Theory of an Immune System Retrovirus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of the Matrix Proteins of the Fish Rhabdovirus, Infectious Hematopoietic Necrosis Virus
AN ABSTRACT OF THE THESIS OF Patricia A. Ormonde for the degree of Master of Science presented on April 14. 1995. Title: Characterization of the Matrix Proteins of the Fish Rhabdovinis, Infectious Hematopoietic Necrosis Virus. Redacted for Privacy Abstract approved: Jo-Ann C. ong Infectious hematopoietic necrosis virus (1HNV) is an important fish pathogen enzootic in salmon and trout populations of the Pacific Northwestern United States. Occasional epizootics in fish hatcheries can result in devastating losses of fish stocks. The complete nucleotide sequence of IHNV has not yet been determined. This knowledge is the first step towards understanding the roles viral proteins play in IHNV infection, and is necessary for determining the relatedness of IHNV to other rhabdoviruses. The glycoprotein, nucleocapsid and non-virion genes of IHNV have been described previously; however, at the initiation of this study, very little was known about the matrix protein genes. Rhabdoviral matrix proteins have been found to be important in viral transcription and virion assembly. This thesis describes the preliminary characterization of the M1 and M2 matrix proteins of IHNV. In addition, the trout humoral immune response to M1 and M2 proteins expressed from plasmid DNA injected into the fish was investigated. This work may prove useful in designing future vaccines against IHN. The sequences of M1 phosphoprotein and M2 matrix protein genes of IHNV were determined from both genomic and mRNA clones. Analysis of the sequences indicated that the predicted open reading frame of M1 gene encoded a 230 amino acid protein with a estimated molecular weight of 25.6 kDa. Further analysis revealed a second open reading frame encoding a 42 amino acid protein with a calculated molecular weight of 4.8 kDa. -
Our Immune System (Children's Book)
OurOur ImmuneImmune SystemSystem A story for children with primary immunodeficiency diseases Written by IMMUNE DEFICIENCY Sara LeBien FOUNDATION A note from the author The purpose of this book is to help young children who are immune deficient to better understand their immune system. What is a “B-cell,” a “T-cell,” an “immunoglobulin” or “IgG”? They hear doctors use these words, but what do they mean? With cheerful illustrations, Our Immune System explains how a normal immune system works and what treatments may be necessary when the system is deficient. In this second edition, a description of a new treatment has been included. I hope this book will enable these children and their families to explore together the immune system, and that it will help alleviate any confusion or fears they may have. Sara LeBien This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. SECOND EDITION COPYRIGHT 1990, 2007 IMMUNE DEFICIENCY FOUNDATION Copyright 2007 by Immune Deficiency Foundation, USA. Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. Our Immune System may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 40 West Chesapeake Avenue, Suite 308, Towson, MD 21204, USA; or by telephone at 1-800-296-4433. -
Parallels Among Positive-Strand RNA Viruses, Reverse-Transcribing Viruses and Double-Stranded RNA Viruses
REVIEWS Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses Paul Ahlquist Abstract | Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA- replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control. Positive-strand RNA virus Despite continuing advances, established and emerging ssRNA or dsRNA. Other viruses replicate by intercon- A virus, the infectious virions of viruses remain major causes of human disease, with verting their genomes between RNA and DNA. The viri- which contain the genome in a dramatic costs in mortality, morbidity and economic ons of such reverse-transcribing viruses always initially single-stranded, messenger- terms. In addition to acute diseases, viruses cause at package the RNA forms of their genomes, and either sense RNA form. least 15–20% of human cancers1,2 and are implicated in might (for example, hepadnaviruses and foamy retro- neurological and other chronic disorders. One of many viruses) or might not (for example, orthoretroviruses) challenges in controlling viruses and virus-mediated dis- reverse-transcribe the RNA into DNA before the virion eases is that viruses show an amazing diversity in basic exits the initially infected producer cell. -
An Introduction to the Viruses
Chapter 1 An introduction to the viruses Viruses are obligate intracellular parasites of man, other animals, plants and bacteria. They can only multiply within cells, and thus differ from bacteria, which can multiply in tissues in an extracellular position, and also in artificial culture media in the laboratory. It has always been recognized that viruses are distinct from the bacteria, but originally other groups of infective agents were included among the viruses which are now known to be organisms of a different and more complex nature. These included the Chlamydiae, organisms causing diseases such as lymphogranuloma venereum and trachoma, and the Rickettsiae, the causative agents of typhus and related infections. The specific treatment of infections caused by these two groups of agents will not be considered in this work, which is restricted to the chemotherapy of infections caused by the true viruses. The Chlamydiae and Rickettsiae are complete organisms, with cell walls, which possess both types of nucleic acid, enzyme systems which function within their cytoplasm, and a number of cell organelles. The viruses, on the other hand, possess either DNA or RNA as their genetic material, but not both. In some cases they contain enzymes, but these exert their functions within the host cell after the virus particle has under gone a process of dissolution during the early stage of infection. Except in the case of the arenaviruses, a group which contains the virus of Lassa fever, the virus particles do not contain organelles. A virus is thus much more rudimentary in structure, and relies upon the host cell to provide the systems for synthesizing its components which it does not possess itself. -
Discovery of HTLV-1, the First Human Retrovirus, Its Unique Regulatory Mechanisms, and Insights Into Pathogenesis
Oncogene (2005) 24, 5931–5937 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis Mitsuaki Yoshida*,1 1Banyu Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan I briefly review the discovery and characterization of the In Japan something was there, but it was not clear first human retrovirus, human T-cell leukemia virus type 1, focusing on contributions from Japanese researchers. Discovery of ATL The unique regulatory mechanisms for the viral regulation The first key event for human retrovirus was the with Tax and Rex, etiology of ATL and possible discovery of adult T-cell leukemia (ATL) by Kiyoshi leukemogenic mechanism with Tax are also discussed Takatsuki and his colleagues in Japan in 1976 (Uchi- briefly. et al Oncogene (2005) 24, 5931–5937. doi:10.1038/sj.onc.1208981 yama ., 1977). The reports from his laboratory described unique characteristics of the leukemia such as Keywords: HTLV-1; transcription; tumor-suppressor unusual morphology of leukemic cells with lobulated genes; cell cycle; epidemiology nuclei and surface phenotypes. The most striking feature of the disease was the Kyushu (West part of Japan) origin of most of the patients who were identified in Kyoto where Takatsuki’s group performed their research. Takatsuki’s findings were later confirmed by extensive epidemiology and a clear clustering of Introduction ATL cases in the Kyushu area strongly suggested a unique etiology (Hinuma et al., 1981a). At the time, When virologists and oncologists are challenged to this novel discovery elicited enormous attention from identify human tumor viruses, they dream of the physicians, virologists, epidemiologists and oncologists, contribution of such viruses towards understanding but still there was no clue as to how to search for an cancers and answering questions such as how and why etiology. -
West Nile Virus (WNV) Fact Sheet
West Nile Virus (WNV) Fact Sheet What Is West Nile Virus? How Does West Nile Virus Spread? West Nile virus infection can cause serious disease. WNV is ▪ Infected Mosquitoes. established as a seasonal epidemic in North America that WNV is spread by the bite of an infected mosquito. flares up in the summer and continues into the fall. This Mosquitoes become infected when they feed on fact sheet contains important information that can help infected birds. Infected mosquitoes can then spread you recognize and prevent West Nile virus. WNV to humans and other animals when they bite. What Can I Do to Prevent WNV? ▪ Transfusions, Transplants, and Mother-to-Child. In a very small number of cases, WNV also has been The easiest and best way to avoid WNV is to prevent spread directly from an infected person through blood mosquito bites. transfusions, organ transplants, breastfeeding and ▪ When outdoors, use repellents containing DEET, during pregnancy from mother to baby. picaridin, IR3535, some oil of lemon eucalyptus or para- Not through touching. menthane-diol. Follow the directions on the package. ▪ WNV is not spread through casual contact such as ▪ Many mosquitoes are most active from dusk to dawn. touching or kissing a person with the virus. Be sure to use insect repellent and wear long sleeves and pants at these times or consider staying indoors How Soon Do Infected People Get Sick? during these hours. People typically develop symptoms between 3 and 14 days after they are bitten by the infected mosquito. ▪ Make sure you have good screens on your windows and doors to keep mosquitoes out. -
Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck. -
Constructing Protocells: a Second Origin of Life
04_SteenRASMUSSEN.qxd:Maqueta.qxd 4/6/12 11:45 Página 585 Session I: The Physical Mind CONSTRUCTING PROTOCELLS: A SECOND ORIGIN OF LIFE STEEN RASMUSSEN Center for Fundamental Living Technology (FLinT) Santa Fe Institute, New Mexico USA ANDERS ALBERTSEN, PERNILLE LYKKE PEDERSEN, CARSTEN SVANEBORG Center for Fundamental Living Technology (FLinT) ABSTRACT: What is life? How does nonliving materials become alive? How did the first living cells emerge on Earth? How can artificial living processes be useful for technology? These are the kinds of questions we seek to address by assembling minimal living systems from scratch. INTRODUCTION To create living materials from nonliving materials, we first need to understand what life is. Today life is believed to be a physical process, where the properties of life emerge from the dynamics of material interactions. This has not always been the assumption, as living matter at least since the origin of Hindu medicine some 5000 years ago, was believed to have a metaphysical vital force. Von Neumann, the inventor of the modern computer, realized that if life is a physical process it should be possible to implement life in other media than biochemistry. In the 1950s, he was one of the first to propose the possibilities of implementing living processes in computers and robots. This perspective, while being controversial, is gaining momentum in many scientific communities. There is not a generally agreed upon definition of life within the scientific community, as there is a grey zone of interesting processes between nonliving and living matter. Our work on assembling minimal physicochemical life is based on three criteria, which most biological life forms satisfy. -
SIVISV.BOOK Layout 1
SEDE Piattaforma FAD Nadirex http://nadirex.dnaconnect.sm ORGANIZING SECRETARIAT AND PROVIDER NR. 265 Nadirex International S.r.l. Via Riviera, 39 - 27100 Pavia Tel. +39.0382.525714 Fax. +39.0382.525736 Contact: Gloria Molla [email protected] mob. +39 347 8589333 Contact: Francesca Granata [email protected] www.nadirex.com www.congressosivsiv.com ORGANIZING COMMITTEE PRESIDENT Arnaldo Caruso (Brescia, Italy) CHAIRS Guido Antonelli (Rome, Italy) Franco Buonaguro (Naples, Italy) Arnaldo Caruso (Brescia, Italy) Massimiliano Galdiero (Naples, Italy) Giuseppe Portella (Naples, Italy) SCIENTIFIC SECRETARIAT Francesca Caccuri (Brescia, Italy) Rossana Cavallo (Turin, Italy) Massimo Clementi (Milan, Italy) Gianluigi Franci (Salerno, Italy) Maria Cristina Parolin (Padua, Italy) Alessandra Pierangeli (Rome, Italy) Luisa Rubino (Bari, Italy) Gabriele Vaccari (Rome, Italy) EXECUTIVE BOARD Guido Antonelli (Rome, Italy) Franco Buonaguro (Naples, Italy) Arnaldo Caruso (Brescia, Italy) Massimiliano Galdiero (Naples, Italy) Giuseppe Portella (Naples, Italy) 3 EXECUTIVE BOARD PRESIDENT Arnaldo Caruso (Brescia, Italy) VICE PRESIDENT Canio Buonavoglia, University of Bari (Bari, Italy) SECRETARY Giorgio Gribaudo, University of Turin (Turin, Italy) TREASURER Luisa Rubino, National Research Council (Bari, Italy) ADVISER Guido Antonelli, University of Rome “La Sapienza” (Rome, Italy) ADVISORY COUNCIL Elisabetta Affabris (Rome, Italy) Fausto Baldanti (Pavia, Italy) Lawrence Banks (Trieste, Italy) Roberto Burioni (Milan, Italy) Arianna Calistri -
RNA Viruses As Tools in Gene Therapy and Vaccine Development
G C A T T A C G G C A T genes Review RNA Viruses as Tools in Gene Therapy and Vaccine Development Kenneth Lundstrom PanTherapeutics, Rte de Lavaux 49, CH1095 Lutry, Switzerland; [email protected]; Tel.: +41-79-776-6351 Received: 31 January 2019; Accepted: 21 February 2019; Published: 1 March 2019 Abstract: RNA viruses have been subjected to substantial engineering efforts to support gene therapy applications and vaccine development. Typically, retroviruses, lentiviruses, alphaviruses, flaviviruses rhabdoviruses, measles viruses, Newcastle disease viruses, and picornaviruses have been employed as expression vectors for treatment of various diseases including different types of cancers, hemophilia, and infectious diseases. Moreover, vaccination with viral vectors has evaluated immunogenicity against infectious agents and protection against challenges with pathogenic organisms. Several preclinical studies in animal models have confirmed both immune responses and protection against lethal challenges. Similarly, administration of RNA viral vectors in animals implanted with tumor xenografts resulted in tumor regression and prolonged survival, and in some cases complete tumor clearance. Based on preclinical results, clinical trials have been conducted to establish the safety of RNA virus delivery. Moreover, stem cell-based lentiviral therapy provided life-long production of factor VIII potentially generating a cure for hemophilia A. Several clinical trials on cancer patients have generated anti-tumor activity, prolonged survival, and -
Viral Infection Modulates Mitochondrial Function
International Journal of Molecular Sciences Review Viral Infection Modulates Mitochondrial Function Xiaowen Li 1,2,3, Keke Wu 1,2,3, Sen Zeng 1,2,3, Feifan Zhao 1,2,3, Jindai Fan 1,2,3, Zhaoyao Li 1,2,3, Lin Yi 1,2,3, Hongxing Ding 1,2,3, Mingqiu Zhao 1,2,3, Shuangqi Fan 1,2,3,* and Jinding Chen 1,2,3,* 1 College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; [email protected] (X.L.); [email protected] (K.W.); [email protected] (S.Z.); [email protected] (F.Z.); [email protected] (J.F.); [email protected] (Z.L.); [email protected] (L.Y.); [email protected] (H.D.); [email protected] (M.Z.) 2 Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China 3 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China * Correspondence: [email protected] (S.F.); [email protected] (J.C.); Tel.: +86-20-8528-8017 (S.F.); +86-20-8528-8017 (J.C.) Abstract: Mitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases. A large number of studies have found that a variety of viral infec- tions could change mitochondrial dynamics, mediate mitochondria-induced cell death, and alter the mitochondrial metabolic status and cellular innate immune response to maintain intracellular survival. -
Cells Through Regulation of Follicular Helper T B7RP-1 Blockade
The Journal of Immunology B7RP-1 Blockade Ameliorates Autoimmunity through Regulation of Follicular Helper T Cells Yi-Ling Hu,* Daniela P. Metz,* James Chung,† Gerald Siu,1 and Ming Zhang2* Autoimmune diseases are marked by the presence of class-switched, high-affinity autoantibodies with pathogenic potential. Co- stimulation plays an important role in the activation of T cells and the development of T cell-dependent B cell responses. ICOS plays an indispensable role in the development of follicular helper T cells (TFH cells), which provide cognate help to germinal center (GC) B cells. We show that the levels of TFH cells and GC B cells in two different models of autoimmunity, the New Zealand Black/New Zealand White (NZB/NZW) F1 mouse model of systemic lupus erythematosus and the collagen-induced arthritis model of rheumatoid arthritis, are dependent on the maintenance of the ICOS/B7RP-1 pathway. Treatment with an anti-B7RP-1 Ab ameliorates disease manifestations and leads to a decrease in TFH cells and GC B cells as well as an overall decrease in the frequency of ICOS؉ T cells. Coculture experiments of Ag-primed B cells with CXCR5؉ or CXCR5؊ T cells show that blocking B7RP-1 does not directly impact the production of IgG by B cells. These findings further support the role of ICOS in autoimmunity and suggest that the expansion of the TFH cell pool is an important mechanism by which ICOS regulates Ab production. The Journal of Immunology, 2009, 182: 1421–1428. ffective activation of T cells via their Ag receptor requires ing anti-B7RP-1 reagents effectively inhibited the initiation and additional stimuli provided by cell-surface costimulatory maturation of an Ab-mediated Ag response (15).