute, Moscow, Russia; 5Specola Vaticana, Vati- can City State; 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; 7Uni- versite de Paris-Sud, Orsay, France; 8Lowell Observatory, Flagstaff, Arizona; 9Santa Fe, New Mexico; 10Minor Planet Center, Cambridge, Massachusetts; 11Planetary Science Institute, Tucson, Arizona. Introduction: The task of naming planetary Asteroids surface features, rings, and natural satellites is Ceres 113 managed by the International Astronomical Un- Dactyl 2 ion’s (IAU) Working Group for Planetary System Eros 41 Nomenclature (WGPSN). The members of the Gaspra 34 WGPSN and its task groups have worked since the Ida 25 early 1970s to provide a clear, unambiguous sys- Itokawa 17 tem of planetary nomenclature that represents cul- Lutetia 37 tures and countries from all regions of Earth. Mathilde 23 WGPSN members include Rita Schulz (chair) and Steins 24 9 other members representing countries around the Vesta 106 globe (see author list). In 2013, Blue et al. [1] pre- Jupiter sented an overview of planetary nomenclature, and Amalthea 4 in 2016 Hayward et al. [2] provided an update to Thebe 1 this overview. Given the extensive planetary ex- Io 224 ploration and research that has taken place since Europa 111 2013, it is time to update the community on the sta- Ganymede 195 tus of planetary nomenclature, the purpose and Callisto 153 rules, the process for submitting name requests, and the IAU approval process. -
Asteroid Retrieval Mission
Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech © 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works for Earth, Moon, Mars, Phobos, Deimos etc… very stable orbits Other Lunar Storage Orbit Options • Lagrange Points – Earth-Moon L1/L2 • Unstable; this instability enables many interesting low-energy transfers but vehicles require active station keeping to stay in vicinity of L1/L2 – Earth-Moon L4/L5 • Some orbits in this region is may be stable, but are difficult for MPCV to reach • Lunar Weakly Captured Orbits – These are the transition from high lunar orbits to Lagrange point orbits – They are a new and less well understood class of orbits that could be long term stable and could be easier for the MPCV to reach than DROs – More study is needed to determine if these are good options • Intermittent Capture – Weakly captured Earth orbit, escapes and is then recaptured a year later • Earth Orbit with Lunar Gravity Assists – Many options with Earth-Moon gravity assist tours Backflip Orbits • A backflip orbit is two flybys half a rev apart • Could be done with the Moon, Earth or Mars. Backflip orbit • Lunar backflips are nice plane because they could be used to “catch and release” asteroids • Earth backflips are nice orbits in which to construct things out of asteroids before sending them on to places like Earth- Earth or Moon orbit plane Mars cyclers 4 Example Mars Cyclers Two-Synodic-Period Cycler Three-Synodic-Period Cycler Possibly Ballistic Chen, et al., “Powered Earth-Mars Cycler with Three Synodic-Period Repeat Time,” Journal of Spacecraft and Rockets, Sept.-Oct. -
The Subsurface Habitability of Small, Icy Exomoons J
A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat. -
20120016986.Pdf
CIRS AND CIRS-LITE AS DESIGNED FOR THE OUTER PLANETS: TSSM, EJSM, JUICE J. Brasunas\ M. Abbas2, V. Bly!, M. Edgerton!, J. Hagopian\ W. Mamakos\ A. Morell\ B. Pasquale\ W. Smith!; !NASA God dard, Greenbelt, MD; 2NASA Marshall, Huntsville, AL; 3Design Interface, Finksburg, MD. Introduction: Passive spectroscopic remote sensing of mid infrared, a rich source of molecular lines in the outer planetary atmospheres and surfaces in the thermal infrared is solar system. The FTS approach is a workhorse compared a powerful tool for obtaining information about surface and with more specialized instruments such as heterodyne mi atmospheric temperatures, composition, and dynamics (via crowave spectrometers which are more limited in wavelength the thermal wind equation). Due to its broad spectral cover range and thus the molecular constituents detectable. As age, the Fourier transform spectrometer (FTS) is particularly such it is well adapted to map temperatures, composition, suited to the exploration and discovery of molecular species. aerosols, and condensates in Titan's atmosphere and surface NASA Goddard's Cassini CIRS FTS [I] (Fig. I) has given temperatures on Enceladus. Additionally, a lighter, more us important new insights into stratospheric composition and sensitive version ofCIRS can be used to advantage in other jets on Jupiter and Saturn, the cryo-vo1cano and thermal planetary missions, and for orbital and surface lunar mis stripes on Enceladus, and the polar vortex on Titan. We sions. have designed a lightweight successor to CIRS - called CIRS-lite - with improved spectral resolution (Table I) to Details of the four key components for CIRS-lite are: separate blended spectral lines (such as occur with isotopes). -
The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring. -
Question Paper
British Astronomy and Astrophysics Olympiad 2018-2019 Astronomy & Astrophysics Challenge Paper September - December 2018 Instructions Time: 1 hour. Questions: Answer all questions in Sections A and B, but only one question in Section C. Marks: Marks allocated for each question are shown in brackets on the right. Working must be shown in order to get full credit, and you may find it useful to write down numerical values of any intermediate steps. Solutions: Answers and calculations are to be written on loose paper or in examination booklets. Students should ensure their name and school is clearly written on all answer sheets and pages are numbered. A standard formula booklet with standard physical constants should be supplied. Eligibility: All sixth form students (or younger) are eligible to sit any BAAO paper. Further Information about the British Astronomy and Astrophysics Olympiad This is the first paper of the British Astronomy and Astrophysics Olympiad in the 2018-2019 academic year. To progress to the next stage of the BAAO, you must take the BPhO Round 1 in November 2018, which is a general physics problem paper. Those achieving at least a Gold will be invited to take the BAAO Competition paper on Monday 21st January 2019. To be awarded the highest grade (Distinction) in this paper, it should be sat under test conditions and marked papers achieving 60% or above should be sent in to the BPhO Office in Oxford by Friday 19th October 2018. Papers sat after that date, or below that mark (i.e. Merit or Participation), should have their results recorded using the online form by Friday 7th December 2018. -
Our Solar System
Reader Moons of Our Solar System by Mick Roszel Genre Build Background Access Content Extend Language Expository • The Solar • Diagrams • Word Nonfi ction System • Captions Meanings • Planets and and Labels Moons • Glossary • Moon • Fact Box Geography Scott Foresman Reading Street 4.5.5 ì<(sk$m)=becbbi<ISBN 0-328-14211-5 +^-Ä-U-Ä-U 114211_CVR.indd4211_CVR.indd CCover1over1 33/8/05/8/05 99:26:20:26:20 PPMM Talk About It 1. What is a moon? 2. Look at the diagram on page 4. Describe three things itMoons shows about our of solar Oursystem. Write About It 3. How manySolar moons does S eachystem planet have? Make a graph on a separateby Micksheet Roszel of paper. Put one dot in the graph for each moon. 10 5 0 Mercury Venus Earth Mars Jupiter Extend Language A sphere is a round object, shaped like a ball or a planet. In sphere, pronounce the ph like f. Which of the following things can be called a sphere? the Earth’s moon a crater a soccer ball a coin Photographs Cover ©Omni-Photo Communications, Inc.; 1 ©Photo Researchers, Inc.; 2 ©Omni-Photo Communications, Inc.; 3 ©Bettmann/Corbis; 4 ©Luciano Corbella/DK Images; 5 (CR, BR) ©Corbis; 6 (CL) ©Photo Researchers, Inc., (BR) ©Tom Stack & Associates, Inc.; 7 ©Getty Images; 8 ©Digital Vision; 9 ©Jet Propulsion Laboratory/NASA; 10 ©Roger Ressmeyer/ NASA/Corbis. ISBN: 0-328-14211-5 Copyright © Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form by any means, electronic, mechanical, photocopying, recording, or likewise.