Insects Infesting Stored Grain and Seeds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life History of the Angoumois Grain Moth in Maryland
2 5 2 8 2 5 :~ Illp·8 11111 . 11111 11111 1.0 1.0 i~ . 3 2 Bkl: 1111/,32 2.2 .,lA 11111 . .2 I" 36 I" .z 11111 .: ~F6 I:' I'· "' I~ :: ~m~ I.: ,~ ~ l..;L,:,1.O. '- " 1.1 1.1 La.. , -- -- 11111 1.8 111111.25 /////1.4 111111.6 111111.25 1111/1.4 ~ 11111~·6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANOAROS-1963·A NATIONAL BUREAU Dr STAN£1AHOS·1963 A :1<f:~ . TEcliNICALBuLLETIN~~==~~.="=' No. 351 _ '='~.\III~.J.~=~.~=======_ APIUL, 1933 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON. D. C. 'LIFE HISTORY. OF THE ANGOUMOI8. .. ~ GRAIN MOTH IN MARYLAND . • ~J:J By PEREZ SIMM;ONS, Entomologist; and G. W. ~LLINGTON,t Assi8tant Entomologist, . DiVision of StoTed Product In.~ecw, Bureau of Entomology 2 CONTENTS Page Page , :.. Introduction________________________________ 1 Lif",his.tor~OVIp05.lt""l <;letails-Contint:ed.______ ._______________________ ·16 " ~ The AngoumoL. grain moth in wheat and ."'~ ~ corn~ ___ ..... ___ ... ___ .. ________________________ 2 Incubatioll period______________________ 19 Larval period___________________ _________ 20 ::<l ."': Annual cycle of the moth on :Maryland 2 "" _ farms ____________ ,____________________ Pupal period____________________________ 24 f_.~ Ef,Tects of some farm practices on moth Development from hotching to emer· :Ji :',f Increasc._______________________________ 3 gencc_________________________________ 25 Overwintering of the insP.Ct..____________ 3 Effectstemperatl on development Ires ________________________ oC high and low "'_ 28 Spring dispcr.;al to growing wh~aL______ 5 ;.; Thewheat Angoumois________________________________ grain moth in seed _ Comparative rate oC development oC thfi Ii sexes _________________________________.:. 30 <': Dispersal to cornfields ________ ._________ _ 12 Parasit.es____________________________________ 31 ~ - Life-history details ________________________ _ Outbreaks, past and Cuture__________________ 31 Behavior of the adults ________ . -
Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
G C A T T A C G G C A T genes Article Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna aconitifolia [Jaqc.] Maréchal) Prakit Somta 1,2,3,* , Achara Jomsangawong 4, Chutintorn Yundaeng 1, Xingxing Yuan 1, Jingbin Chen 1 , Norihiko Tomooka 5 and Xin Chen 1,* 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; [email protected] (C.Y.); [email protected] (X.Y.); [email protected] (J.C.) 2 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 3 Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 4 Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; [email protected] 5 Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (X.C.) Received: 3 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). An F2 population of 188 plants developed by crossing resistant accession ‘TN67’ (wild type from India; male parent) and susceptible accession ‘IPCMO056’ (cultivated type from India; female parent) was used for mapping. -
BIOLOGY of the ANGOUMOIS GRAIN MOTH, SITOTROGA CEREALELLA (Oliver) on STORED RICE GRAIN in LABORATORY CONDITION
J. Asiat. Soc. Bangladesh, Sci. 39(1): 61-67, June 2013 BIOLOGY OF THE ANGOUMOIS GRAIN MOTH, SITOTROGA CEREALELLA (Oliver) ON STORED RICE GRAIN IN LABORATORY CONDITION T. AKTER, M. JAHAN1 AND M.S. I. BHUIYAN Department of Entomology, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh 1Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh Abstract The experiment was conducted in the laboratory of the Department of Entomology, Sher- e-Bangla Agricultural University, Dhaka during the period from May 2009 to April 2010 to study the biology of the Angoumois grain moth, Sitotroga cerealella (Oliver) in Bangladesh. The ovipositional period, incubation period, larval period, pre-pupal period and pupal period of Angoumois grain moth were 3.67 days, 5.5 days, 25.2 days, 3.0 days and 5.0 days, respectively; male and female longevity of moth were 8.0 and10 days, respectively. The lengths of all five larval instars were 1.0 ± 0.00, 2.0 ± 0.02, 4.0 ± 0.06, 5.0 ± 0.03 and 4.0 ± 0.06 mm, and the widths were 0.10 ± 0.0, 0.4 ± 0.0, 0.6 ± 0.01, 0.8 ± 0.02 and 1.0 ± 0.09 mm, respectively. The length and width of the pre-pupa and the pupa were 4.0 ± 0.02, 3.5 ± 0.01 mm and 1.20 ± 0.05, 1.50 ± 0.03 mm respectively. The length of male and female was 11.2 ± 0.09 and 12.07 ± 0.06 mm respectively. Key words: Biology, Angoumois grain moth, Sitotroga cerealella, Stored rice grain Introduction Angoumois grain moth, Sitotroga cerealella (Oliver) (Lepidoptera: Gelechiidae) is a primary colonizer of stored grain in subtropical and warm temperate regions of the world. -
Insect Pests of Stored Grain Blog
Insect Pests of Stored Grain Insect Pest Population Potential • Insects are 1/16 to ½ inch depending on the species. • Large numbers insects in small amounts of debris. • 500 female insects • each female produces 200 offspring • 10 million insects in two generations. Adapted from the Penn State University Agronomy Guide Store Grain Insects Economic Damage • Lose up to 10% of the grain weight in a full storage bin • grain bin containing 30,000 bushels of corn valued at $3.00 per bushel would lose $9,000 • The loss does not include dockage or the cost of eliminating the insects from the grain. Adapted from the Penn State University Agronomy Guide Sampling for Bugs Looking for Bugs Docking screens can be used to separate beetles from the grain. Primary Stored Grain Feeders in NYS Weevils • Granary Weevil • Rice Weevil • Maize Weevil Beetles • Lesser Grain Borer Moths • Angoumois grain moth Weevils Have Snouts! Snout No Snout Gary Alpert, Harvard University, Bugwood.org Gary Alpert, Harvard University, Bugwood.org Maize Weevil Lesser Grain Borer Granary weevil Sitophilus granarius (L.) • polished, blackish or brown. • 3/16 of an inch long • no wings • Not in the field • longitudinal punctures- thorax • 80-300 eggs laid • One egg per grain kernel • corn, oats, barley, rye, and wheat Clemson University - USDA Cooperative Extension Slide Series , Bugwood.org Rice Weevil (Sitophilus oryzae) • 3/32 of an inch. • reddish brown to black • Small round pits-thorax • Has wings with yellow markings • Lays 80-500 eggs inside of grain • One egg per grain kernel • Start in the field • wheat, corn, oats, rye, Joseph Berger, Bugwood.org barley, sorghum, buckwheat, dried beans Maize Weevil Sitophilus zeamais • Very similar to rice weevil • slightly larger • 1/8 of an inch long • Small round pits on thorax with a mid line. -
Nghiên Cứu Thành Phần Mọt Hại Ngô Sau
VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN DƯƠNG NGHIÊN CỨU THÀNH PHẦN MỌT HẠI NGÔ SAU THU HOẠCH VÀ ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ SINH THÁI ĐẾN SỰ PHÁT TRIỂN CỦA LOÀI MỌT Sitophilus zeamais Motschulsky TRONG KHO BẢO QUẢN Ở SƠN LA LUẬN ÁN TIẾN SĨ SINH HỌC Hà Nội – 2021 VIỆN HÀN LÂM KHOA HỌC BỘ GIÁO DỤC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- NGUYỄN VĂN DƯƠNG NGHIÊN CỨU THÀNH PHẦN MỌT HẠI NGÔ SAU THU HOẠCH VÀ ẢNH HƯỞNG CỦA MỘT SỐ YẾU TỐ SINH THÁI ĐẾN SỰ PHÁT TRIỂN CỦA LOÀI MỌT Sitophilus zeamais Motschulsky TRONG KHO BẢO QUẢN Ở SƠN LA Chuyên ngành: Sinh thái học Mã số: 9 42 01 20 Người hướng dẫn khoa học: 1. PGS.TS. Khuất Đăng Long 2. PGS.TS. Lê Xuân Quế Hà Nội – 2021 LỜI CAM ĐOAN Để đảm bảo tính trung thực của luận án, tôi xin cam đoan: Luận án “Nghiên cứu thành phần mọt hại ngô sau thu hoạch và ảnh hưởng của một số yếu tố sinh thái đến sự phát triển loài mọt Sitophilus zeamais Motschulsky trong kho bảo quản ở Sơn La”. Là công trình nghiên cứu của cá nhân tôi, dưới sự hướng dẫn khoa học của PGS.TS. Khuất Đăng Long và PGS.TS. Lê Xuân Quế, các tài liệu tham khảo đều được trích nguồn. Các kết quả trình bày trong luận án là trung thực và chưa từng được công bố ở bất kì công trình nào trước đây./. -
Callosobruchus Spp.) in Vigna Crops: a Review
NU Science Journal 2007; 4(1): 01 - 17 Genetics and Breeding of Resistance to Bruchids (Callosobruchus spp.) in Vigna Crops: A Review Peerasak Srinives1*, Prakit Somta1 and Chanida Somta2 1Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Parham, 73140 Thailand 2Asian Regional Center, AVRDC-The World Vegetable Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand *Corresponding author. E-mail: [email protected] ABSTRACT Vigna crops include mungbean (V. radiata), blackgram (V. mungo), azuki bean (V. angularis) and cowpea (V. unguiculata) are agriculturally and economically important crops in tropical and subtropical Asia and/or Africa. Bruchid beetles, Callosobruchus chinensis (L.) and C. maculatus (F.) are the most serious insect pests of Vigna crops during storage. Use of resistant cultivars is the best way to manage the bruchids. Bruchid resistant cowpea and mungbean have been developed and comercially used, each with single resistance source. However, considering that enough time and evolutionary pressure may lead bruchids to overcome the resistance, new resistance sources are neccessary. Genetics and mechanism of the resistance should be clarified and understood to develop multiple resistance cultivars. Gene technology may be a choice to develop bruchid resistance in Vigna. In this paper we review sources, mechanism, genetics and breeding of resistance to C. chinensis and C. maculatus in Vigna crops with the emphasis on mungbean, blackgram, azuki bean and cowpea. Keywords: Bruchid resistance, Callosobruchus spp., Legumes, Vigna spp. INTRODUCTION The genus Vigna falls within the tribe Phaseoleae and family Fabaceae. Species in this taxon mainly distribute in pan-tropical Asia and Africa. Seven Vigna species are widely cultivated and known as food legume crops. -
The Genus Bruchus Was Restricted by Schilsky (6
THE HAIRY-VETCH BRUCHID, BRUCHUS BRACHIALIS FAHRAEUS, IN THE UNITED STATES ' By J. C. BRIDWELL, formerly Specialist in Bruchidae and Their Parasites, Division of Stored Product Insects^ Bureau of Entomology, and L. J. BOTTIMER, Assistant Entomologist^ Food and Drug Administration, United States Department of Agriculture INTRODUCTION The genus Bruchus was restricted by Schilsky (6) ^ to include only the immediate allies of Bruchus pisorum (L.), the pea weevil, of which he tabulated 24 species knowQ to him. To these may be added others doubtfully distinct, imperfectly known, or more recently described, which increase the nominal species of the genus to a total of about 46. All these species are native to the Palearctic region. Two of them are already well known in the United States as major pests of the plants affected. B. pisorum was the first of the genus and one of the first species of the family to be recognized. It was described in 1752, and was recorded as having destroyed in the 1740's the flourishing colonial American industry of producing dry peas for ships' stores. B. ruß- manus Boheman, the broadbean weevil, has now practically destroyed the broadbean industry of Caüfornia. A third species, B, hrachialis Fahraeus, has in recent years gained a foothold in this country, for in 1931 the junior author found it heavily infesting the seeds of vetches growing in New Jersey, Delaware, Maryland, and North Carolina, and in 1932 it was found in Virginia. In view of these facts it seems wise to present a brief summary of the knowledge at present available of the habits of the members of this genus and to point out the increased danger of their estabhshment in the United States as a result of changed commercial conditions. -
Chrysomela 43.10-8-04
CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion. -
The Development and Use of Varieties of Beans Resistant to Certain Insect Pests of Legumes
THE DEVELOPMENT AND USE OF VARIETIES OF BEANS RESISTANT TO CERTAIN INSECT PESTS OF LEGUMES, DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By JOSE CALDERON GUEVARA, Ing. Agr., M. Sc. The Ohio State University. 1957 Approved by: CONTENTS Page INTRODUCTION ...................... 1 REVIEW OE LITERATURE ............................. 4 Insect Outbreaks .................... 4 Food Plant Selection by Insects ................ 11 The Mechanisms of Resistance .................. 14 Cause of Resistance ........................... 18 Factors that Affect the Expression or the Permanence of Resistance .................. 22 SYNOPSIS OF THE BIOLOGY OF THE APION POD WEEVIL .... 29 SELECTION OF VARIETIES RESISTANT TO THE APION POD WEEVIL, APION GODMANI WAG................... 30 Seasonal infestation of A. godmani Wagner in Susceptible Varieties .............. 31 Investigation of the Cause of Resistance on beans to Apion godmani Wagner ........... 37 Crossing Program for A. godmani Resistance ....... 42 Classification of Bean Varieties and Lines ac cording to Resistance to the ApionPod Weevil .. 49 NOTES ON THE BIOLOGY OF THE SEED CORN MAGGOT IN MEXICO .... 52 Experiments on Seed Color Preference of Hylemya cilicrura .................................. 59 Preliminary Selection of Resistant Varieties to the Seed Corn Maggot ........... 61, ii PRELIMINARY EXPERIMENTS ON THE SELECTION. OF BEAN VARIETIES RESISTANT TO THE POTATO LEAFHOPPER .... 64 Experiments at the University Farm, Columbus,Ohio. 67 Experimental Designs ........................... 67 Relationship Between the Potato Leafhopper and Bean Plants ................................. 68 Leafhopper Damage .................... ......... 69 Recuperation of the Bean Plant from Insect Attack and Seasonal Differences .............. 72 Effect of Weather on the Potato Leafhopper and the Bean Plant .............................. 76 Tolerance of Different Bean Varieties to the Potato Leafhopper ..... -
An Annotated Bibliography of Archaeoentomology
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 4-2020 An Annotated Bibliography of Archaeoentomology Diana Gallagher Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Thesis is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Diana Gallagher Master’s Project for the M.S. in Entomology An Annotated Bibliography of Archaeoentomology April 2020 Introduction For my Master’s Degree Project, I have undertaken to compile an annotated bibliography of a selection of the current literature on archaeoentomology. While not exhaustive by any means, it is designed to cover the main topics of interest to entomologists and archaeologists working in this odd, dark corner at the intersection of these two disciplines. I have found many obscure works but some publications are not available without a trip to the Royal Society’s library in London or the expenditure of far more funds than I can justify. Still, the goal is to provide in one place, a list, as comprehensive as possible, of the scholarly literature available to a researcher in this area. The main categories are broad but cover the most important subareas of the discipline. Full books are far out-numbered by book chapters and journal articles, although Harry Kenward, well represented here, will be publishing a book in June of 2020 on archaeoentomology. -
Urban and Stored Products Entomology
Session 23 - URBAN AND STORED PRODUCTS ENTOMOLOGY [4018] ANALYSING mE IMPACT OF TERETRIUS NIGRESCENS ON [4020] NEAR-INFRARED SPECTROSCOPY APPLIED PROSTEPHANUS TRUNCATUS IN MAIZE STORES IN WEST AFRICA PARASITOIDS AND HIDDEN INSECT LARVAE, COLEOPTERA, AND CHRONOLOGICAL AGE-GRADING N. Holsl'. W. G. Meikle', C. Nansen' & R. H. Markham', 'Danish lnsl. of Agricultural Sciences, Aakkebjerg, 4200 Siagelse, Denmark, E-mail [email protected]; F. E. Dowell', J. E. Throne', A. B. Broce', R. A. Wirtz', J. Perez' & J, E. Baker', 2International Insl. of Tropical Agriculture, 08 B. P. 0932 Tri-postal, Cotonou, Benin. 'USDA ARS Grain Marketing and Production Res. Center, 1515 College Ave .. Manhattan, KS 66502, USA, E-mail [email protected]; 2Dept. of Entomol., Kansas Since its accidental introduction into East and West Africa in the early 1980's the larger State Univ., Manhattan, KS 66506; 'Entomo!. Branch, Division of Parasitic Diseases, grain borer, Prostephanus truncarus (Co!.: Bostrichidae), has been expanding its Centers for Disease Control and Prevention, Atlanta; GA 30341. geographical range and is rapidly becoming the most serious pest on stored maize and cassava in the whole sub-Saharan region. In its wake, scientists and extension officers Near-infrared spectroscopy (NlRS) was used to detect parasitoids in insect-infested wheat have been releasing the predator Teretrius (Teretriosoma) nigrescens (Col.: Histeridae) as kernels or parasitoids in house fly puparia, to detect hidden insects in grain. to identify a means of biological control. Based on results obtained in the early 1990' s in the initial stored-grain Coleoptera, and to age-grade Diptera. In tests to detect parasitized rice area of release in Togo and Benin, T. -
PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris.