A Long and Winding Road

Total Page:16

File Type:pdf, Size:1020Kb

A Long and Winding Road A LONG AND WINDING ROAD... The Discovery of the Red Leaf Viruses, the Leafrolls and Red Blotch Deborah Golino UC Davis (+) ssRNA (-) ssRNA Tobamovirus Sesquiviridae Comoviridae Bromoviridae Tobravirus Tombusviridae Cucumovirus Bromovirus Dianthovirus Hordeivirus Enamovirus Rhabdoviridae Luteovirus Cytorhabdovirus Idaeovirus Ilarvirus Machlomovirus Nucleorhabdovirus Furovirus Marafivirus Potexvirus Necrovirus Alfamovirus Sobemovirus Capillovirus, Trichovirus Tymovirus Carlavirus Bunyaviridae Tospovirus Potyviridae Closterovirus Tenuivirus dsDNA ssDNA dsRNA Caulimovirus Geminiviridae Isometric Geminivirus Banana buchy top virus group Reoviridae Badnavirus Partitiviridae Phytoreovirus Subgroup l,ll Alphacryptovirus Fijivirus Betacryptovirus Oryzavirus Subgroup lll A Short History of the Redleaf Grapevine Virus Diseases* *With much thanks to Dr. Marc Fuchs at Cornell University Discovery of Fanleaf Disease . First description in France (Cazalis-Allut, 1841) . Implication of a pathogen similar to the contagium vivum fluidum (Baccarini, 1902) . Fanleaf degeneration contracted from disease vineyard soil (Petri, 1918) . Identification of Xiphinema index, the dagger nematode vector (Hewitt et al., 1958) . Identification and characterization of Grapevine fanleaf virus as the causal agent (Baldacci et al., 1960; Cadman et al., 1960; Vuittenez, 1960) . Koch’s postulates fulfilled (Hewitt et al., 1962) Andret-Link et al. J. Pathol. 86:183 (2004) Discovery of Leafroll Disease . Description of “rougeau” in France (Ravaz and Roos, 1905; Pacottet, 1906) and ”rossore” in Italy (Arcangeli, 1907) . Graft-transmission (Scheu, 1935) . Association of a virus (Namba et al., 1979) . Serologically distinct viruses associated with the disease (Gugerli et al., 1984; Rosciglione and Gugerli, 1986) . Mealybug transmission (Rosciglione and Gugerli, 1987) . Koch’s postulates have yet to be fulfilled Maree et al. Frontiers in Microbiology 4:82 (2013) Discovery of Red Blotch Disease . First description in Napa Valley (Calvi, 2008) . A new DNA virus sequence (Krenz et al., 2012) . Diagnostic tools made available (Krenz et al., 2012; Al Rwahnih et al., 2012) . High correlation between virus presence and diseased vines (Al Rwahnih et al. 2013) . Graft transmissibility (Al Rwahnih et al. 2013) . Koch’s postulates have been fulfilled (Fuchs et al. 2014) Red Blotch: Challenges and opportunities Fanleaf First description 1841 Graft transmission 1962 Virus recognition 1960 Vector transmission 1958 Diagnostic assays 1960 Koch’s postulates 1962 Red Blotch: Challenges and opportunities Fanleaf Leafroll First description 1841 1905 Graft transmission 1962 1935 Virus recognition 1960 1979 Vector transmission 1958 1984 Diagnostic assays 1960 1984 Koch’s postulates 1962 n/a Red Blotch: Challenges and opportunities Fanleaf Leafroll Red blotch First description 1841 1905 2008 Graft transmission 1962 1935 2012 Virus recognition 1960 1979 2012 Vector transmission 1958 1984 2013 Diagnostic assays 1960 1984 2012 Koch’s postulates 1962 n/a 2013 FPS Target Grapevine Diseases Grapevine Degeneration Fanleaf Grapevine Decline Tomato Ringspot Virus Leafroll Rugose Wood Complex Kober Stem Grooving Corky Bark LN33 Stem Grooving Rupestris Stem Pitting Fleck Minor Viruses Leafroll Virus Early Leafroll History in California . Virus first hypothesized by Olmo as cause of ‘White Emperor Disease (Olmo and Rizzi, 1943) . Graft-transmissibility of WED demonstrated (Harmon and Snyder, 1946) . 1948, Olmo release ‘Ruby Cabernet’ found to be infected with Leafroll virus due to contaminated rootstock (Olmo 1975) . Hewitt writes W&V article urging Grape Certification Program (Hewitt 1949) . 1950, University and USDA researcher begin meeting with industry and planning a grape clean plant program . July 1952, the California Grape Certication Associate is formed . 1956, CDFA created the California Grapevine Registration and Certification Program Proposed new taxonomy for the leafroll viruses Genus Virus Acronym Closterovirus Grapevine leafroll associated virus 2 GLRaV-2 Ampelovirus Grapevine leafroll associated virus 1 GLRaV-1 Subgroup I Grapevine leafroll associated virus 3 GLRaV-3 Grapevine leafroll associated virus 4 GLRaV-4 Grapevine leafroll associated virus 4 strain 5 GLRaV-5 Grapevine leafroll associated virus 4 strain 6 GLRaV-6 Ampelovirus Grapevine leafroll associated virus 4 strain 9 GLRaV-9 Subgroup II Grapevine leafroll associated virus 4 strain Car. GLRaV-Car Grapevine leafroll associated virus 4 strain Pr GLRaV-Pr Grapevine leafroll associated virus 4 strain De GLRaV-De Velarivirus Grapevine leafroll associated virus 7 GLRaV-7 Closteroviridae family insect vector Velarivirus Unknown ?? Crinivirus Whiteflies Closterovirus Aphids Ampelovirus Mealybugs, soft scale, & sacle incest Leafroll Virus Effects Lider, L.A., A.C. Goheen, N.L. Ferrari. 1975. A comparison between healthy and leafroll- affected grapevine planting stocks. Am J. Enol Vit. 26:144-147. cv. Burger/ Dogridge Percent Year Parameter H LR-infected Change difference 1971 Yield (kg/vine) 16.5 12.5 -4 -24% Pruning weight 1.87 1.5 -0.37 -20% (kg/vine) Brix 19.6 16.8 -2.8 -14% TA 0.65 0.79 0.14 21% 1972 Yield (kg/vine) 23.2 19.8 -3.4 -15% Pruning weight 1.42 0.97 -0.45 -32% (kg/vine) Brix 16.3 13.9 -2.4 -15% TA 0.67 0.79 0.12 18% Walter and Legin, 1986. Connaissances actuelles sur les viroses de l’enroulement de la Vigne. Le Vigneron champenois, 9,436-446. Percent Clone Parameter Not inoculated LR-inoculated Difference difference Chardonnay 1 Yield (kg/vine) 1.49 0.85 -0.64 -43% Probable alcohol 10.1 8.2 -1.9 -19% content Chardonnay 3 Yield (kg/vine) 1.6 0.8 -0.8 -50% Probable alcohol 11 9.5 -1.5 -14% content Pinot noir 3 Yield (kg/vine) 1.26 0.49 -0.77 -61% Probable alcohol 9.6 8.6 -1 -10% content Pinot noir 98 Yield (kg/vine) 0.57 0.36 -0.21 -37% Probable alcohol 9.5 9.2 -0.3 -3% content Borgo, M. 1991. Influence of grapevine leafroll virus on some production parameters. Riv. Vitic. Enol 2:21-30. Mean of 3 years data; 5BB, 420A; LR- infected = LR-3, KSG, RSP, Vein necrosis Percent Variety Parameter Healthy LR-infected Difference difference Merlot Yield (kg/vine) 12.85 9.77 -3.08 -24% Brix 18.5 17.4 -1.1 -6% TA, g/l 6.76 6.97 0.21 +3% Cabernet Yield (kg/vine) 6.8 5.6 -1.2 -18% franc Brix 19.2 18.1 -1.2 -18% TA, g/l 5.27 5.78 0.51 +10% Cabernet Yield (kg/vine) 8.4 8.7 0.3 +4% Sauvignon Brix 19.3 18.2 -1.1 -6% TA, g/l 8.69 9.79 1.1 +13% Association of a Circular DNA Virus in Grapevines Affected by Red Blotch Disease in California M. Al Rwahnih1, A. Dave1,2, M. Anderson3, J. K. Uyemoto2 and M.R. Sudarshana1,2 1Dept. of Plant Pathology, 2USDA-ARS, 3Dept. of Viticulture and Enology, University of California, Davis, CA 95616, USA Zinfandel 1A on AXR, Fall 2011 Pinot noir Vitis vinifera cv. Cabernet franc Leafroll Red blotch Distribution of GRBaV . Wine grapes . Red . White . Table grapes . Raisin grapes . Rootstocks Distribution of GRBaV-infected vines Red Blotch: What Do We Know? . Red blotch is a recently recognized disease . Fruit ripening of diseased vines can be delayed in some vineyards . Brix can be substantially reduced . GRBaV, a newly discovered DNA virus, is associated with symptomatic grapevines . GRBaV is the causal agent of red blotch . Microshoot tip culture is not efficient at curing Red Blotch: What Do We Know? . GRBaV is graft-transmissible . Increased incidence of GRBaV in some vineyards over time . Virginia creeper leafhopper (Erythroneura ziczac) may be able to transmit GRBaV from grapevine to grapevine in the greenhouse . Symptoms can be misleading. Test, don’t guess! A PCR assay is available for diagnosis . Two distinct genetic variants of GRBaV Red Blotch: What Don’t We Know? 1. Ecology • Vector(s) • Transmission from grapevine to grapevine in vineyards 2. Detection • Maximize Sampling Efficiency 3. Interaction of GRBaV and other viruses • Synergistic/antagonistic/commensalistic relationships 4. Effect of GRBaV on vine health • Comparative performance evaluation • Tolerant cultivars/ rootstocks 5. Management • Clean stocks Foundation Plant Services UC Davis http://fps.ucdavis.edu Foundation Plant Services: . Produces, tests, maintains and distributes elite disease- tested plant propagation material . Provides plant importation and quarantine services, virus testing and elimination . Coordinates release of UC patented horticultural varieties . Links researchers, nurseries, and producers College of Agricultural & Environmental Sciences Pathogen Elimination Meristem shoot tip culture 10.0 mm Cut to < 0.5 mm 7 months Process Description: Grapevine Importation through Foundation Plant Services, UC Davis (Simplified) Document # FPS2012-01 © UC Regents S. Sim Revised March 6, 2012 YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6 YEAR 7 YEAR 8 YEAR 9 Customer submits Service Request Form to FPS and identifies supplier. Supplier collects wood ships it to APHIS, Beltsville, Field Index MD Graft onto indicators: Cabernet franc Kober 5BB LN-33 APHIS inspects forwards St. George Read leaf Read trunk Read leaf shipment to FPS symptoms symptoms symptoms on St. on St. on George, George, LN- Cabernet Spring 33, and 5BB, franc Summer Fall Mist Mist Propagated Propagated Yolo county inspects Plants Plants Qualifies for shipment when opened. Available Available California FPS assigns Accession Provisional Provisional Registered number and Plant ID status status Foundation Stock numbers. Index buds Separate Propagate Growing Plant in Professional California Make 8 plants 4 plants in large pots Foundation Identification Registered
Recommended publications
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • MOLECULAR BIOLOGY and EPIDEMIOLOGY of GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES by BHANU PRIYA DONDA a Dissertation Submitted in Pa
    MOLECULAR BIOLOGY AND EPIDEMIOLOGY OF GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES By BHANU PRIYA DONDA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2016 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved THANKS Bioengineering MAY 2014 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BHANU PRIYA DONDA find it satisfactory and recommend that it be accepted. Naidu A. Rayapati, Ph.D., Chair Dennis A. Johnson, Ph.D. Duroy A. Navarre, Ph.D. George J. Vandemark, Ph.D. Siddarame Gowda, Ph.D. ii ACKNOWLEDGEMENT I would like to express my respect and deepest gratitude towards my advisor and mentor, Dr. Naidu Rayapati. I am truly appreciative of the opportunity to pursue my doctoral degree under his guidance at Washington State University (WSU), a challenging and rewarding experience that I will value the rest of my life. I am thankful to my doctoral committee members: Dr. Dennis Johnson, Dr. George Vandemark, Dr. Roy Navarre and Dr. Siddarame Gowda for helpful advice, encouragement and guidance. I would like to thank Dr. Sandya R Kesoju (USDA-IAREC, Prosser, WA) and Dr. Neil Mc Roberts (University of California, Davis) for their statistical expertise, suggestions and collaborative research on the epidemiology of grapevine leafroll disease. To Dr. Gopinath Kodetham (University of Hyderabad, Hyderabad, India), thank you for believing in me and encouraging me to go the extra mile. I thank Dr. Sridhar Jarugula (Ohio State University Agricultural Research and Development Center, Wooster, University of Ohio, Ohio, USA), Dr.
    [Show full text]
  • Detection of Infectious Brome Mosaic Virus in Irrigation Ditches and Draining Strands in Poland
    Eur J Plant Pathol https://doi.org/10.1007/s10658-018-1531-7 Detection of infectious Brome mosaic virus in irrigation ditches and draining strands in Poland Małgorzata Jeżewska & Katarzyna Trzmiel & Aleksandra Zarzyńska-Nowak Accepted: 29 June 2018 # The Author(s) 2018 Abstract Environmental waters, e.g. rivers, lakes Results confirmed the highest amino acid sequence and irrigation water, are a good source of many homology in the fragment of polymerase 2a (99.2% plant viruses. The pathogens can infect plants get- – 100%) and the most divergence in CP (96.2% - ting through damaged root hairs or small wounds 100%). This is the first report on the detection of an that appear during plant growth. First results dem- infective cereal virus in aqueous environment. onstrated common incidence of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in Keywords BMV. Water-borne virus . Cereals . RT-PCR water samples collected from irrigation ditches and drainage canals surrounding fields in Southern Greater Poland. Principal objective of this work The occurrence of plant viruses in aqueous environment was to examine if environmental water might be was studied less intensively than other water-borne vi- the source of viruses infective to cereals. The in- ruses having impact on human health. Mehle and vestigation was focused on mechanically transmit- Ravnikar (2012) thoroughly reviewed the reports and ted pathogens. Virus identification was performed listed 16 plant virus species isolated from different water by biological, electron microscopic, serological and sources, mainly from Europe, but not from Poland. molecular methods. Preliminary assays demonstrat- The main objective of our work was to fulfil this gap ed Bromemosaicvirus(BMV) infections in symp- with special attention focused on infective cereal viruses.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Viral RNAs are unusually compact. Permalink https://escholarship.org/uc/item/6b40r0rp Journal PloS one, 9(9) ISSN 1932-6203 Authors Gopal, Ajaykumar Egecioglu, Defne E Yoffe, Aron M et al. Publication Date 2014 DOI 10.1371/journal.pone.0105875 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Viral RNAs Are Unusually Compact Ajaykumar Gopal1, Defne E. Egecioglu1, Aron M. Yoffe1, Avinoam Ben-Shaul2, Ayala L. N. Rao3, Charles M. Knobler1, William M. Gelbart1* 1 Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America, 2 Institute of Chemistry & The Fritz Haber Research Center, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel, 3 Department of Plant Pathology, University of California Riverside, Riverside, California, United States of America Abstract A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices.
    [Show full text]
  • Virus Particle Structures
    Virus Particle Structures Virus Particle Structures Palmenberg, A.C. and Sgro, J.-Y. COLOR PLATE LEGENDS These color plates depict the relative sizes and comparative virion structures of multiple types of viruses. The renderings are based on data from published atomic coordinates as determined by X-ray crystallography. The international online repository for 3D coordinates is the Protein Databank (www.rcsb.org/pdb/), maintained by the Research Collaboratory for Structural Bioinformatics (RCSB). The VIPER web site (mmtsb.scripps.edu/viper), maintains a parallel collection of PDB coordinates for icosahedral viruses and additionally offers a version of each data file permuted into the same relative 3D orientation (Reddy, V., Natarajan, P., Okerberg, B., Li, K., Damodaran, K., Morton, R., Brooks, C. and Johnson, J. (2001). J. Virol., 75, 11943-11947). VIPER also contains an excellent repository of instructional materials pertaining to icosahedral symmetry and viral structures. All images presented here, except for the filamentous viruses, used the standard VIPER orientation along the icosahedral 2-fold axis. With the exception of Plate 3 as described below, these images were generated from their atomic coordinates using a novel radial depth-cue colorization technique and the program Rasmol (Sayle, R.A., Milner-White, E.J. (1995). RASMOL: biomolecular graphics for all. Trends Biochem Sci., 20, 374-376). First, the Temperature Factor column for every atom in a PDB coordinate file was edited to record a measure of the radial distance from the virion center. The files were rendered using the Rasmol spacefill menu, with specular and shadow options according to the Van de Waals radius of each atom.
    [Show full text]
  • Comparison of Plant‐Adapted Rhabdovirus Protein Localization and Interactions
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Kathleen Marie Martin University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Martin, Kathleen Marie, "COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS" (2011). University of Kentucky Doctoral Dissertations. 172. https://uknowledge.uky.edu/gradschool_diss/172 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kathleen Marie Martin The Graduate School University of Kentucky 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Kathleen Marie Martin Lexington, Kentucky Director: Dr. Michael M Goodin, Associate Professor of Plant Pathology Lexington, Kentucky 2011 Copyright © Kathleen Marie Martin 2011 ABSTRACT OF DISSERTATION COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Sonchus yellow net virus (SYNV), Potato yellow dwarf virus (PYDV) and Lettuce Necrotic yellows virus (LNYV) are members of the Rhabdoviridae family that infect plants. SYNV and PYDV are Nucleorhabdoviruses that replicate in the nuclei of infected cells and LNYV is a Cytorhabdovirus that replicates in the cytoplasm. LNYV and SYNV share a similar genome organization with a gene order of Nucleoprotein (N), Phosphoprotein (P), putative movement protein (Mv), Matrix protein (M), Glycoprotein (G) and Polymerase protein (L).
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • Viral Diversity in Tree Species
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família.
    [Show full text]
  • The Family Closteroviridae Revised
    Virology Division News 2039 Arch Virol 147/10 (2002) VDNVirology Division News The family Closteroviridae revised G.P. Martelli (Chair)1, A. A. Agranovsky2, M. Bar-Joseph3, D. Boscia4, T. Candresse5, R. H. A. Coutts6, V. V. Dolja7, B. W. Falk8, D. Gonsalves9, W. Jelkmann10, A.V. Karasev11, A. Minafra12, S. Namba13, H. J. Vetten14, G. C. Wisler15, N. Yoshikawa16 (ICTV Study group on closteroviruses and allied viruses) 1 Dipartimento Protezione Piante, University of Bari, Italy; 2 Laboratory of Physico-Chemical Biology, Moscow State University, Moscow, Russia; 3 Volcani Agricultural Research Center, Bet Dagan, Israel; 4 Istituto Virologia Vegetale CNR, Sezione Bari, Italy; 5 Station de Pathologie Végétale, INRA,Villenave d’Ornon, France; 6 Imperial College, London, U.K.; 7 Department of Botany and Plant Pathology, Oregon State University, Corvallis, U.S.A.; 8 Department of Plant Pathology, University of California, Davis, U.S.A.; 9 Pacific Basin Agricultural Research Center, USDA, Hilo, Hawaii, U.S.A.; 10 Institut für Pflanzenschutz im Obstbau, Dossenheim, Germany; 11 Department of Microbiology and Immunology, Thomas Jefferson University, Doylestown, U.S.A.; 12 Istituto Virologia Vegetale CNR, Sezione Bari, Italy; 13 Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan; 14 Biologische Bundesanstalt, Braunschweig, Germany; 15 Deparment of Plant Pathology, University of Florida, Gainesville, U.S.A.; 16 Iwate University, Morioka, Japan Summary. Recently obtained molecular and biological information has prompted the revision of the taxonomic structure of the family Closteroviridae. In particular, mealybug- transmitted species have been separated from the genus Closterovirus and accommodated in a new genus named Ampelovirus (from ampelos, Greek for grapevine).
    [Show full text]
  • Tically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0526.v1 Review Towards the forest virome: next-generation-sequencing dras- tically expands our understanding on virosphere in temperate forest ecosystems Artemis Rumbou 1,*, Eeva J. Vainio 2 and Carmen Büttner 1 1 Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Ber- lin, Germany; [email protected], [email protected] 2 Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland; [email protected] * Correspondence: [email protected] Abstract: Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont. Symbiotic mi- crobiota and pathogens engage in a permanent interplay, which influences the host. Thanks to the development of NGS technol- ogies, a vast amount of genetic information on the virosphere of temperate forests has been gained the last seven years. To estimate the qualitative/quantitative impact of NGS in forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of NGS methods is ex- tremely significant for forest virology. Reviewed data about viral presence in holobionts, allowed us to address the role of the virome in the holobionts. Genetic variation is a crucial aspect in hologenome, significantly reinforced by horizontal gene transfer among all interacting actors. Through virus-virus interplays synergistic or antagonistic relations may evolve, which may drasti- cally affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protec- tion based on endophytes and mycovirus biocontrol agents.
    [Show full text]
  • Partial Genome Organization, Identification of the Coat Protein Gene, and Detection of Grapevine Leafroll-Associated Virus-5
    Virology Partial Genome Organization, Identification of the Coat Protein Gene, and Detection of Grapevine leafroll-associated virus-5 Xin Good and Judit Monis Agritope Inc., 16160 Upper Boones Ferry Road, Portland, OR 97224. Accepted for publication 22 November 2000. ABSTRACT Good, X., and Monis, J. 2001. Partial genome organization, identification coding for the HSP 70 homologue (ORF A); a 51-kDa protein of unknown of the coat protein gene, and detection of Grapevine leafroll-associated function with similarity to GLRaV-3 p55 (ORF B); the viral capsid pro- virus-5. Phytopathology 91:274-281. tein (ORF C); and a diverged viral duplicate capsid protein (ORF D). The ORF C was identified as GLRaV-5 viral capsid protein based on sequence The genome of Grapevine leafroll-associated virus-5 (GLRaV-5) was analyses and the reactivity of the recombinant protein to GLRaV-5 specific cloned, and the sequence of 4766 nt was determined. Degenerate oli- antibodies by western blot analyses. The antiserum produced with the in gonucleotide primers designed from the conserved closterovirus heat vitro-expressed GLRaV-5 ORF C protein product specifically reacted shock 70 protein (HSP 70) homologue were used to obtain viral-specific with a 36-kDa polypeptide from GLRaV-5 infected vines but did not re- sequences to anchor the cloning of the viral RNA with a genomic walking act with protein extracts from vines infected with other GLRaVs or unin- approach. The partial nucleotide (nt) sequence of GLRaV-5 showed the fected vines. Furthermore, specific primers were designed for the sen- presence of four open reading frames (ORF A through D), potentially sitive detection of GLRaV-1 and GLRaV-5 by polymerase chain reaction.
    [Show full text]
  • Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands
    viruses Article Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands Yves Kwibuka 1,2,* , Espoir Bisimwa 2, Arnaud G. Blouin 1, Claude Bragard 3 , Thierry Candresse 4 , Chantal Faure 4, Denis Filloux 5,6, Jean-Michel Lett 7 , François Maclot 1, Armelle Marais 4, Santatra Ravelomanantsoa 8 , Sara Shakir 9 , Hervé Vanderschuren 9,10 and Sébastien Massart 1,* 1 Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; [email protected] (A.G.B.); [email protected] (F.M.) 2 Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo; [email protected] 3 Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium; [email protected] 4 Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; [email protected] (T.C.); [email protected] (C.F.); [email protected] (A.M.) 5 CIRAD, UMR PHIM, 34090 Montpellier, France; denis.fi[email protected] 6 PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France 7 CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France; [email protected] 8 FOFIFA-CENRADERU, Laboratoire de Pathologie Végétale, BP 1444 Ambatobe, Madagascar; [email protected] 9 Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Citation: Kwibuka, Y.; Bisimwa, E.; 5030 Gembloux, Belgium; [email protected] (S.S.); [email protected] (H.V.) Blouin, A.G.; Bragard, C.; Candresse, 10 Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, T.; Faure, C.; Filloux, D.; Lett, J.-M.; KU Leuven, 3000 Leuven, Belgium Maclot, F.; Marais, A.; et al.
    [Show full text]