The Mass of Jupiter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Jupiter Mass
CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between -
Mission Juno: Extended & Expanded 29 11 42
“Since its first orbit in 2016, Juno has delivered one revelation after another about the inner workings of this massive gas giant. With the extended mission, we will answer fundamental questions that arose during Juno’s prime mission while reaching beyond the planet to explore Mission Juno: Extended & Expanded Jupiter’s ring system and largest satellites.” by the numbers —SwRI’s Scott Bolton, Juno principal investigator “The Juno team will start tackling a breadth of science historically required of flagships. This represents an efficient and innovative advance for NASA’s solar system exploration strategy.” — Lori Glaze, Planetary Science Division Director, NASA HQ primary mission Investigate Jupiter’s origins, interior, atmosphere extended mission and magnetosphere Investigation of Jupiter’s northern hemisphere and polar cyclones, dilute core, magnetic LAUNCH: August 5, 2011 ARRIVAL: July 2016 features being sheared by Jupiter’s zonal jets; flybys of Io, Europa and Ganymede; observation PRIMARY MISSION ENDS: July 2021 of the distant boundaries of the magnetosphere; and the first exploration of Jupiter’s rings MISSION STARTS: August 2021 MISSION ENDS: September 2025 34 Science Orbits 42 Additional Orbits Flybys over the Great Blue 6 Spot, a Magnetic Enigma SPACECRAFT ST Detailed Exploration of 19 Atmospheric 1 Jupiter’s Faint Rings Occultations ST Spacecraft Equipped 1 with a Radiation Vault MOON FLYBYS Titanium Mapping of 400 ST POUND Electronics Vault 1 Europa’s Ice Shell Thickness 3 EUROPA FLYBYS 29 Science Sensors on 11 Instruments Measurement ST of Space Search for 1 GANYMEDE FLYBYS ST Weathering 2 IO FLYBYS 1 Io’s Global on an Icy Solar Panels Spanning 66 11 Magma Ocean 3 FEET Moon 18 SPRING 2021 IMAGES COURTESY NASA/JPL/DLR/JPL-CALTECH D024769. -
Jupiter Magnetospheric Orbiter Trajectory Design: Reaching High Inclination in the Jovian System
Jupiter Magnetospheric Orbiter trajectory design: reaching high inclination in the Jovian system Stefano Campagnola (1), Yasuhiro Kawakatsu (2) (1)JSPS postdocrotal fellow, JAXA/ISAS, Kanagawa-ken, Sagamihara-shi, Chuo-ku, Yoshinodai 3-1-1, 252-5210, Japan, +81-50-336-23664, [email protected] (2)Associate professor, JAXA, [email protected] Abstract This paper presents the trajectory design for the Jupiter Magnetospheric Orbiter (JMO) in the Jovian system. JMO is JAXA’s contribution to the Europa Jupiter System Mission, and its science objectives include in-situ exploration of different regions of the magnetosphere and the remote sensing of the plasma torus from high latitudes. For this reason the spacecraft is initially captured into low-inclination, high-apojove orbits, and gradually increases the inclination and reduces the apojove using gravity assists. In order to minimize the mission cost and complexity, JMO avoids the high- radiation regions. At the same time, the trajectory minimizes the transfer time and the propellant mass, and maximize the final inclination to the Jupiter equator. This work analyzes the solution space of this complex multi-objective optimization problem and discusses the trade-offs by comparing two representative solutions on its Pareto front. The design approach is also presented. Keywords: Jupiter Magnetospheric Orbiter, Jovian system, multiple gravity assists,orbit plane change 1 Introduction In the last years the scientific community has become increasingly interested in the Jovian system. The scientific return from a mission devoted to the exploration of Jupiter and its environment would be enormous, addressing fundamental questions on the plasma science, and on the presence of water - and possibly life - below the surface of the moons Europa and Ganymede. -
PHYS133 – Lab 4 the Revolution of the Moons of Jupiter
PHYS133 – Lab 4 The Revolution of the Moons of Jupiter Goals: Use a simulated remotely controlled telescope to observe Jupiter and the position of its four largest moons. Plot their positions relative to the planet vs. time and fit a curve to them to determine their orbit characteristics (i.e., period and semi‐major axis). Employ Newton’s form of Kepler’s third law to determine the mass of Jupiter. What You Turn In: Graphs of your orbital data for each moon. Calculations of the mass of Jupiter for each moon’s orbit. Calculate the time required to go to Mars from Earth using the lowest possible energy. Background Reading: Background reading for this lab can be found in your text book (specifically, Chapters 3 and 4 and especially section 4.4) and the notes for the course. Equipment provided by the lab: Computer with Internet Connection • Project CLEA program “The Revolutions of the Moons of Jupiter” Equipment provided by the student: Pen Calculator Background: Astronomers cannot directly measure many of the things they study, such as the masses and distances of the planets and their moons. Nevertheless, we can deduce some properties of celestial bodies from their motions despite the fact that we cannot directly measure them. In 1543, Nicolaus Copernicus hypothesized that the planets revolve in circular orbits around the sun. Tycho Brahe (1546‐1601) carefully observed the locations of the planets and 777 stars over a period of 20 years using a sextant and compass. These observations were used by Johannes Kepler, to deduce three empirical mathematical laws governing the orbit of one object around another. -
Arxiv:1209.5996V1 [Astro-Ph.EP] 26 Sep 2012 1.1
, 1{28 Is the Solar System stable ? Jacques Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France [email protected] R´esum´e. Since the formulation of the problem by Newton, and during three centuries, astrono- mers and mathematicians have sought to demonstrate the stability of the Solar System. Thanks to the numerical experiments of the last two decades, we know now that the motion of the pla- nets in the Solar System is chaotic, which prohibits any accurate prediction of their trajectories beyond a few tens of millions of years. The recent simulations even show that planetary colli- sions or ejections are possible on a period of less than 5 billion years, before the end of the life of the Sun. 1. Historical introduction 1 Despite the fundamental results of Henri Poincar´eabout the non-integrability of the three-body problem in the late 19th century, the discovery of the non-regularity of the Solar System's motion is very recent. It indeed required the possibility of calculating the trajectories of the planets with a realistic model of the Solar System over very long periods of time, corresponding to the age of the Solar System. This was only made possible in the past few years. Until then, and this for three centuries, the efforts of astronomers and mathematicians were devoted to demonstrate the stability of the Solar System. arXiv:1209.5996v1 [astro-ph.EP] 26 Sep 2012 1.1. Solar System stability The problem of the Solar System stability dates back to Newton's statement concerning the law of gravitation. -
In Situ Exploration of the Giant Planets Olivier Mousis, David H
In situ Exploration of the Giant Planets Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, Stas Barabash, Michel Blanc, T. Cavalié, Athena Coustenis, Magali Deleuil, et al. To cite this version: Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, et al.. In situ Exploration of the Giant Planets. 2019. hal-02282409 HAL Id: hal-02282409 https://hal.archives-ouvertes.fr/hal-02282409 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. In Situ Exploration of the Giant Planets A White Paper Submitted to ESA’s Voyage 2050 Call arXiv:1908.00917v1 [astro-ph.EP] 31 Jul 2019 Olivier Mousis Contact Person: Aix Marseille Université, CNRS, LAM, Marseille, France ([email protected]) July 31, 2019 WHITE PAPER RESPONSE TO ESA CALL FOR VOYAGE 2050 SCIENCE THEME In Situ Exploration of the Giant Planets Abstract Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. -
Prelab 4: Revolution of the Moons of Jupiter
Name: Section: Date: Prelab 4: Revolution of the Moons of Jupiter Many of the parameters astronomers study cannot be directly measured; rather, they are inferred from properties or other observations of the bodies themselves. The mass of a celestial object is one such parameter|after all, how would one weigh something suspended in mid-air? In 1543, Nicolaus Copernicus hypothesized that the planets revolve in circular orbits around the sun. His contemporary Tycho Brahe, famous for his observations, carefully charted the locations of the planets and hundreds of stars over a period of twenty years, using a sextant and a compass. These observations were eventually used by Johannes Kepler, a student of Brahe's, to deduce three empirical mathematical laws governing the orbit of one object around another. Kepler's Third Law is the one that applies to this lab. In the early 17th century, with the recent invention of the telescope, Galileo was able to extend astronomical observations beyond what was available to the naked eye. He discovered four moons orbiting Jupiter and made exhaustive studies of this system. Galileo's work is of particular interest, not only for its pioneering observations, but because Jupiter and the four Galilean moons (as they came to be called) can be viewed as a miniature version of the larger Solar System in which they lie. Furthermore, Jupiter provided clear evidence that Copernicus's heliocentric model of the Solar System was physically possible; it is largely from these scientists' work that the modern study of Astronomy was born. The purpose of this lab is to determine the mass of Jupiter by observing the motion of the four Galilean moons: Io, Europa, Ganymede, and Callisto. -
MASTER's THESIS Re-Use of Exomars Rover on Icy Moons of Jupiter
2010:051 MASTER'S THESIS Re-use of Exomars Rover on Icy Moons of Jupiter Abrar-Ul-Haq Khan Baluch Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of Space Science, Kiruna 2010:051 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--10/051--SE CRANFIELD UNIVERSITY ABRAR-UL-HAQ KHAN BALUCH RE-USE OF EXOMARS ROVER ON ICY MOONS OF JUPITER SCHOOL OF ENGINEERING Astronautics and Space Engineering (SpaceMaster) MSc THESIS Academic year: 2009-10 CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING Astronautics and Space Engineering (SpaceMaster) MSc THESIS Academic Year 2009-2010 ABRAR-UL-HAQ KHAN BALUCH RE-USE OF EXOMARS ROVER ON ICY MOONS OF JUPITER Supervisor: Dr J. Kingston June 2010 This thesis is submitted in partial (45%) fulfilment of the requirements for the degree of Master of Science © Cranfield University 2010. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Abstract The ExoMars Rover, developed by EADS Astrium to perform in-situ investigations into the potential existence of life on Mars, may also be exploited for use on other planetary bodies. The Icy Moons of Jupiter (JIMs): Europa, Ganymede and Callisto, are in particular also of key interest to astrobiologists and geologists. The purpose of this research was to perform a feasibility analysis on the operation of the ExoMars rover on these Icy Moons. Specifically, this involved the conduction of design/concept study to determine whether it is possible from a thermal and system power point of view with the current design and, if not, what modifications would need to be implemented for successful operation. -
EXPLORATION of JUPITER. F. Bagenal, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder CO 80302 ([email protected])
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1352.pdf EXPLORATION OF JUPITER. F. Bagenal, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder CO 80302 ([email protected]) Introduction: Jupiter reigns supreme amongst plan- zones, hinting at convective motions but images were ets in our solar system: the largest, the most massive, the insufficient to allow tracking of features. fastest rotating, the strongest magnetic field, the greatest • Infrared emissions from Jupiter’s nightside com- number of satellites, and its moon Europa is the most pared to the dayside, confirming that the planet radiates likely place to find extraterrestrial life. Moreover, we 1.9 times the heat received from the Sun with the poles now know of thousands of Jupiter-type planets that orbit being close to equatorial temperatures. other stars. Our understanding of the various compo- • Accurately tracking of the Doppler shift of the nents of the Jupiter system has increased immensely spacecraft’s radio signal refined the gravitational field with recent spacecraft missions. But the knowledge that of Jupiter, constraining models of the deep interior. we are studying just the local example of what may be • Similarly, the masses of the Galilean satellites ubiquitous throughout the universe has changed our per- were corrected by up to 10%, establishing a decline in spective and studies of the jovian system have ramifica- their density with distance from Jupiter. tions that extend well beyond our solar system. • Magnetic field measurements confirmed the strong The purpose of this talk is to document our scientific magnetic field of Jupiter, putting tighter constraints on understanding of the jovian system after six spacecraft the higher order components. -
O. Witasse and N. Altobelli
JUpiter Icy Moons Explorer (JUICE) Status report for OPAG O. Witasse and N. Altobelli JUICE artist impression (Credits ESA, AOES) Jupiter Icy Moons Explorer JUICE Science Introduction | D. Titov | SRE-SM | JUICE Kick-off 17.09.2012 | MISSION SCIENCE (1/3) EXPLORATION OF HABITABLE EXPLORATION OF JUPITER WORLDS SYSTEM GANYMEDE ATMOSPHERE EUROPA MAGNETOSPHERE IO, MINOR MOONS CALLISTO AND RINGS JUICE Science Introduction | D. Titov | SRE-SM | JUICE Kick-off 17.09.2012 | MISSION SCIENCE (2/3) EXPLORATION OF HABITABLE WORLDS Ganymede, Callisto, Europa - Ocean - Ice shell - Surface features and composition - Activity JUICE Science Introduction | D. Titov | SRE-SM | JUICE Kick-off 17.09.2012 | MISSION SCIENCE (3/3) EXPLORATION OF THE JUPITER SYSTEM Atmosphere circulation, chemistry, structure Jovian magnetic rotator, Particle accelerator, Interactions with moons Io activity Plasma, dust rings JUICE Science Introduction | D. Titov | SRE-SM | JUICE Kick-off 17.09.2012 | Experiment teams Acronym Instrument PI JANUS Camera P. Palumbo (IT) MAJIS VNIR imaging spectrometer Y. Langevin (F) and G. Piccioni (IT) UVS UV spectrograph R. Gladstone (USA) SWI Sub-mm wave instrument P. Hartogh (D) GALA Laser Altimeter H. Hussmann (D) RIME Ice Penetrating Radar L. Bruzzone (IT) 3GM Radio-Science L. Iess (IT) PRIDE VLBI L. Gurvits (EU) J-MAG Magnetometer M. Dougherty (UK) PEP Plasma Package S. Barabash (S) RPWI Radio and Plasma wave J.-E. Wahlund (S) instrument JUICE Science Introduction | D. Titov | SRE-SM | JUICE Kick-off 17.09.2012 | Interdisciplinary Scientists Leigh University of Jupiter’s Climate Variability as the Fletcher Leicester, UK Archetype for Giant Planets Olivier University of Deep Exploration of the Icy Moons, Grasset Nantes, with a special focus at Ganymede France Norbert Max-Planck Characterisation of the particles and Krupp Institute, fields parameters in the Jovian Gottingen, magnetosphere (globally and locally Germany in the vicinity of the moons) and their temporal and spatial variability JUICE Science Introduction | D.