And Macroscopic Approaches to Polymer Stabilizer Analysis for Solar Thermal Systems
Total Page:16
File Type:pdf, Size:1020Kb
Submitted by DI in Leila Maringer Submitted at Institute of Analytical Chemistry Supervisor and First Examiner Micro- and macroscopic o.Univ.-Prof. DI Dr. Wolfgang Buchberger Second Examiner approaches to polymer Univ.-Prof. DI Dr. Christian Paulik stabilizer analysis for November 2017 solar thermal systems Doctoral Thesis to obtain the academic degree of Doktorin der technischen Wissenschaften in the Doctoral Program Technische Wissenschaften JOHANNES KEPLER UNIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at DVR 0093696 STATUTORY DECLARATION I hereby declare that the thesis submitted is my own unaided work, that I have not used other than the sources indicated, and that all direct and indirect sources are acknowledged as references. This printed thesis is identical with the electronic version submitted. Linz, November 2017 Leila Maringer DANKSAGUNG „Great things in business are never done by one person. They’re done by a team of people“ Steve Jobs Am Ende meiner Dissertation nun angekommen, möchte ich mich bei all jenen bedanken, ohne die der erfolgreiche Abschluss meiner Arbeit nicht möglich gewesen wäre. Mein Dank gilt meinen Professoren Prof. Wolfgang Buchberger und Prof. Christian Klampfl für das persönliche Engagement am Institut, die fachliche Unterstützung und das ungezwungene und offene Arbeitsklima. Besonders geschätzt habe ich stets die Freiheit, die uns Dissertanten bei der Umsetzung unserer Arbeit entgegengebracht wurde. Weiters bedanken möchte ich mich bei meinen Projektpartnern Prof. Gernot Wallner, DI David Nitsche, DI Jürgen Link, DI Andreas Höllerbauer und DI Michael Grabmann für die gute Zusammenarbeit und die fruchtbaren Projektmeetings. Ein großes Danke geht auch an meinen Bürokollegen Markus Himmelsbach, der mit seinem Witz und Humor meinen Arbeitsalltag sooft bereichert hat. Ohne sein unübertroffenes Talent für die Behebung von Instrumenten- und Computerfehlern wäre ich manchmal ernsthaft verzweifelt. Auch bedanken möchte ich mich bei allen Kolleginnen und Kollegen am Institut für die lustigen Gespräche und Momente. Im Speziellen möchte ich mich jedoch bei unserem „Dissertationskolloquium“ Lisa Emhofer und Georg Kreisberger bedanken. Zusammen haben wir eine grandiose Zeit hier am Institut verbracht. Die gemeinsamen Konferenzen mit euch haben bleibende Erinnerungen hinterlassen! Apropos Spaß, danke auch an dich liebe Susi für unsere legendären Donnerstagabende im Herberstein. Mit deiner lustigen Art und ansteckenden Lebensfreude hast du mich bei meiner Arbeit immer wieder inspiriert und motiviert. Besonderer Dank gilt auch meiner Familie für das Vertrauen und die große Wertschätzung meiner Person. Vieles von dem, was ich bis jetzt erreicht habe, verdanke ich den Erfahrungen, die ich zuhause sammeln konnte. Lieber Georg, was ich dir sagen möchte, lässt sich in Worte kaum fassen. Du bist in den guten aber auch in den schwierigen Momenten immer bedingungslos zu mir gestanden, hast mich mit deinen verrückten Ideen und Aktionen oft zum Lachen gebracht und mir stets eine starke Schulter zum Anlehnen geboten. Dafür schätze und liebe ich dich! i TABLE OF CONTENTS Abstract ....................................................................................................................................... 1 Kurzfassung ................................................................................................................................. 3 Statement of Co-Authorship ......................................................................................................... 5 1. Introduction ........................................................................................................................... 6 1.1. Solar thermal systems based on polymer materials ....................................................... 6 1.2. Polymer degradation and stabilization ........................................................................... 8 1.2.1. Polymer degradation pathways ........................................................................... 8 1.2.2. Polymer stabilizer classes ................................................................................ 10 1.2.2.1. Primary antioxidants........................................................................... 10 1.2.2.2. Secondary antioxidants ...................................................................... 13 1.2.2.3. Hindered amine light stabilizers (HALS) ............................................. 15 1.2.2.4. UV-absorbers ..................................................................................... 16 1.3. Analytical methods for polymer stabilizer analysis ....................................................... 18 1.3.1. Direct methods ................................................................................................. 18 1.3.2. Chromatographic methods ............................................................................... 20 2. Investigation of stabilizer interaction mechanisms ............................................................... 22 2.1. Methods for rating of stabilizer performances .............................................................. 22 Research paper 1: Structure elucidation of photoluminescent degradation products from polyolefins and evaluation of stabilizer performances .................................................. 24 2.2. Interactions of HALS and phenolic antioxidants in squalane ........................................ 33 Research paper 2: The role of quinoid derivatives in the UV-initiated synergistic interaction mechanism of HALS and phenolic antioxidants .......................................... 35 2.1. Interactions of HALS and phenolic antioxidants in polypropylene ................................ 44 2.1.1. Results from HALS-phenol test series .............................................................. 44 2.1.2. Results from HALS-phenol ox. test series......................................................... 45 2.1.3. Influence of the specimen thickness ................................................................. 47 3. Investigation of the polymer additive distribution ................................................................. 49 Research paper 3: Investigations on the distribution of polymer additives in polypropylene using confocal fluorescence microscopy ............................................... 50 ii 4. Conclusions ........................................................................................................................ 59 5. References ......................................................................................................................... 62 Curriculum Vitae ........................................................................................................................ 70 Abstract 1 ABSTRACT Due to the easy accessibility and availability, the interest in solar energy as renewable energy source has grown rapidly within recent years. Solar energy can be stored either indirectly as electric energy using photovoltaics or directly as thermal energy in solar thermal systems. To be able to compete with energy prices from non-renewable energy sources, commercially available solar systems have to be optimized in terms of the costs. Within the SolPol-4/5 project that provides the framework of this thesis, inexpensive polymeric materials used for the absorbers and the hot water heat stores were developed and evaluated according to their mechanical stability and degradation behavior. To guarantee a required durability of at least 20 years, various polymer stabilizers and additives are usually employed. In the best case, stabilizers with different mechanisms of actions complement each other, thereby contributing to an enhanced material stability. However, there are certain stabilizer combinations leading to unpredictable antagonistic interactions, making it necessary to investigate interaction reactions before preparing real polymer materials. To obtain such results within an acceptable time, accelerated aging experiments of polymer samples containing the stabilizers of interest are usually performed. To save time and reduce costs even further, within this thesis the polymer-mimicking solvent squalane was employed and tested in terms of applicability and validity. The major advantage of squalane arises from the fact that it is liquid at ambient conditions allowing to simply dissolve the stabilizers in the matrix without requiring a complex and time-consuming polymer extrusion process. The first publication presented in this thesis demonstrates that squalane may be perfectly suited for rating a large number of polymer stabilizers and combinations thereof using an approach based on high performance liquid chromatography (HPLC) and fluorescence detection. Similar to polypropylene, squalane reveals aging-induced photoluminescence emissions, which correlate with the extent of the matrix degradation and may therefore be used to discover synergistic and antagonistic stabilizer interaction phenomena. Investigation of the photoluminescent squalane signal applying high-resolution Orbitrap mass spectrometry (MS) revealed a formation of unsaturated carbonyl squalane compounds with different chain lengths. The extraction of the stabilizer-containing squalane samples with organic solvents additionally allows the investigation of the various reaction and degradation products of stabilizers, which is presented in the second research paper of this thesis. The study of the degradation products of hindered amine