Parallels Among Positive-Strand RNA Viruses, Reverse-Transcribing Viruses and Double-Stranded RNA Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Parallels Among Positive-Strand RNA Viruses, Reverse-Transcribing Viruses and Double-Stranded RNA Viruses REVIEWS Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses Paul Ahlquist Abstract | Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA- replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control. Positive-strand RNA virus Despite continuing advances, established and emerging ssRNA or dsRNA. Other viruses replicate by intercon- A virus, the infectious virions of viruses remain major causes of human disease, with verting their genomes between RNA and DNA. The viri- which contain the genome in a dramatic costs in mortality, morbidity and economic ons of such reverse-transcribing viruses always initially single-stranded, messenger- terms. In addition to acute diseases, viruses cause at package the RNA forms of their genomes, and either sense RNA form. least 15–20% of human cancers1,2 and are implicated in might (for example, hepadnaviruses and foamy retro- neurological and other chronic disorders. One of many viruses) or might not (for example, orthoretroviruses) challenges in controlling viruses and virus-mediated dis- reverse-transcribe the RNA into DNA before the virion eases is that viruses show an amazing diversity in basic exits the initially infected producer cell. characteristics and life cycles, including differences in Viruses in each of these seven classes tend to share virion structure, replication strategies, genetic organiza- additional features, such as gene-expression strategies tion, gene expression and many other fundamental proc- and so on, that further cluster and differentiate their esses. Therefore, even the very processes against which members from the other classes, showing that these antivirals are targeted often differ radically among virus classes represent meaningful, functionally distinct group- classes. Inherent in this remarkable variety are intrigu- ings and probable evolutionary lineages. Some of these ing issues about the multiplicity of virus origins and the variations arise because the type of nucleic acid delivered functional and evolutionary relations of existing viruses. by the virion to a target cell dictates early infection and Such issues have practical as well as academic impor- gene-expression steps. For example, to initiate viral gene tance, as underlying similarities among virus classes expression, dsRNA virus virions and negative-strand might serve as a foundation for broader-spectrum RNA ((–)RNA) virus virions contain viral polymerases antiviral strategies. that transcribe the genome into translatable mRNA, and One of the most elemental differences among viruses reverse-transcribing-virus virions contain polymerases is their diversity in genome replication and encapsidation that copy the genome into cell-transcribable DNA strategies, which define seven major classes (FIG. 1). Some (BOX 1). Positive-strand RNA ((+)RNA) viruses, the virions of viruses replicate their genomes solely through DNA inter- which deliver immediately translatable messenger-sense Institute for Molecular Virology and Howard Hughes mediates, packaging these genomes in infectious virions RNAs, encapsidate their RNA without a polymerase Medical Institute, University either as double-stranded (ds)DNA or single-stranded and form strictly intracellular RNA-replication and of Wisconsin–Madison, (ss)DNA. By contrast, most viruses replicate their mRNA transcription complexes (BOX 1). Madison, Wisconsin 53706, genomes solely through RNA intermediates. Such RNA Despite these and other differences, recent results USA. e-mail: [email protected] viruses are divided into three classes based on whether have revealed fundamental parallels in the genome- doi:10.1038/nrmicro1389 their virions package the genome as mRNA-sense replication processes of certain (+)RNA viruses, dsRNA Published online 3 April 2006 (positive-strand) ssRNA, antisense (negative-strand) viruses and reverse-transcribing viruses. In particular, the NATURE REVIEWS | MICROBIOLOGY VOLUME 4 | MAY 2006 | 371 © 2006 Nature Publishing Group REVIEWS RNA viruses Reverse-transcribing DNA viruses viruses Genome replication RNA RNA RNA DNA DNA DNA cycle Virion (–)RNA dsRNA (+)RNA (+)RNA dsDNA ssDNA dsDNA contents Examples Influenza viruses, Reoviruses, Hepatitis C virus, HIV, other Hepatitis B Parvo- Herpes- Ebola viruses rotaviruses SARS viruses retroviruses virus viruses viruses Figure 1 | Seven classes of virus distinguished by genome replication and encapsidation strategies. The bracket highlights the four virus classes emphasized in this review. (+)RNA, positive-strand RNA, which is single-stranded RNA of the same polarity as viral mRNA; (-)RNA, negative-strand RNA, which is single-stranded RNA of anti-mRNA polarity; dsRNA, double-stranded RNA; SARS, severe acute respiratory syndrome. intracellular RNA-replication complexes of some, if not retroviruses, a cellular tRNA covalently primes negative- many, (+)RNA viruses share several similarities with the strand cDNA synthesis, whereas for the relevant (+)RNA replicative cores of virions from both dsRNA viruses and viruses, a viral tRNA-like element serves as a recognition reverse-transcribing viruses. This review outlines these site and template for (–)RNA synthesis that is initiated similarities and their potential implications for virus de novo, without a primer. A natural intermediate and function and evolution. As primary examples, we review potential evolutionary link between these processes was similarities among (+)RNA viruses in the alphavirus-like identified by Lambowitz and colleagues, who showed that superfamily, the dsRNA reoviruses and the retroviruses. a Neurospora crassa mitochondrial retroplasmid initiates Other shared characteristics with similar evolutionary reverse transcription without a primer at the tRNA-like implications have been recognized recently among cer- 3′ end of its genomic RNA, paralleling negative-strand tain other (+)RNA viruses, the dsRNA birnaviruses and initiation by (+)RNA viruses14. the reverse-transcribing hepadnaviruses, including par- allels in viral RNA-polymerase structure, capsid proteins Membrane-associated RNA-replication complexes. As and protein priming of genome replication3–7. noted above, (+)RNA viruses differ from retroviruses Negative-strand RNA ((–)RNA) viruses (FIG. 1) also share and other RNA viruses in that they do not encapsidate similarities with some of the basic features reviewed their polymerases in extracellular virions. Nevertheless, here, suggesting that the functional and evolutionary emerging results show that similarities between (+)RNA- parallels discussed below might be extended further. virus RNA replication and retrovirus reverse tran- These possibilities are not discussed here in detail for scription are not limited to aspects of negative-strand reasons of space. In addition, whereas (+)RNA viruses, initiation and the general similarities of RNA and DNA dsRNA viruses and reverse-transcribing viruses each polymerases. Instead, as detailed below, (+)RNA-virus use identical (+)RNA molecules as genome-replication RNA replication occurs in virus-induced compartments intermediates and mRNAs, (–)RNA viruses are distin- which have many similarities to the replicative cores or guished by using different forms of (+)RNA for these capsids of retrovirus virions. functions. (+)RNA-virus replication is invariably localized to intracellular membranes. Different (+)RNA viruses tar- (+)RNA virus and retrovirus parallels get distinct but usually specific membranes, such as those tRNAs and genome replication. One of the first simi- of the endoplasmic reticulum (ER)15–19, endosomes20,21, larities recognized between the replication of retroviruses mitochondria22 or chloroplasts23. RNA replication is and (+)RNA viruses was the role of tRNAs in initiating usually associated with rearrangements of these target retroviral reverse transcription and of tRNA-like elements membranes, often giving rise to membrane invagina- in initiating RNA replication by a subset of (+)RNA tions, single- or double-membrane vesicles, membrane- viruses such as the bromoviruses8,9 (FIG. 2). Bromoviruses, bound vesicle packets and other structures. discussed further below, have three genomic RNAs with For many (+)RNA viruses, RNA synthesis localizes Negative-strand RNA virus highly conserved, structured, tRNA-like 3′ ends (FIG. 2b). to membranes bearing 50–70-nm vesicular compart- A virus, the infectious virions of These 3′ ends terminate in 3′-CCA sequences that ments that are invaginated away from the cytoplasm which contain the genome in a OH single-stranded, anti- are completed by tRNA-nucleotidyl transferase, they into the lumen of the affected secretory compartment messenger-sense RNA form. are specifically aminoacylated in vitro and in vivo with or organelle. Such invaginations, termed spherules, tyrosine, and they contain the promoter for (–)RNA were first visualized in early electron microscopy (EM) Retroplasmid synthesis10–13.
Recommended publications
  • Characterization of the Matrix Proteins of the Fish Rhabdovirus, Infectious Hematopoietic Necrosis Virus
    AN ABSTRACT OF THE THESIS OF Patricia A. Ormonde for the degree of Master of Science presented on April 14. 1995. Title: Characterization of the Matrix Proteins of the Fish Rhabdovinis, Infectious Hematopoietic Necrosis Virus. Redacted for Privacy Abstract approved: Jo-Ann C. ong Infectious hematopoietic necrosis virus (1HNV) is an important fish pathogen enzootic in salmon and trout populations of the Pacific Northwestern United States. Occasional epizootics in fish hatcheries can result in devastating losses of fish stocks. The complete nucleotide sequence of IHNV has not yet been determined. This knowledge is the first step towards understanding the roles viral proteins play in IHNV infection, and is necessary for determining the relatedness of IHNV to other rhabdoviruses. The glycoprotein, nucleocapsid and non-virion genes of IHNV have been described previously; however, at the initiation of this study, very little was known about the matrix protein genes. Rhabdoviral matrix proteins have been found to be important in viral transcription and virion assembly. This thesis describes the preliminary characterization of the M1 and M2 matrix proteins of IHNV. In addition, the trout humoral immune response to M1 and M2 proteins expressed from plasmid DNA injected into the fish was investigated. This work may prove useful in designing future vaccines against IHN. The sequences of M1 phosphoprotein and M2 matrix protein genes of IHNV were determined from both genomic and mRNA clones. Analysis of the sequences indicated that the predicted open reading frame of M1 gene encoded a 230 amino acid protein with a estimated molecular weight of 25.6 kDa. Further analysis revealed a second open reading frame encoding a 42 amino acid protein with a calculated molecular weight of 4.8 kDa.
    [Show full text]
  • Detection of Infectious Brome Mosaic Virus in Irrigation Ditches and Draining Strands in Poland
    Eur J Plant Pathol https://doi.org/10.1007/s10658-018-1531-7 Detection of infectious Brome mosaic virus in irrigation ditches and draining strands in Poland Małgorzata Jeżewska & Katarzyna Trzmiel & Aleksandra Zarzyńska-Nowak Accepted: 29 June 2018 # The Author(s) 2018 Abstract Environmental waters, e.g. rivers, lakes Results confirmed the highest amino acid sequence and irrigation water, are a good source of many homology in the fragment of polymerase 2a (99.2% plant viruses. The pathogens can infect plants get- – 100%) and the most divergence in CP (96.2% - ting through damaged root hairs or small wounds 100%). This is the first report on the detection of an that appear during plant growth. First results dem- infective cereal virus in aqueous environment. onstrated common incidence of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in Keywords BMV. Water-borne virus . Cereals . RT-PCR water samples collected from irrigation ditches and drainage canals surrounding fields in Southern Greater Poland. Principal objective of this work The occurrence of plant viruses in aqueous environment was to examine if environmental water might be was studied less intensively than other water-borne vi- the source of viruses infective to cereals. The in- ruses having impact on human health. Mehle and vestigation was focused on mechanically transmit- Ravnikar (2012) thoroughly reviewed the reports and ted pathogens. Virus identification was performed listed 16 plant virus species isolated from different water by biological, electron microscopic, serological and sources, mainly from Europe, but not from Poland. molecular methods. Preliminary assays demonstrat- The main objective of our work was to fulfil this gap ed Bromemosaicvirus(BMV) infections in symp- with special attention focused on infective cereal viruses.
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Viral RNAs are unusually compact. Permalink https://escholarship.org/uc/item/6b40r0rp Journal PloS one, 9(9) ISSN 1932-6203 Authors Gopal, Ajaykumar Egecioglu, Defne E Yoffe, Aron M et al. Publication Date 2014 DOI 10.1371/journal.pone.0105875 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Viral RNAs Are Unusually Compact Ajaykumar Gopal1, Defne E. Egecioglu1, Aron M. Yoffe1, Avinoam Ben-Shaul2, Ayala L. N. Rao3, Charles M. Knobler1, William M. Gelbart1* 1 Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America, 2 Institute of Chemistry & The Fritz Haber Research Center, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel, 3 Department of Plant Pathology, University of California Riverside, Riverside, California, United States of America Abstract A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices.
    [Show full text]
  • Virus Particle Structures
    Virus Particle Structures Virus Particle Structures Palmenberg, A.C. and Sgro, J.-Y. COLOR PLATE LEGENDS These color plates depict the relative sizes and comparative virion structures of multiple types of viruses. The renderings are based on data from published atomic coordinates as determined by X-ray crystallography. The international online repository for 3D coordinates is the Protein Databank (www.rcsb.org/pdb/), maintained by the Research Collaboratory for Structural Bioinformatics (RCSB). The VIPER web site (mmtsb.scripps.edu/viper), maintains a parallel collection of PDB coordinates for icosahedral viruses and additionally offers a version of each data file permuted into the same relative 3D orientation (Reddy, V., Natarajan, P., Okerberg, B., Li, K., Damodaran, K., Morton, R., Brooks, C. and Johnson, J. (2001). J. Virol., 75, 11943-11947). VIPER also contains an excellent repository of instructional materials pertaining to icosahedral symmetry and viral structures. All images presented here, except for the filamentous viruses, used the standard VIPER orientation along the icosahedral 2-fold axis. With the exception of Plate 3 as described below, these images were generated from their atomic coordinates using a novel radial depth-cue colorization technique and the program Rasmol (Sayle, R.A., Milner-White, E.J. (1995). RASMOL: biomolecular graphics for all. Trends Biochem Sci., 20, 374-376). First, the Temperature Factor column for every atom in a PDB coordinate file was edited to record a measure of the radial distance from the virion center. The files were rendered using the Rasmol spacefill menu, with specular and shadow options according to the Van de Waals radius of each atom.
    [Show full text]
  • Cowpea Chlorotic Mottle Bromovirus Replication Proteins Support Template- Selective RNA Replication in Saccharomyces Cerevisiae
    RESEARCH ARTICLE Cowpea chlorotic mottle bromovirus replication proteins support template- selective RNA replication in Saccharomyces cerevisiae Bryan S. Sibert1,2, Amanda K. Navine1,3, Janice Pennington1,2, Xiaofeng Wang1¤, Paul Ahlquist1,2,3* a1111111111 1 Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United a1111111111 States of America, 3 John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for a1111111111 Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America a1111111111 a1111111111 ¤ Current address: Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, Virginia, United States of America * [email protected] OPEN ACCESS Abstract Citation: Sibert BS, Navine AK, Pennington J, Wang X, Ahlquist P (2018) Cowpea chlorotic Positive-strand RNA viruses generally assemble RNA replication complexes on rearranged mottle bromovirus replication proteins support host membranes. Alphaviruses, other members of the alpha-like virus superfamily, and template-selective RNA replication in many other positive-strand RNA viruses invaginate host membrane into vesicular RNA repli- Saccharomyces cerevisiae. PLoS ONE 13(12): cation compartments, known as spherules, whose interior is connected to the cytoplasm. e0208743. https://doi.org/10.1371/journal. pone.0208743 Brome mosaic virus (BMV) and its close relative, cowpea chlorotic mottle virus (CCMV), form spherules along the endoplasmic reticulum. BMV spherule formation and RNA replication Editor: Sebastien Pfeffer, Institut de Biologie Moleculaire et Cellulaire, FRANCE can be fully reconstituted in S. cerevisiae, enabling many studies identifying host factors and viral interactions essential for these processes.
    [Show full text]
  • Comparison of Plant‐Adapted Rhabdovirus Protein Localization and Interactions
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Kathleen Marie Martin University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Martin, Kathleen Marie, "COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS" (2011). University of Kentucky Doctoral Dissertations. 172. https://uknowledge.uky.edu/gradschool_diss/172 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kathleen Marie Martin The Graduate School University of Kentucky 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Kathleen Marie Martin Lexington, Kentucky Director: Dr. Michael M Goodin, Associate Professor of Plant Pathology Lexington, Kentucky 2011 Copyright © Kathleen Marie Martin 2011 ABSTRACT OF DISSERTATION COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Sonchus yellow net virus (SYNV), Potato yellow dwarf virus (PYDV) and Lettuce Necrotic yellows virus (LNYV) are members of the Rhabdoviridae family that infect plants. SYNV and PYDV are Nucleorhabdoviruses that replicate in the nuclei of infected cells and LNYV is a Cytorhabdovirus that replicates in the cytoplasm. LNYV and SYNV share a similar genome organization with a gene order of Nucleoprotein (N), Phosphoprotein (P), putative movement protein (Mv), Matrix protein (M), Glycoprotein (G) and Polymerase protein (L).
    [Show full text]
  • Theory of an Immune System Retrovirus
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 9159-9163, December 1986 Medical Sciences Theory of an immune system retrovirus (human immunodeficiency virus/acquired immune deficiency syndrome) LEON N COOPER Physics Department and Center for Neural Science, Brown University, Providence, RI 02912 Contributed by Leon N Cooper, July 23, 1986 ABSTRACT Human immunodeficiency virus (HIV; for- initiates clonal expansion, sustained by interleukin 2 and y merly known as human T-cell lymphotropic virus type interferon. Ill/lymphadenopathy-associated virus, HTLV-Ill/LAV), the I first give a brief sketch of these events in a linked- retrovirus that infects T4-positive (helper) T cells of the interaction model in which it is assumed that antigen-specific immune system, has been implicated as the agent responsible T cells must interact with the B-cell-processed virus to for the acquired immune deficiency syndrome. In this paper, initiate clonal expansion (2). I then assume that virus-specific I contrast the growth of a "normal" virus with what I call an antibody is the major component ofimmune system response immune system retrovirus: a retrovirus that attacks the T4- that limits virus spread. As will be seen, the details of these positive T cells of the immune system. I show that remarkable assumptions do not affect the qualitative features of my interactions with other infections as well as strong virus conclusions. concentration dependence are general properties of immune Linked-Interaction Model for Clonal Expansion of Lympho- system retroviruses. Some of the consequences of these ideas cytes. Let X be the concentration of normal infecting virus are compared with observations.
    [Show full text]
  • Discovery of HTLV-1, the First Human Retrovirus, Its Unique Regulatory Mechanisms, and Insights Into Pathogenesis
    Oncogene (2005) 24, 5931–5937 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis Mitsuaki Yoshida*,1 1Banyu Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan I briefly review the discovery and characterization of the In Japan something was there, but it was not clear first human retrovirus, human T-cell leukemia virus type 1, focusing on contributions from Japanese researchers. Discovery of ATL The unique regulatory mechanisms for the viral regulation The first key event for human retrovirus was the with Tax and Rex, etiology of ATL and possible discovery of adult T-cell leukemia (ATL) by Kiyoshi leukemogenic mechanism with Tax are also discussed Takatsuki and his colleagues in Japan in 1976 (Uchi- briefly. et al Oncogene (2005) 24, 5931–5937. doi:10.1038/sj.onc.1208981 yama ., 1977). The reports from his laboratory described unique characteristics of the leukemia such as Keywords: HTLV-1; transcription; tumor-suppressor unusual morphology of leukemic cells with lobulated genes; cell cycle; epidemiology nuclei and surface phenotypes. The most striking feature of the disease was the Kyushu (West part of Japan) origin of most of the patients who were identified in Kyoto where Takatsuki’s group performed their research. Takatsuki’s findings were later confirmed by extensive epidemiology and a clear clustering of Introduction ATL cases in the Kyushu area strongly suggested a unique etiology (Hinuma et al., 1981a). At the time, When virologists and oncologists are challenged to this novel discovery elicited enormous attention from identify human tumor viruses, they dream of the physicians, virologists, epidemiologists and oncologists, contribution of such viruses towards understanding but still there was no clue as to how to search for an cancers and answering questions such as how and why etiology.
    [Show full text]
  • SIVISV.BOOK Layout 1
    SEDE Piattaforma FAD Nadirex http://nadirex.dnaconnect.sm ORGANIZING SECRETARIAT AND PROVIDER NR. 265 Nadirex International S.r.l. Via Riviera, 39 - 27100 Pavia Tel. +39.0382.525714 Fax. +39.0382.525736 Contact: Gloria Molla [email protected] mob. +39 347 8589333 Contact: Francesca Granata [email protected] www.nadirex.com www.congressosivsiv.com ORGANIZING COMMITTEE PRESIDENT Arnaldo Caruso (Brescia, Italy) CHAIRS Guido Antonelli (Rome, Italy) Franco Buonaguro (Naples, Italy) Arnaldo Caruso (Brescia, Italy) Massimiliano Galdiero (Naples, Italy) Giuseppe Portella (Naples, Italy) SCIENTIFIC SECRETARIAT Francesca Caccuri (Brescia, Italy) Rossana Cavallo (Turin, Italy) Massimo Clementi (Milan, Italy) Gianluigi Franci (Salerno, Italy) Maria Cristina Parolin (Padua, Italy) Alessandra Pierangeli (Rome, Italy) Luisa Rubino (Bari, Italy) Gabriele Vaccari (Rome, Italy) EXECUTIVE BOARD Guido Antonelli (Rome, Italy) Franco Buonaguro (Naples, Italy) Arnaldo Caruso (Brescia, Italy) Massimiliano Galdiero (Naples, Italy) Giuseppe Portella (Naples, Italy) 3 EXECUTIVE BOARD PRESIDENT Arnaldo Caruso (Brescia, Italy) VICE PRESIDENT Canio Buonavoglia, University of Bari (Bari, Italy) SECRETARY Giorgio Gribaudo, University of Turin (Turin, Italy) TREASURER Luisa Rubino, National Research Council (Bari, Italy) ADVISER Guido Antonelli, University of Rome “La Sapienza” (Rome, Italy) ADVISORY COUNCIL Elisabetta Affabris (Rome, Italy) Fausto Baldanti (Pavia, Italy) Lawrence Banks (Trieste, Italy) Roberto Burioni (Milan, Italy) Arianna Calistri
    [Show full text]
  • RNA Viruses As Tools in Gene Therapy and Vaccine Development
    G C A T T A C G G C A T genes Review RNA Viruses as Tools in Gene Therapy and Vaccine Development Kenneth Lundstrom PanTherapeutics, Rte de Lavaux 49, CH1095 Lutry, Switzerland; [email protected]; Tel.: +41-79-776-6351 Received: 31 January 2019; Accepted: 21 February 2019; Published: 1 March 2019 Abstract: RNA viruses have been subjected to substantial engineering efforts to support gene therapy applications and vaccine development. Typically, retroviruses, lentiviruses, alphaviruses, flaviviruses rhabdoviruses, measles viruses, Newcastle disease viruses, and picornaviruses have been employed as expression vectors for treatment of various diseases including different types of cancers, hemophilia, and infectious diseases. Moreover, vaccination with viral vectors has evaluated immunogenicity against infectious agents and protection against challenges with pathogenic organisms. Several preclinical studies in animal models have confirmed both immune responses and protection against lethal challenges. Similarly, administration of RNA viral vectors in animals implanted with tumor xenografts resulted in tumor regression and prolonged survival, and in some cases complete tumor clearance. Based on preclinical results, clinical trials have been conducted to establish the safety of RNA virus delivery. Moreover, stem cell-based lentiviral therapy provided life-long production of factor VIII potentially generating a cure for hemophilia A. Several clinical trials on cancer patients have generated anti-tumor activity, prolonged survival, and
    [Show full text]
  • The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System
    International Journal of Molecular Sciences Review The Role of Herpes Simplex Virus Type 1 Infection in Demyelination of the Central Nervous System Raquel Bello-Morales 1,2,* , Sabina Andreu 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (S.A.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Received: 30 June 2020; Accepted: 15 July 2020; Published: 16 July 2020 Abstract: Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.
    [Show full text]
  • Crystallization of Brome Mosaic Virus and T = 1 Brome Mosaic
    Virology 286, 290–303 (2001) doi:10.1006/viro.2000.0897, available online at http://www.idealibrary.com on Crystallization of Brome Mosaic Virus and T ϭ 1 Brome Mosaic Virus Particles Following a Structural Transition Robert W. Lucas, Yurii G. Kuznetsov, Steven B. Larson, and Alexander McPherson1 University of California, Irvine, Department of Molecular Biology and Biochemistry, Irvine, California 92697-3900 Received November 9, 2000; returned to author for revision January 17, 2001; accepted March 6, 2001 Brome mosaic virus (BMV), a T ϭ 3 icosahedral plant virus, can be dissociated into coat protein subunits and subunit oligomers at pH 7.5 in the presence of concentrated salts. We have found that during the course of this treatment the coat protein subunits are cleaved, presumably by plant cell proteases still present in the preparation, between amino acids 35 and 36. The truncated protein subunits will then reorganize into T ϭ 1 icosahedral particles and can be crystallized from sodium malonate. Quasi elastic light scattering and atomic force microscopy results suggest that the transition from T ϭ 3toT ϭ 1 particles can occur by separate pathways, dissociation into coat protein subunits and oligomers and reassembly into T ϭ 1 particles, or direct condensation of the T ϭ 3 virions to T ϭ 1 particles with the shedding of hexameric capsomeres. The latter process has been directly visualized using atomic force microscopy. Native T ϭ 3 virions have been crystallized in several different crystal forms, but neither a rhombohedral form nor either of two orthorhombic forms diffract beyond about 3.4 Å.
    [Show full text]